An Examination of the Neural Correlates of Interoceptive Processes in the Macaque Monkey

Total Page:16

File Type:pdf, Size:1020Kb

An Examination of the Neural Correlates of Interoceptive Processes in the Macaque Monkey An Examination of the Neural Correlates of Interoceptive Processes in the Macaque Monkey Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Mathematisch-Naturwissenschaftlichen Fakultät und der Medizinischen Fakultät der Eberhard-Karls-Universität Tübingen vorgelegt von Renee Elizabeth Hartig aus Smithtown, New York, United States of America September 2019 Tag der mündlichen Prüfung: 10. Dezember 2019 Dekan der Math.-Nat. Fakultät: Prof. Dr. W. Rosenstiel Dekan der Medizinischen Fakultät: Prof. Dr. I. B. Autenrieth 1. Berichterstatter: Dr. Henry C. Evrard 2. Berichterstatter: Prof. Andreas Bartels 3. Berichterstatter: Prüfungskommission: Dr. Henry C. Evrard Prof. Andreas Bartels Prof. Cornelius Schwarz Prof. Nikos K. Logothetis vii I hereby declare that I have produced the work entitled “An Examination of the Neural Correlates of Interoceptive Processes in the Macaque Monkey” submitted for the award of a doctorate, on my own (without external help), have used only the sources and aids indicated and have marked passages included from other works, whether verbatim or in content, as such. I s wear upon oath that these statements are true and that I have not concealed anything. I am aware that making a false declaration under oath is punishable by a term of imprisonment of up to three years or by a fine. Tübingen, 30 September 2019 ________________ Renee Elizabeth Hartig viii To the wise that came before my time ix x ABSTRACT Several well-established methods exist for recording and measuring the underlying signals of the brain. Methods such as electrophysiology and fMRI, when taken together, have the capacity to disclose local and global neuronal activity. Here, both techniques were employed to refine the working functional model of the insular cortex, a recipient of sensory afferents relaying information about the body’s physiological state. This dissertation serves to extend the current knowledge relating to the sensory afferent pathways relaying gustatory and interoceptive information to the brain, with special considerations of the role of the insular cortex. A series of fMRI experiments were conducted in the anesthetized macaque; whereby, responses to different types of interoceptive stimulation were measured (e.g. lower gastrointestinal distention, cutaneous thermal stimulation, auricular vagus nerve stimulation, and taste). The gross anatomical localization of these functions were mapped, providing a foundation for subsequent electrophysiological sampling across the insula. Using these methods, our results revealed a topographic organization of multi-modal interoceptive responses and the evidence garnered was analyzed within the context of insular cortex connectivity and its association with limbic and higher-order cortical areas. Our results support previous evidence of a topographic representation of interoceptive afferents in the human insula and contribute to the working model of insular cortex function in non-human primates. The manner in which interoceptive information is organized may disclose how upstream regions integrate sensory information to form a conscious percept of the body’s physiological state, shaping cognition, and contribute to emotional embodiment. The present work serves as a basis for mapping functional responses with more involved paradigms designed to assess the emotional and cognitive responses to interoceptive sensations in the awake behaving state. xi xii CONTENTS ABSTRACT --------------------------------------------------------------------------------------------------------- XI ABBREVIATIONS -------------------------------------------------------------------------------------------------- 3 SYNOPSIS -------------------------------------------------------------------------------------------------------------- Channeling the Senses -------------------------------------------------------------------------------------------- 5 Building Upon the Senses ---------------------------------------------------------------------------------------- 11 Scientific Objectives ---------------------------------------------------------------------------------------------- 12 State of the Art ---------------------------------------------------------------------------------------------------- 14 Dynamic Brain States ------------------------------------------------------------------------------------------- 14 Functional Magnetic Resonance Imaging -------------------------------------------------------------------- 15 Electrophysiology ----------------------------------------------------------------------------------------------- 16 Overview ------------------------------------------------------------------------------------------------------------ 17 Part 1: Functional Imaging during Interoceptive Stimulation --------------------------------------------- 17 Part 2: Interotopic Maps ---------------------------------------------------------------------------------------- 18 Part 3: Functional Connectivity ------------------------------------------------------------------------------- 19 A Step Forward --------------------------------------------------------------------------------------------------- 19 Bibliography ------------------------------------------------------------------------------------------------------- 22 Declaration of Contributions ----------------------------------------------------------------------------------- 29 1 Appended Manuscripts 1. NORMALIZING PRIMATE NEUROIMAGING RESULTS ------------------------------------------- 31 2. THE NON-HUMAN PRIMATE CORTICAL TASTE REPRESENTATION ------------------------- 31 3. BOLD CORRELATES OF RECTAL DISTENTION IN THE ANESTHETIZED MACAQUE ----- 69 4. THE INSULAR CORTEX’S INTEROTOPIC MAP ----------------------------------------------------- 83 ACKNOWLEDGEMENTS ------------------------------------------------------------------------------------- 125 2 ABBREVIATIONS ABVN auricular branch of the vagus nerve ACC anterior cingulate cortex AIC anterior insular cortex ANOVA analysis of variance ANS autonomic nervous system AP anteroposterior axis BOLD blood-oxygen-level-dependent CN cranial nerve CNS central nervous system DV dorsolateral axis ECG electrocardiogram EGG electrogastrogram fMRI functional magnetic resonance imaging FOV field-of-view FWHM full-width at half-maximum HPC heat-pinch-cold cell Idfa/dAIC dorsal fundus of the anterior insular cortex Idfm dorsal fundus of the mid-insular cortex Idfp dorsal fundus of the posterior insular cortex GLM General Linear Model LFP local field potential MCC midcingulate cortex MDvc mediodorsal thalamic nucleus ventrocaudal portion 3 MDEFT modified driven equilibrium Fourier transform ML mediolateral axis MUA multi-unit activity NHP non-human primate NTS nucleus tractus solitarius PAG periaqueductal gray PBN parabrachial nucleus PGA Primary Gustatory Area PIC Primary Interoceptive Cortex PFC prefrontal cortex PSFS peripheral suction fluid stimulator RD rectal distention Ri retro-insula ROI Region-of-Interest SDF spike density function ssGLS suction-sealed gustolingual stimulator vAIC ventral Anterior Insular Cortex VEN von Economo Neuron VMb ventromedial thalamic nucleus basal portion VMpo ventromedial thalamic nucleus posterior portion 4 SYNOPSIS “Sense-objects are always present, and thus when a sense organ—the subtle matter that allows you to see, hear, and so forth— develops, an eye consciousness, ear consciousness, nose consciousness, tongue consciousness, or body consciousness will be produced.” (Dalai Lama, 2000) CHANNELING THE SENSES The brain is an avid processor of the world around us and the world within us. The processing of these environments, and the signals arising from them, is crucial for survival and the maintenance of a healthy, balanced life. This dissertation examines the representation of different sensory modalities in the brain, with particular attention to signals arising from the body. The underlying neural activity representing these sensory processes was analyzed to refine the concept of a somatotopographically organized insular cortex in the macaque monkey, a region with multiple functional domains encoding different aspects of bodily processing. The evidence presented here was compared to the topographic organization of the human insula, as determined by fMRI, and to prior tract-tracing studies previously targeting thalamic nuclei known to project to the insula. From this comparative research, we learn that the topographic innervation of afferents is conserved from the spinal cord to the cortex and that distinct anatomical subregions support the integration of multi-modal information. While a plethora of functional modules exist within the neuroanatomical construct of the brain, this intricate system is often parsimoniously described for general education purposes. What has been commonly taught to students about the central nervous system (CNS) largely concerns the input of information to the brain and outputs in terms of emotions, behavior and physiological changes. There are five classical senses everyone learns by adulthood: taste, touch, smell, vision and hearing. It is generally understood that the brain receives visual input from the eyes, auditory 5 input from the ears, taste input from the mouth, olfactory input from the nose and tactile input from the skin. By this framework, each sense has its own specialized organ for transducing the relevant information. But, to consider the processing of sensory information only within this framework would surely
Recommended publications
  • The Effects of Oxygen on the Electrophysiology of CO2/H+-Chemosensitive and -Insensitive Neurons of the Solitary Complex of the Rat" (2012)
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 The ffecE ts of Oxygen on the Electrophysiology of CO2/H+-Chemosensitive and -Insensitive Neurons of the Solitary Complex of the Rat Michael Patrick Matott University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, Neurosciences Commons, and the Physiology Commons Scholar Commons Citation Matott, Michael Patrick, "The Effects of Oxygen on the Electrophysiology of CO2/H+-Chemosensitive and -Insensitive Neurons of the Solitary Complex of the Rat" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4148 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. + The Effects of Oxygen on the Electrophysiology of CO2/H -Chemosensitive and -Insensitive Neurons of the Solitary Complex of the Rat by Michael Patrick Matott Doctor of Philosophy Department of Molecular Pharmacology and Physiology College of Medicine University of South Florida Major Professor: Jay B. Dean, Ph.D. Robert W. Putnam, Ph.D. Bruce G. Lindsey, Ph.D. Paula Bickford, Ph.D. Edwin Weeber, Ph.D. Date of Approval: January 18, 2012 Keywords: brainstem, hyperoxia, hypercapnia, hypoxia, anoxia, respiration Copyright © 2012, Michael Patrick Matott Acknowledgements Funding for this study was provided by National Institute of Health (NIH-R01- HL-56683) to Drs. Robert Putnam and Jay Dean and Office of Naval Research (ONR- N0001 4071 0890) to Dr.
    [Show full text]
  • Electrophysiological Mechanisms of Kainic Acid- Induced Epileptiform Activity in the Rat Hippocampal Slice’
    0270-6474/84/0405-1312$02,00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 5, pp. 1312-1323 Printed in U.S.A. May 1984 ELECTROPHYSIOLOGICAL MECHANISMS OF KAINIC ACID- INDUCED EPILEPTIFORM ACTIVITY IN THE RAT HIPPOCAMPAL SLICE’ ROBERT S. FISHER’ AND BRADLEY E. ALGER Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201 Received August 29, 1983; Revised December 28, 1983; Accepted January 4, 1984 Abstract Depression of GABA-mediated IPSPs has been proposed to be a crucial factor in the onset of epileptiform activity in most models of epilepsy. To test this idea, we studied epileptiform activity induced by bath application of the excitatory neurotoxin kainic acid (KA) in the rat hippocampal slice. Repetitive field potential firing, spontaneous or evoked, occurred during exposure to KA. Intracellular records from 52 CA1 pyramidal cells during changes from control saline to saline containing i PM KA indicated that KA depolarized cells an average of about 5 mV and caused a 15% decrease in input resistance. Action potentials and current-induced burst afterhyperpolariza- tions did not change significantly. In several cells the tonic effects of KA were preceded by a transient phase of sporadic, spontaneous depolarizations of 2 to 10 mV and 50 to 200 msec duration. These phasic depolarizations were blocked by hyperpolarization. The major effect of 1 PM KA was a depression of synaptic potentials. Initially, KA depressed fast GABA-mediated IPSPs and slow, non-GABA-mediated late hyperpolarizing potentials to 23% and 40% of control values, respectively. IPSP depression correlated closely with onset of burst potential firing in response to synaptic stimulation.
    [Show full text]
  • Roger A. Nicoll
    Roger A. Nicoll BORN: Camden, New Jersey January 15, 1941 EDUCATION: Lawrence University, Appleton, Wisconsin, BA (1963) University of Rochester, School of Medicine, MD (1968) University of Chicago Hospitals and Clinics, Intern (Medicine) (1969) APPOINTMENTS: Public Health Service, Research Associate (1969–1973) Research Associate Professor, SUNY at Buffalo (1973–1975) Assistant Professor, University of California, San Francisco (1975–1976) Associate Professor, University of California, San Francisco (1977–1980) Professor, University of California, San Francisco (1980–present) HONORS AND AWARDS (SELECTED): Borden Award: Best Research completed during Medical School (1968) National Institute of Mental Health, Merit Award (1987–1997) National Academy of Sciences (1994) National Institute of Mental Health, Merit Award (1997–2007) Lucie R. Briggs Distinguished Achievement Award, Lawrence University (1998) Fellow, American Academy of Arts and Sciences (1999) Morris Herzstein Endowed Chair (1999) Heinrich-Wieland-Preis (2004) Perl/UNC Neuroscience Award, with R. C. Malenka (2005) Gruber Award for distinguished accomplishments in neuroscience, with M. Ito (2006) National Institute of Mental Health, Merit Award (2007–2017) 24th Annual J. Allyn Taylor International Prize in Medicine, with M. Greenberg (2008) National Academy of Sciences-Neuroscience Award (2009) 23rd Annual Pasarow Award in Neuroscience, with C. F. Stevens and R. C. Malenka (2011) Axelrod Prize, awarded by the Society for Neuroscience (2011) Scolnick Prize, Massachusetts Institute
    [Show full text]
  • Theriot UCLA Dissertation
    UCLA UCLA Electronic Theses and Dissertations Title Microfluidic Brain Slice Chambers and Flexible Microelectrode Arrays for in vitro Localized Stimulation and Spatial Mapping of Neural Activities Permalink https://escholarship.org/uc/item/91d7n7k0 Author Tang, Yujie Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Microfluidic Brain Slice Chambers and Flexible Microelectrode Arrays for in vitro Localized Stimulation and Spatial Mapping of Neural Activities A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mechanical Engineering by Yujie Tang 2012 © Copyright by Yujie Tang 2012 ABSTRACT OF THE DISSERTATION Microfluidic Brain Slice Chambers and Flexible Microelectrode Arrays for in vitro Localized Stimulation and Spatial Mapping of Neural Activities by Yujie Tang Doctor of Philosophy in Mechanical Engineering University of California, Los Angeles, 2012 Professor Yongho Ju, Chair In vitro neurobiological experiments using brain slices have played a key role in improving our understanding of the central nervous system. Microfabricated brain slice chambers and flexible semi-transparent multi-electrode arrays allow controlled local changes in the chemical environments as well as high resolution electrophysiology and optical recording of brain slices which would in turn provide further information of the complex neuronal system. In this study, we exploit the advantages of microfabricated devices, including a microfluidic brain slice chamber for localized chemical stimulation and a flexible microelectrode array for spatial mapping of neuronal activities, to investigate various biophysical properties of cortical spreading depression. ii First, a microfluidic brain slice chamber is designed and fabricated to permit localized chemical stimulation to specific brain slice cortical regions.
    [Show full text]
  • Organotypic Cultures As Tools for Optimizing Central Nervous System Cell Therapies
    Experimental Neurology 248 (2013) 429–440 Contents lists available at SciVerse ScienceDirect Experimental Neurology journal homepage: www.elsevier.com/locate/yexnr Review Organotypic cultures as tools for optimizing central nervous system cell therapies Nicolas Daviaud a,b,ElisaGarbayoa,b,c, Paul C. Schiller d,e,f,MiguelPerez-Pinzong, Claudia N. Montero-Menei a,b,⁎ a INSERM U1066, ‘Micro et Nanomédecines biomimétiques—MINT’, Angers, France b LUNAM Université, Université Angers, UMR-S1066, Angers, France c Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain d Geriatric Research, Education and Clinical Center and Research Services, Bruce W. Carter Veterans Affairs Medical Center, Miami, FL, USA e Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, USA f Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA g Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA article info abstract Article history: Stem cell therapy is a promising treatment for neurological disorders such as cerebral ischemia, Parkinson's Received 15 February 2013 disease and Huntington's disease. In recent years, many clinical trials with various cell types have been performed Revised 15 July 2013 often showing mixed results. Major problems with cell therapies are the limited cell availability and engraftment Accepted 18 July 2013 and the reduced integration of grafted cells into the host tissue. Stem cell-based therapies can provide a limitless Available online 27 July 2013 source of cells but survival and differentiation remain a drawback. An improved understanding of the behaviour Keywords: of stem cells and their interaction with the host tissue, upon implantation, is needed to maximize the therapeutic fi Stem cells potential of stem cells in neurological disorders.
    [Show full text]
  • Anatomical Organization and Spatiotemporal Firing Patterns of Layer 3 Neurons in the Rat Medial Entorhinal Cortex
    12346 • The Journal of Neuroscience, September 9, 2015 • 35(36):12346–12354 Systems/Circuits Anatomical Organization and Spatiotemporal Firing Patterns of Layer 3 Neurons in the Rat Medial Entorhinal Cortex Qiusong Tang,1 Christian Laut Ebbesen,1,2 Juan Ignacio Sanguinetti-Scheck,1 Patricia Preston-Ferrer,3 Anja Gundlfinger,4 Jochen Winterer,4 Prateep Beed,4 Saikat Ray,1 Robert Naumann,1 Dietmar Schmitz,4 Michael Brecht,1 and Andrea Burgalossi3 1Bernstein Center for Computational Neuroscience, 2Berlin School of Mind and Brain, Humboldt University of Berlin, 10115 Berlin, Germany, 3Werner- Reichardt Centre for Integrative Neuroscience, University of Tu¨bingen, 72076 Tu¨bingen, Germany, and 4Charite´ Universita¨tsmedizin Berlin, 10117 Berlin, Germany Layer 3 of the medial entorhinal cortex is a major gateway from the neocortex to the hippocampus. Here we addressed structure–function relationships in medial entorhinal cortex layer 3 by combining anatomical analysis with juxtacellular identification of single neurons in freely behaving rats. Anatomically, layer 3 appears as a relatively homogeneous cell sheet. Dual-retrograde neuronal tracing experiments indicate a large overlap between layer 3 pyramidal populations, which project to ipsilateral hippocampus, and the contralateral medial entorhinal cortex. Thesecellswereintermingledwithinlayer3,andhadsimilarmorphologicalandintrinsicelectrophysiologicalproperties.Dendritictreesoflayer 3 neurons largely avoided the calbindin-positive patches in layer 2. Identification of layer 3 neurons during spatial exploration (n ϭ 17) and extracellular recordings (n ϭ 52) pointed to homogeneous spatial discharge patterns. Layer 3 neurons showed only weak spiking theta rhyth- micity and sparse head-direction selectivity. A majority of cells (50 of 69) showed no significant spatial modulation. All of the ϳ28% of neurons that carried significant amounts of spatial information (19 of 69) discharged in irregular spatial patterns.
    [Show full text]
  • Eric I. Knudsen
    BK-SFN-NEUROSCIENCE_V11-200147-Knudsen.indd 138 18/06/20 1:08 PM Eric I. Knudsen BORN: October 7, 1949 Palo Alto, California EDUCATION: University of California, Santa Barbara, BA (1971) University of California, Santa Barbara, MA (1972) University of California, San Diego, PhD (1976) APPOINTMENTS: Assistant Professor, Department of Neurobiology, Stanford University School of Medicine (1979–1985) Associate Professor, Department of Neurobiology, Stanford University School of Medicine (1985–1988) Professor, Department of Neurobiology, Stanford University School of Medicine (1988–2016) Edward C. and Amy H. Sewall Professor, Stanford University School of Medicine (1995–2016) Chair of Neurobiology, Stanford University School of Medicine (2001–2006) Professor Emeritus, Department of Neurobiology, Stanford University School of Medicine (2016–present) HONORS AND AWARDS (SELECTED): Newcomb Cleveland Prize, American Association for the Advancement of Science (1978) Young Investigator Award, Society for Neuroscience (1984) Troland Research Award, National Academy of Sciences (1988) American Academy of Arts and Sciences, Fellow (1996) National Academy of Sciences, Member (2002) Gruber Prize in Neuroscience, Society for Neuroscience (2005) Karl Spencer Lashley Award, American Philosophical Society (2008) American Philosophical Society, Member (2016) Eric Knudsen has devoted his career to studying how the brain processes information, learns from experience, and selects information for attention. His early research mapped out neural pathways in birds
    [Show full text]
  • Electrical Activity Controls Area-Specific Expression Of
    RESEARCH ARTICLE Electrical activity controls area-specific expression of neuronal apoptosis in the mouse developing cerebral cortex Oriane Blanquie, Jenq-Wei Yang, Werner Kilb, Salim Sharopov, Anne Sinning†, Heiko J Luhmann†* Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany Abstract Programmed cell death widely but heterogeneously affects the developing brain, causing the loss of up to 50% of neurons in rodents. However, whether this heterogeneity originates from neuronal identity and/or network-dependent processes is unknown. Here, we report that the primary motor cortex (M1) and primary somatosensory cortex (S1), two adjacent but functionally distinct areas, display striking differences in density of apoptotic neurons during the early postnatal period. These differences in rate of apoptosis negatively correlate with region- dependent levels of activity. Disrupting this activity either pharmacologically or by electrical stimulation alters the spatial pattern of apoptosis and sensory deprivation leads to exacerbated amounts of apoptotic neurons in the corresponding functional area of the neocortex. Thus, our data demonstrate that spontaneous and periphery-driven activity patterns are important for the structural and functional maturation of the neocortex by refining the final number of cortical neurons in a region-dependent manner. DOI: https://doi.org/10.7554/eLife.27696.001 *For correspondence: [email protected] †These authors contributed Introduction equally to this work The assembly of neural circuits in the developing mammalian brain is characterized by an excess Competing interests: The generation of neurons and elimination of a substantial portion of these neurons by apoptosis. A first authors declare that no wave of apoptosis, peaking at embryonic day (E) 14 in the rodent cortex, is believed to select the competing interests exist.
    [Show full text]
  • Neuromodulation of Excitatory Synaptogenesis in Striatal Development
    1 2 3 Neuromodulation of excitatory synaptogenesis in striatal development 4 5 Yevgenia Kozorovitskiy1,2, Rui Peixoto1, Wengang Wang1, Arpiar Saunders1,3, Bernardo L. Sabatini1 6 1Department of Neurobiology/Howard Hughes Medical Institute, Harvard Medical School 7 2Department of Neurobiology, Northwestern University 8 3Current Address: Department of Genetics, Harvard Medical School 9 10 11 12 13 14 Correspondence: [email protected] 15 16 17 18 19 20 21 1 22 Abstract 23 Dopamine is released in striatum during development and impacts the activity of Protein Kinase A 24 (PKA) in striatal spiny projection neurons (SPNs). We examined whether dopaminergic 25 neuromodulation regulates activity-dependent glutamatergic synapse formation in the developing 26 striatum. Systemic in vivo treatment with Gαs-coupled G-protein receptors (GPCRs) agonists enhanced 27 excitatory synapses on direct pathway striatal spiny projection neurons (dSPNs), whereas rapid 28 production of excitatory synapses on indirect pathway neurons (iSPNs) required the activation of Gαs 29 GPCRs in SPNs of both pathways. Nevertheless, in vitro Gαs activation was sufficient to enhance 30 spinogenesis induced by glutamate photolysis in both dSPNs and iSPNs, suggesting that iSPNs in 31 intact neural circuits have additional requirements for rapid synaptic development. We evaluated the in 32 vivo effects of enhanced glutamate release from corticostriatal axons and postsynaptic PKA and 33 discovered a mechanism of developmental plasticity, wherein rapid synaptogenesis is promoted by the 34 coordinated actions of glutamate and postsynaptic Gαs-coupled receptors. 35 Introduction 36 In the vertebrate basal ganglia, dopamine performs critical functions in motivated, goal-directed 37 learning and behavior, transmitting signals related to rewarding stimuli and other salient experiences 38 (Bromberg-Martin, Matsumoto, and Hikosaka 2010).
    [Show full text]
  • Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-Glucamine Protective Recovery Method
    Journal of Visualized Experiments www.jove.com Video Article Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method Jonathan T. Ting*1, Brian R. Lee*1, Peter Chong1, Gilberto Soler-Llavina1, Charles Cobbs2, Christof Koch1, Hongkui Zeng1, Ed Lein1 1 Cell Types Program, Allen Institute for Brain Science 2 The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute * These authors contributed equally Correspondence to: Jonathan T. Ting at [email protected] URL: https://www.jove.com/video/53825 DOI: doi:10.3791/53825 Keywords: Neuroscience, Issue 132, Brain slice, patch clamp, electrophysiology, NMDG, protective recovery method, synaptic connectivity, neocortex, Na spike-in, multi-neuron recording Date Published: 2/26/2018 Citation: Ting, J.T., Lee, B.R., Chong, P., Soler-Llavina, G., Cobbs, C., Koch, C., Zeng, H., Lein, E. Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method. J. Vis. Exp. (132), e53825, doi:10.3791/53825 (2018). Abstract This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology.
    [Show full text]
  • Rhythmic Syllable-Related Activity in a Songbird Motor Thalamic Nucleus Necessary for Learned Vocalizations
    Rhythmic Syllable-Related Activity in a Songbird Motor Thalamic Nucleus Necessary for Learned Vocalizations The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Danish, Husain Haiderali. 2016. Rhythmic Syllable-Related Activity in a Songbird Motor Thalamic Nucleus Necessary for Learned Vocalizations. Doctoral dissertation, Harvard Medical School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:27007757 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA 1 TABLE OF CONTENTS Abstract……………………………….3 List of Abbreviations..………………..4 Introduction…………………………..5 Methods……………………………...20 Results……………………………….26 Discussion…………………………...33 Conclusion…………………………...42 Summary………………………….....43 Figures……………………………….45 References…………………………...56 2 Abstract Birdsong is a complex behavior that exhibits hierarchical organization. It is hypothesized that the hierarchical organization of birdsong is the result of activity in the avian song circuit that selects and activates behavioral units in a specific order. While the representation of singing behavior has been studied in some detail in ‘cortical premotor circuits,’ little is known of the role of the thalamus in the organization of adult birdsong. Using a combination of behavioral and electrophysiological studies, we examined the role of the thalamic nucleus Uvaeformis (Uva) in the production of stereotyped, adult song. Complete bilateral lesions of Uva result in a loss of stereotyped acoustic and temporal structure, similar to earlier reports of the effects of HVC lesions.
    [Show full text]
  • Vasopressin Neuromodulation in the Hippocampus
    The Journal of Neuroscience, March 1989, g(3): 752-759 Vasopressin Neuromodulation in the Hippocampus Roberta E. Brinton and Bruce S. McEwen Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10021 This study explored an effector mechanism associated with b). Two decadesago these investigators began to explore the the arginine vasopressin (AVP) recognition site in the hip- behavioral effects of vasopressinand other peptides upon tasks pocampus, namely, potentiation of norepinephrine (NE)-in- thought to be indicators of mnemonic function (for review, see duced CAMP accumulation in the surviving hippocampal slice. Strupp and Levitsky, 1985). Results of their studieshave chal- The biochemical mechanisms that underlie the AVP poten- lenged us and others to explore the biochemical aspectsof va- tiation were investigated as follows: First, the actions of AVP sopressinaction in brain. upon NE-induced accumulation of CAMP in hippocampal Putative receptors for vasopressinhave been detected by au- slices from rat brain were specific to AVP and not shared toradiography in each of the developmental subdivisionsof the by other closely related peptides, namely, oxytocin and brain (Biegon et al., 1984; Brinton et al., 1984; DeKloet et al., AVP,-,. Second, the AVP-induced neuromodulation involved 1985). Of particular interest with respect to the present work beta-adrenergic receptors, with AVP having no effect on are the arginine vasopressin(AVP) recognition siteswithin the CAMP levels in the absence of NE. Third, the potentiation by hippocampal formation. In Ammon’s horn, AVP receptorswere AVP was biphasic, with lower AVP concentrations poten- observed in the pyramidal cell layer (Biegon et al., 1984; Brinton tiating NE-induced CAMP accumulation, while higher con- et al., 1984) and in the strati oriens, radiatum, and lacunosum centrations did not potentiate.
    [Show full text]