Ticagrelor (Brilique) for Peripheral Arterial Disease

Total Page:16

File Type:pdf, Size:1020Kb

Ticagrelor (Brilique) for Peripheral Arterial Disease Horizon Scanning Research July 2016 & Intelligence Centre Ticagrelor (Brilique) for peripheral arterial disease LAY SUMMARY Peripheral arterial disease is a common condition in which a build-up of fatty deposit in the arteries (atherosclerosis) restricts blood supply to leg muscles. Many people with peripheral arterial disease have no symptoms. However, some people develop a painful ache in their legs when they walk, which usually disappears after a few minutes’ rest. This briefing is While peripheral arterial disease is not life-threatening, the process of based on atherosclerosis that causes it can lead to serious and potentially fatal information available at the time problems, such as heart attacks and stroke. of research and a limited literature Ticagrelor is a drug that can reduce blood clotting. It is given as a search. It is not tablet twice a day. If ticagrelor is licensed for use in the UK, it could be intended to be a a new treatment option for patients with peripheral arterial disease that definitive statement may reduce the complications of atherosclerosis. on the safety, efficacy or effectiveness of the NIHR HSRIC ID: 8065 health technology covered and should not be used for commercial purposes or commissioning without additional information. This briefing presents independent research funded by the National Institute for Health Research (NIHR). The views expressed are those of the author and not necessarily those of the NHS, the NIHR or the Department of Health. NIHR Horizon Scanning Research & Intelligence Centre, University of Birmingham. Email: [email protected] Web: www.hsric.nihr.ac.uk Horizon Scanning Research & Intelligence Centre TARGET GROUP • Peripheral arterial disease: patients with established disease - to reduce cardiovascular death, myocardial infarction and ischaemic stroke. TECHNOLOGY DESCRIPTION Ticagrelor (Brilique; AZD-6140; AR-C124910XX) is a member of the chemical class cyclopentyltriazolopyrimidines, and is an oral, direct acting, selective and reversibly binding purinoreceptor P2Y12 receptor antagonist that prevents adenosine diphosphate (ADP) 1 mediated P2Y12 dependent platelet activation and aggregation . Ticagrelor does not prevent ADP binding but when bound to the P2Y12 receptor, prevents ADP-induced signal transduction. Since platelets participate in the initiation and/or evolution of thrombotic complications of atherosclerotic disease, inhibition of platelet function has been shown to reduce the risk of cardiovascular events such as death, myocardial infarction or stroke1. Ticagrelor is administered at 90mg orally twice dailya. Ticagrelor is already marketed in the UK for the prevention of atherothrombotic events in adult patients with acute coronary syndromes and patients with a history of myocardial infarction who are at high risk of developing an atherothrombotic event1. Very common and common (≥1%) reported adverse events include blood disorder bleedings, hyperuricaemia, dyspnoea, gout, dizziness, syncope, headache, vertigo, hypotension, respiratory system bleedings, gastrointestinal haemorrhage, diarrhoea, nausea, dyspepsia, constipation, dermal bleeding, rash, pruritus, urinary tract bleeding, increased blood creatinine, post procedural haemorrhage and traumatic bleeding1. Ticagrelor is currently in phase III trials for cerebral ischaemia. Ticagrelor is also in phase II trials for thrombosis. INNOVATION and/or ADVANTAGES If licensed, ticagrelor will offer an additional treatment option for patients with peripheral arterial disease that may reduce their risk of serious cardiovascular events. DEVELOPER AstraZeneca UK. AVAILABILITY, LAUNCH OR MARKETING Phase III clinical trials. PATIENT GROUP BACKGROUND a Company provided information. 2 Horizon Scanning Research & Intelligence Centre Peripheral arterial disease (PAD) is usually caused by atherosclerosis that leads to stenosis and occlusion of non-cerebral and non-coronary arteries2,3. PAD can cause discomfort or pain in the lower legs when walking, known as intermittent claudication2. Although many never experience symptoms, 7-15% of people with asymptomatic PAD will develop intermittent claudication within five years. Of those who do develop claudication, 20-25% are likely to experience further clinical deterioration3. Critical limb ischaemia is a severe manifestation of PAD, and is characterised by severely diminished circulation, ischaemic pain, ulceration, tissue loss and/or gangrene4. Major amputation is rare (other than in patients with diabetes); only 1-3% of patients with intermittent claudication will require major amputation in a five year period3. While the most common cause for PAD is atherosclerosis, other possible causes include vasculitis, cystic adventitial disease and popliteal entrapment2. The development of atherosclerotic PAD is a multifactorial process involving both modifiable and non-modifiable risk factors, such as smoking, diabetes, hypertension, hyperlipidaemia, age and an increased risk is observed in those from Black ethnic groups3. About 65% of patients of PAD also have clinically relevant cerebral or coronary artery disease, and a large prospective cohort study showed that patients with PAD have a six-fold higher risk of death from cardiovascular disease than those without PAD3. CLINICAL NEED and BURDEN OF DISEASE In the general population, up to 10% of people younger than 70 years and 15% to 20% of people older than 70 years have PAD2. Symptomatic and asymptomatic PAD has an estimated prevalence of 13% in the over 50 years age group2. However, asymptomatic PAD can account for up to 75% of cases and only 10% of patients will have symptoms of typical intermittent claudication2. Population studies have shown that about 20% of people aged over 60 years have some degree of PAD4. In 2012, there were 2,307,306 people aged 60 years or over diagnosed with PAD, with 576,826 of these displaying symptoms of intermittent claudication4. In 2012, there were 115,365 patients with intermittent claudication who are at risk developing critical leg ischaemia4. For those with established critical limb ischaemia the prognosis is poor. About 12% of such patients require amputation within three months of presentation and 20-25% die within a year3. The estimated five year survival rate for patients with critical limb ischaemia is 50- 60%, and these patients require urgent referral for specialist evaluation3. Each year, 500- 1,000 new cases of critical limb ischaemia are diagnosed per million population, with an estimated annual cost to the NHS of more than £200million3. PATIENT PATHWAY RELEVANT GUIDANCE NICE Guidance • NICE technology appraisal in development. Cardiovascular events (reducing, high risk) – ticagrelor (ID813). Expected December 2016. • NICE technology appraisal. Cilostazol, naftidrofuryl oxalate, pentoxifylline and inositol nicotinate for the treatment of intermittent claudication in people with peripheral arterial disease (TA223). May 2011. • NICE technology appraisal. Ticagrelor for the treatment of acute coronary syndromes (TA236). October 2011. 3 Horizon Scanning Research & Intelligence Centre • NICE guidelines. Peripheral arterial disease: diagnosis and management (CG147). August 2012. • NICE quality standard. Peripheral arterial disease (QS52). January 2014. • NICE interventional procedure guidance. Angioplasty and stenting to treat peripheral arterial disease causing refractory erectile dysfunction (IPG546). February 2016. • NICE interventional procedure guidance. Percutaneous laser atherectomy as an adjunct to balloon angioplasty (with or without stenting) for peripheral arterial disease (IPG433). November 2012. • NICE advice. Symptoms of peripheral arterial disease: Ramipril (ESUOM45). June 2015. NHS England Policies and Guidance • NHS England. 2013/14 NHS Standard Contract for Specialised Vascular Services (Adults). A04/S/a. Other Guidance • American College of Cardiology. Management of Patients with Peripheral Artery Disease. 20135. • American Family Physician. Diagnosis and Treatment of Peripheral Arterial Disease. 20136. • The British Medical Journal. Diagnosis and Management of Peripheral Arterial Disease. 20123. • European Society of Cardiology. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases. 20117. • Scottish Intercollegiate Guidelines Network. Diagnosis and management of peripheral arterial disease (SIGN89). 20068. CURRENT TREATMENT OPTIONS The starting point for managing PAD involves risk factor modification. Support and treatment are offered to reduce the risk of life threatening cardiovascular events and prevent progression of disease. This may include smoking cessation, controlling diabetes, improving diet, reducing body weight, increasing exercise, lipid modification and statin therapy, management of high blood pressure, and antiplatelet therapy3,4. If the symptoms of PAD progress to intermittent claudication, treatment options include3,4: • Supervised exercise programme. • Angioplasty and stenting – if approach to modifying risk factors and exercise have not reduced symptoms. • Bypass surgery – if angioplasty has been unsuccessful or is unsuitable. • Vasoactive drugs - naftidrofuryl oxalate (NICE recommended) or cilostazol (not NICE recommended). Management of critical limb ischaemia includes3,4: • Management of pain – paracetamol or opioids depending on severity. • Revascularisation. • Major amputation. • Non-surgical treatment options such as prostanoids, spinal cord stimulation and lumbar sympathectomy; however these have shown little
Recommended publications
  • 2D Map of Proteins from Human Renal Stone Matrix and Evaluation of Their Effect on Oxalate Induced Renal Tubular Epithelial Cell Injury ______K.P
    ORIGINAL Article Vol. 39 (1): 128-136, January - February, 2013 doi: 10.1590/S1677-5538.IBJU.2013.01.16 2D map of proteins from human renal stone matrix and evaluation of their effect on oxalate induced renal tubular epithelial cell injury _______________________________________________ K.P. Aggarwal, S. Tandon, S.K. Singh, C. Tandon Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (KPA, CT, ST), Waknaghat, Solan, HP and Department of Urology, Post Graduate Institute of Medical Education & Research (PGIMER) (SKS), Chandigarh-160012 India ABSTRACT ARTICLE INFO _________________________________________________________ ___________________ Purpose: Proteins constitute a major portion of the organic matrix of human calcium Key words: oxalate (CaOx) renal stones and the matrix is considered to be important in stone for- Urolithiasis; Calcium Oxalate; mation and growth. The present study evaluates the effect of these proteins on oxalate Madin Darby Canine Kidney injured renal epithelial cells accompanied by a 2D map of these proteins. Cells; Electrophoresis, Gel, Materials and Methods: Proteins were isolated from the matrix of kidney stones contai- Two-Dimensional ning CaOx as the major constituent using EGTA as a demineralizing agent. The effect of more than 3kDa proteins from matrix of human renal (calcium oxalate) CaOx stones Int Braz J Urol. 2013; 39: 128-36 was investigated on oxalate induced cell injury of MDCK renal tubular epithelial cells. A __________________ 2D map of >3kDa proteins was also generated followed by protein identification using MALDI-TOF MS. Submitted for publication: Results: The >3kDa proteins enhanced the injury caused by oxalate on MDCK cells. Also, August 14, 2012 the 2D map of proteins having MW more than 3kDa suggested the abundance of proteins __________________ in the matrix of renal stone.
    [Show full text]
  • Plan Your Plate for Kidney Stones (Calcium Oxalate) High and Low Oxalate Foods
    Lunch & Dinner Your diet plan will be customized based on your urine, blood tests and medical conditions when you are followed by a nutritionist Vegetables: Fruit: 1-2 svg 1 cup cooked or 2 cups raw 2 – 3 oz Lean Protein Starches & Grains: 1-2 svg 1 serving with each meal 3x/day Total fluid intake : 3L (quarts)/day Plan Your Plate For Kidney Stones (Calcium Oxalate) High and Low Oxalate Foods Foods Avoid Recommend Foods Avoid Recommend Draft beer Coffee Nuts** Bacon Ovaltine Beer (bottle) Peanuts, almonds, Mayonnaise Cocoa Carbonated soda pecans, cashews Salad dressing Distilled alcohol Chocolate**, Vegetable oils Lemonade Cocoa,** Butter, margarine Wine: red, rose, white Vegetable soup, Coconut Beverages Miscellaneous Buttermilk, Whole, low- Marmalade Jelly or preserves (made with allowed fat or skim milk fruits) Yogurt with allowed Lemon, lime juice fruits Salt, pepper Soy, almond and rice Soups with allowed ingredients, Sugar milk Beets**: tops, roots, Asparagus Currants, red Apple greens Broccoli Dewberries Apricots Collards Carrots Grapes, purple Cherries, red, sour Kale Corn: sweet, white Gooseberries Cranberry juice Leeks Cucumber, peeled Lemon peel** Grape juice Mustard greens Green peas, canned Lime peel** Orange, fruit and juice Okra Lettuce Orange peel** Peaches Parsley** Lima beans Rhubarb** Pears Sweet potato** Parsnips Pineapple, plum, purple Rutabagas Tomato, 1 small, juice Prunes Vegetables Fruits Spinach** Turnips Apple juice Swiss chard** Avocado Banana Watercress** Brussels sprouts Cherries, bing Cauliflower Mangos Cabbage Melons, cantaloupe, cassava honeydew, Mushrooms watermelon Onions Nectarines Peas, green Peaches White potato Pineapple juice Radish Plums, green or yellow Peanut butter Eggs Fruit cake Cornbread Tofu Cheese Soybean crackers** Sponge cake Meat and (if it is processed Beef, lamb or pork Wheat germ** Spaghetti, canned in tomato sauce Meat Starch with Ca, it is Poultry Rice Substitutes allowed in small Fish and shellfish Quinoa amount) Sardines All bread **: very high oxalate Adapted from the ChooseMyPlate.gov .
    [Show full text]
  • Specialty Amphoterics Amphoteric Surfactants Are Known for Being Mild to the Skin and Hair
    Specialty Amphoterics Amphoteric surfactants are known for being mild to the skin and hair. A special class of amphoterics — amphoacetates and amphopropionates — are exceptionally mild, making them great for applications where mildness matters: baby products, gentle cleansers for sensitive skin, or soothing and calming formulations. All of Stepan Company’s Specialty Amphoteric surfactants are: Biodegradable Naturally-derived from plant sources Exceptionally mild — milder than betaines1 Impart conditioning and softening effects to hair and skin AMPHOSOL® 1C Envision Performance • Best foaming profile and viscosity building of Stepan’s Specialty Amphoterics • Milder alternative to betaines without sacrificing performance • Minimally irritating to eyes, even at 16% active AMPHOSOL® 2C Envision Rinsability • Best suited for formulations where mildness and easy rinsing are desired • Non-irritating to eyes at 5% active and non-irritating to skin at 10% active • Application in gentle facial cleansers that won’t irritate the skin and baby washes with the possibility of “no tear” claims AMPHOSOL® 2CSF-AF Envision Salt-Free • Salt-free amphoteric surfactant — no residual sodium chloride or sodium sulfate • Best suited for mild personal care applications where salt or electrolyte levels are of concern • Stable and will foam in high electrolytic or alkaline systems • Free of residual methanol, making it an ideal choice for California Proposition 65-free formulations 1Based on Zein score The “Detox” Effect Chelation Values of Stepan AMPHOSOL Products Chelants, such as EDTA2, are known for their ability to “trap” heavy AMPHOSOLAMPHOSOL 2C 2C metals like iron and calcium. Two of Stepan’s Specialty Amphoteric surfactants demonstrate chelation AMPHOSOLAMPHOSOL 1C 1C abilities, a unique characteristic Tetrasoodium for surfactants.
    [Show full text]
  • Towards On-Demand E. Coli-Based Cell-Free Protein Synthesis of Tissue Plasminogen Activator
    Benchmark Towards On-Demand E. coli-Based Cell-Free Protein Synthesis of Tissue Plasminogen Activator Seung-Ook Yang 1, Gregory H. Nielsen 1, Kristen M. Wilding 1, Merideth A. Cooper 2, David W. Wood 2 and Bradley C. Bundy 1,* 1 Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA; [email protected] (S.-O.Y.); [email protected] (G.H.N.); [email protected] (K.M.W.) 2 Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, USA; [email protected] (M.A.C.); [email protected] (D.W.W.) * Correspondence: [email protected] Received: 2 March 2019; Accepted: 18 April 2019; Published: 21 June 2019 Abstract: Stroke is the leading cause of death with over 5 million deaths worldwide each year. About 80% of strokes are ischemic strokes caused by blood clots. Tissue plasminogen activator (tPa) is the only FDA-approved drug to treat ischemic stroke with a wholesale price over $6000. tPa is now off patent although no biosimilar has been developed. The production of tPa is complicated by the 17 disulfide bonds that exist in correctly folded tPA. Here, we present an Escherichia coli-based cell-free protein synthesis platform for tPa expression and report conditions which resulted in the production of active tPa. While the activity is below that of commercially available tPa, this work demonstrates the potential of cell-free expression systems toward the production of future biosimilars. The E. coli-based cell-free system is increasingly becoming an attractive platform for low-cost biosimilar production due to recent developments which enable production from shelf-stable lyophilized reagents, the removal of endotoxins from the reagents to prevent the risk of endotoxic shock, and rapid on-demand production in hours.
    [Show full text]
  • Role of Calcium Oxalate Monohydrate Crystal Interactions with Renal Epithelial Cells in the Pathogenesis of Nephrolithiasis: a Review
    Scanning Microscopy Volume 10 Number 2 Article 19 2-6-1996 Role of Calcium Oxalate Monohydrate Crystal Interactions with Renal Epithelial Cells in the Pathogenesis of Nephrolithiasis: A Review John C. Lieske The University of Chicago Mary S. Hammes The University of Chicago F. Gary Toback The University of Chicago Follow this and additional works at: https://digitalcommons.usu.edu/microscopy Part of the Biology Commons Recommended Citation Lieske, John C.; Hammes, Mary S.; and Toback, F. Gary (1996) "Role of Calcium Oxalate Monohydrate Crystal Interactions with Renal Epithelial Cells in the Pathogenesis of Nephrolithiasis: A Review," Scanning Microscopy: Vol. 10 : No. 2 , Article 19. Available at: https://digitalcommons.usu.edu/microscopy/vol10/iss2/19 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Scanning Microscopy, Vol. 10, No. 2, 1996 (pages 519-534) 1051-6794/96$5. 00 +. 25 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA ROLE OF CALCIUM OXALATE MONOHYDRATE CRYSTAL INTERACTIONS WITII RENAL EPITIIELIAL CELLS IN TIIE PATIIOGENESIS OF NEPHROLITIIIASIS: A REVIEW John C. Lieske, Mary S. Hammes and F. Gary Toback Department of Medicine The University of Chicago, Chicago, IL (Received for publication August 28, 1995 and in revised form February 6, 1996) Abstract Introduction Renal tubular fluid in the distal nephron is supersat­ Renal tubular fluid in the distal nephron is super­ urated with calcium and oxalate ions that nucleate to saturated with calcium and oxalate ions that nucleate to form crystals of calcium oxalate monohydrate (COM), form crystals of calcium oxalate (CaOx) monohydrate the most common crystal in renal stones.
    [Show full text]
  • Comparative Stabilizing Effects of Some Anticoagulants on Fasting Blood Glucose of Diabetics and Non-Diabetics, Determined by Spectrophotometry (Glucose Oxidase)
    Asian Journal of Medical Sciences 3(6): 234-236, 2011 ISSN: 2040-8773 © Maxwell Scientific Organization,2011 Submitted: September 21, 2011 Accepted: November 16, 2011 Published: December 25, 2011 Comparative Stabilizing Effects of Some Anticoagulants on Fasting Blood Glucose of Diabetics and Non-diabetics, Determined by Spectrophotometry (Glucose Oxidase) Nwangwu C.O. Spencer, Josiah J. Sunday, Omage K. Erifeta. O. Georgina, Asuk A. Agbor, Uhunmwangho S. Esosa and O. Jenevieve Department of Biochemistry, College of Basic Medical Sciences, Igbinedion University, Okada, Edo State, Nigeria Abstract: The comparative stabilizing effects of the anticoagulants; Fluoride oxalate, EDTA and Heparin on fasting blood glucose level were determined, using the spectrophotometry (glucose oxidase) method. Fasting blood samples were taken from ten (10) diabetic patients and ten (10) non-diabetic people, and the blood glucose levels determined at 30 min intervals for a maximum time of 2 h. Our results showed that the rate at which plasma glucose changes with time varies with specific anticoagulants. With Fluoride oxalate and Heparin, it increased by 1.77 and 6.67%, respectively, while with EDTA it decreased by 4.0%, within the first 30 minutes for non-diabetics. For diabetics, within the same period, with Fluoride oxalate and Heparin it increased by 1.9 and 3.7%, respectively, while with EDTA it decreased by 3.6%. Blood glucose levels were however shown to increase significantly (p<0.05) at 60 min (1 h) with the three anticoagulants in diabetics and non-diabetics. But at 120 min (2 h) plasma glucose in Fluoride oxalate, EDTA and Heparin decreased by 16.4, 17.5 and 8.5%, respectively for non-diabetics and by 10.6, 9.8 and 8.6%, respectively for diabetics.
    [Show full text]
  • Review Article Vitamins K1 and K2: the Emerging Group of Vitamins Required for Human Health
    Hindawi Journal of Nutrition and Metabolism Volume 2017, Article ID 6254836, 6 pages https://doi.org/10.1155/2017/6254836 Review Article Vitamins K1 and K2: The Emerging Group of Vitamins Required for Human Health Gerry Kurt Schwalfenberg DepartmentofFamilyMedicine,UniversityofAlberta,No.301,9509-156Street,Edmonton,AB,CanadaT5P4J5 Correspondence should be addressed to Gerry Kurt Schwalfenberg; [email protected] Received 30 January 2017; Accepted 10 May 2017; Published 18 June 2017 AcademicEditor:C.S.Johnston Copyright © 2017 Gerry Kurt Schwalfenberg. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. To review the evidence for the use of vitamin K supplementation in clinical conditions such as osteoporosis, vascular calcification, arthritis, cancer, renal calculi, diabetes, and warfarin therapy. Quality of Evidence. PubMed was searched for articles on vitamin K (K1 and K2) along with books and conference proceedings and health conditions listed above. Level I and II evidence supports the use of vitamins K1 and K2 in osteoporosis and Level II evidence supports vitamin K2 in prevention of coronary calcification and cardiovascular disease. Evidence is insufficient for use in diabetes, arthritis, renal calculi, andcancer. Main Message. Vitamin K2 may be a useful adjunct for the treatment of osteoporosis, along with vitamin D and calcium, rivaling bisphosphonate therapy without toxicity. It may also significantly reduce morbidity and mortality in cardiovascular health by reducing vascular calcification. Vitamin K2 appears promising in the areas of diabetes, cancer, and osteoarthritis. Vitamin K use in warfarin therapy issafeandmayimproveINRcontrol,althoughadosageadjustmentisrequired.Conclusion.
    [Show full text]
  • Preventive Drug List for the Medical Plan of the Presbyterian Church (U.S.A.)
    2021 Preventive Medications of the Medical Plan of the Presbyterian Church (U.S.A.) This list of commonly prescribed preventive medications is the preventive drug list for the Medical Plan of the Presbyterian Church (U.S.A.). Note that not all strengths and dosages of the medications listed below will be covered as preventive. Please check with Express Scripts at 800-344-3896 or the Board of Pensions at 800-773-7752 (800- PRESPLAN) if you have questions on coverage. You may also view benefit information materials at pensions.org/members or express-scripts.com. The amount you pay for medications will be determined by your medical option’s prescription coverage and formulary. ANTIPSYCHOTICS IMIPRAMINE Anti-Anginal Agents ARIPIPRAZOLE MIRTAZAPINE ISOSORBIDE DINITRATE COMPRO NEFAZODONE ISOSORBIDE MONONITRATE FLUPHENAZINE DECANOATE NORTRIPTYLINE ISOSORBIDE MONONITRATE ER HALOPERIDOL PAROXETINE NITROGLYCERIN LOXAPINE PHENELZINE SULFATE MOLINDONE HCL SERTRALINE Anticoagulants OLANZAPINE TRANYLCYPROMINE SULFATE ASPIRIN-DIPYRIDAMOLE ER OLANZAPINE-FLUOXETINE HCL TRAZODONE CILOSTAZOL PALIPERIDONE ER TRIMIPRAMINE MALEATE CLOPIDOGREL PROCHLORPERAZINE DIPYRIDAMOLE QUETIAPINE FUMARATE ASTHMA AND COPD ENOXAPARIN SODIUM RISPERIDONE ADVAIR HFA FONDAPARINUX SODIUM ZIPRASIDONE HCL ALBUTEROL NEB/SYRUP/TA B HEPARIN ALBUTEROL SULFATE HFA JANTOVEN ANTIDEPRESANTS FLOVENT DISKUS PRASUGREL AMITRIPTYLINE HCL FLOVENT HFA WARFARIN SODIUM AMOXAPINE FLUTICASONE-SALMETEROL BUPROPION IPRATROPIUM BROMIDE Cardiac Glycosides BUPROPION HCL ER IPRATROPIUM-ALBUTEROL DIGITEK
    [Show full text]
  • Escitalopram Oxalate
    HIGHLIGHTS OF PRESCRIBING INFORMATION --------------WARNINGS AND PRECAUTIONS------------­ These highlights do not include all the information Clinical Worsening/Suicide Risk: Monitor for clinical needed to use Lexapro® safely and effectively. See full worsening, suicidality and unusual change in behavior, prescribing information for Lexapro®. especially, during the initial few months of therapy or at times of dose changes (5.1). Lexapro® (escitalopram oxalate) Tablets Serotonin Syndrome: Serotonin syndrome has been Lexapro® (escitalopram oxalate) Oral Solution reported with SSRIs and SNRIs, including Lexapro, both Initial U.S. Approval: 2002 when taken alone, but especially when co-administered WARNING: Suicidality and Antidepressant Drugs with other serotonergic agents (including triptans, See full prescribing information for complete boxed tricyclic antidepressants, fentanyl, lithium, tramadol, warning. tryptophan, buspirone, amphetamines, and St. John’s Increased risk of suicidal thinking and behavior in Wort). If such symptoms occur, discontinue Lexapro and children, adolescents and young adults taking initiate supportive treatment. If concomitant use of antidepressants for major depressive disorder (MDD) Lexapro with other serotonergic drugs is clinically and other psychiatric disorders. Lexapro is not warranted, patients should be made aware of a potential approved for use in pediatric patients less than 12 increased risk for serotonin syndrome, particularly during years of age (5.1). treatment initiation and dose increases (5.2). Discontinuation of Treatment with Lexapro: A gradual reduction in dose rather than abrupt cessation is -------------------RECENT MAJOR CHANGES---------------- recommended whenever possible (5.3). Warnings and Precautions (5.2) 1/2017 Seizures: Prescribe with care in patients with a history of seizure (5.4). --------------INDICATIONS AND USAGE------------------- Activation of Mania/Hypomania: Use cautiously in Lexapro® is a selective serotonin reuptake inhibitor (SSRI) patients with a history of mania (5.5).
    [Show full text]
  • Appendix B - Product Name Sorted by Applicant
    JUNE 2021 - APPROVED DRUG PRODUCT LIST B - 1 APPENDIX B - PRODUCT NAME SORTED BY APPLICANT ** 3 ** 3D IMAGING DRUG * 3D IMAGING DRUG DESIGN AND DEVELOPMENT LLC AMMONIA N 13, AMMONIA N-13 FLUDEOXYGLUCOSE F18, FLUDEOXYGLUCOSE F-18 SODIUM FLUORIDE F-18, SODIUM FLUORIDE F-18 3M * 3M CO PERIDEX, CHLORHEXIDINE GLUCONATE * 3M HEALTH CARE INC AVAGARD, ALCOHOL (OTC) DURAPREP, IODINE POVACRYLEX (OTC) 3M HEALTH CARE * 3M HEALTH CARE INFECTION PREVENTION DIV SOLUPREP, CHLORHEXIDINE GLUCONATE (OTC) ** 6 ** 60 DEGREES PHARMS * 60 DEGREES PHARMACEUTICALS LLC ARAKODA, TAFENOQUINE SUCCINATE ** A ** AAA USA INC * ADVANCED ACCELERATOR APPLICATIONS USA INC LUTATHERA, LUTETIUM DOTATATE LU-177 NETSPOT, GALLIUM DOTATATE GA-68 AAIPHARMA LLC * AAIPHARMA LLC AZASAN, AZATHIOPRINE ABBVIE * ABBVIE INC ANDROGEL, TESTOSTERONE CYCLOSPORINE, CYCLOSPORINE DEPAKOTE ER, DIVALPROEX SODIUM DEPAKOTE, DIVALPROEX SODIUM GENGRAF, CYCLOSPORINE K-TAB, POTASSIUM CHLORIDE KALETRA, LOPINAVIR NIASPAN, NIACIN NIMBEX PRESERVATIVE FREE, CISATRACURIUM BESYLATE NIMBEX, CISATRACURIUM BESYLATE NORVIR, RITONAVIR SYNTHROID, LEVOTHYROXINE SODIUM ** TARKA, TRANDOLAPRIL TRICOR, FENOFIBRATE TRILIPIX, CHOLINE FENOFIBRATE ULTANE, SEVOFLURANE ZEMPLAR, PARICALCITOL ABBVIE ENDOCRINE * ABBVIE ENDOCRINE INC LUPANETA PACK, LEUPROLIDE ACETATE ABBVIE ENDOCRINE INC * ABBVIE ENDOCRINE INC LUPRON DEPOT, LEUPROLIDE ACETATE LUPRON DEPOT-PED KIT, LEUPROLIDE ACETATE ABBVIE INC * ABBVIE INC DUOPA, CARBIDOPA MAVYRET, GLECAPREVIR NORVIR, RITONAVIR ORIAHNN (COPACKAGED), ELAGOLIX SODIUM,ESTRADIOL,NORETHINDRONE ACETATE
    [Show full text]
  • Unusual Presentation of Oxalate Nephropathy Causing Acute
    Case Report More Information *Address for Correspondence: Anas Diab, Department of Medicine, Section of Nephrology, Unusual presentation of oxalate 4th Floor, HSCN Room 4076A, Morgantown, WV 26506, USA, Tel: 304-293-2551; nephropathy causing acute kidney Fax: 304-293-7373; Email: [email protected] Submitted: 03 April 2020 injury: A case report Approved: 03 November 2020 Published: 04 November 2020 Anas Diab*, Michelle M Neuman, Kareem Diab and Daniel How to cite this article: Diab A, Neuman MM, Gordon Diab K, Gordon D. Unusual presentation of oxalate nephropathy causing acute kidney injury: Department of Medicine, Section of Nephrology, 4th Floor, HSCN Room 4076A, Morgantown, A case report. J Clini Nephrol. 2020; 4: 077-079. WV 26506, USA DOI: 10.29328/journal.jcn.1001063 Copyright: © 2020 Diab A, et al. This is an open access article distributed under the Creative Abstract Commons Attribution License, which permits unrestricted use, distribution, and reproduction Oxalate nephropathy due to Hyperoxaluria and elevated serum oxalate level is a well-known in any medium, provided the original work is cause for interstitial fi brosis, and ESRD. Conditions associated with high serum Oxalate, should properly cited. be considered as a possible contributing factor for a patient’s tubular injury. Keywords: Polyethylene glycol; Oxalate Well known cause for Hyperoxaluria including enteric Hyperoxaluria (due to gastric bypass, nephropathy; Acute kidney injury (AKI); chronic pancreatitis, small Bowel resection, or malabsorption, as well as depletion of enteric Hyperoxaluria; Kidney biopsy; End stage kidney oxalate-degrading bacteria [e.g., Oxalobacter). Other known causes of oxalate nephropathy disease include primary Hyperoxaluria, ethylene glycol intoxication, vitamin B6 defi ciency, excessive ingestion of vitamin C or dietary substances rich in oxalic acid, aspergillosis, prolonged renal failure and various drugs (e.g., Known medications to cause Oxalate Nephropathy are: Orlistat, Praxilene, COX-2 inhibitors).
    [Show full text]
  • CDPHP Medicaid Select/HARP Clinical Formulary 2021
    CDPHP Medicaid Select/HARP Clinical Formulary 2021 NON-DISCRIMINATION/MULTI-LANGUAGE INTERPRETER SERVICES: APPLIES TO MEMBERS/ENROLLEES ONLY Notice of Non-Discrimination Capital District Physicians’ Health Plan, Inc. (CDPHP®) complies with Federal civil rights laws. CDPHP does not exclude people or treat them differently because of race, color, national origin, age, disability, or sex. CDPHP provides the following: • Free aids and services to people with disabilities to help you communicate with us, such as: ○ Qualified sign language interpreters ○ Written information in other formats (large print, audio, accessible electronic formats, other formats) • Free language services to people whose first language is not English, such as: ○ Qualified interpreters ○ Information written in other languages If you need these services, call CDPHP at 1-800-388-2994. For TTY/TDD services, call 711. If you believe that CDPHP has not given you these services or treated you differently because of race, color, national origin, age, disability, or sex, you can file a grievance with CDPHP by: • Mail: CDPHP Civil Rights Coordinator, 500 Patroon Creek Blvd., Albany, New York 12206 • Phone: 1-844-391-4803 (for TTY/TDD services, call 711) • Fax: (518) 641-3401 • In person: 500 Patroon Creek Blvd., Albany, New York 12206 • Email: https://www.cdphp.com/customer-support/email-cdphp You can also file a civil rights complaint with the U.S. Department of Health and Human Services, Office for Civil Rights by: • Web: Office for Civil Rights Complaint Portal at https://ocrportal.hhs.gov/ocr/portal/lobby.jsf • Mail: U.S. Department of Health and Human Services, 200 Independence Avenue SW., Room 509F, HHH Building Washington, DC 20211 • Complaint forms are available at http://www.hhs.gov/ocr/office/file/index.html • Phone: 1-800-368-1019 (TTY/TDD 1-800-537-7697) Multi-language Interpreter Services ATTENTION: If you speak a non-English language, language assistance services, free of charge, are available to you.
    [Show full text]