Disjunctive Linear Operators and Partial Multiplications in Riesz Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Disjunctive Linear Operators and Partial Multiplications in Riesz Spaces DISJUNCTIVE LINEAR OPERATORS AND PARTIAL MULTIPLICATIONS IN RIESZ SPACES 0000 Promotor: dr.B . van Rootselaar, hoogleraar in de wiskunde YY/ï Gto \ ^So c B. VAN PUTTEN DISJUNCTIVE LINEAR OPERATORS AND PARTIAL MULTIPLICATIONS IN RIESZSPACE S PROEFSCHRIFT TER VERKRIJGING VAND EGRAA DVA N DOCTOR IND ELANDBOUWWETENSCHAPPEN , OP GEZAGVA ND ERECTO R MAGNIFICUS DR. H.C.VA NDE RPLAS , HOOGLERAAR IND EORGANISCH E SCHEIKUNDE, IN HET OPENBAART EVERDEDIGE N OP WOENSDAG 17DECEMBE R 1980 DES NAMIDDAGST EVIE RUU RI ND EAUL A VAND ELANDBOUWHOGESCHOO LT EWAGENINGEN . Krips Repro- Meppe l Y?/W: \%°>O%LÓ^ Want htt dwaze Goch, ÂJ, W-ijzVi dan do. mznizn (7 KoAÂnthz 1 : 25a) BIBLIOTHEEK LH. 1 6 DEC. n«ITV. T1JDSCHR. AlïM. /tfAJOüïö' ,2*30 STELLINGEN I Iedere semi-normp o pee n eindig dimensionale Archimedische Riesz ruimte E zodanig dat p(x)= p(|x| )voo r allex e Ei see nRies z semi-norm. De verwijzing die Aliprantise nBurkinsha w voor deze stelling geveni s niet terecht omdat deze stelling reedsi n196 1i sbeweze n door Bauer, Stoere nWitzgall . Aliprantis, CD, enBurkinshaw ,0 . Locally solid Riesz spaces, AcademiePres s (1978). Bauer, F.L., Stoer,J .e nWitzgall ,C . Absolute and monotonie norms, Numer. Math.,Vol .3 ,pp . 257-264 (1961). II Alsp ee n reguliere vectoriële pseudonorm: £ ^ IR is,N(p )={ xe £n; p(x)=0 } en R(p)= (p(x);x e %} ,da ni sdi mR(p )< n - di m N(p). III Also pee n Archimedische Riesz algebra Eee n L-norm II-II gedefinieerd is dan bestaate ro pE ee nsemi-inproduct . AlsE ee n Archimedische $-algebrai se n(E ,II .II )ee n AL-ruimte,da ni s er een norm II-II 'o pE zodani gda t(E ,II -II')ee nHuber t ruimteis . IV De lineaire ruimte B(X,Y)me t operatornorm van alle norm begrensde lineaire operatoren vanX naa r Y,waarbi jX * {0}e nY genormeerd e lineaire ruimten over F zijn,i sjuis t dan norm compleet alsY nor m compleet is. Het analogonva ndez e stelling inRies z ruimten,me t orde begrensd inplaat s van norm begrensde nDedekin d compleeti nplaat sva n norm compleet,i sgeldi g onderd ebeperkin g datd eord e dualeX vanX voldoe t aanX =£{0} . Pfaffenberger, W.E. A converse to a completeness theorem, Amer. Math. Monthly, Vol. 87,no .3 ,p .21 6(1980) . Aliprantis, CD. On order properties of order bounded transformations, Canad.J .Math. ,Vol . 27,no .3 ,pp .666-678 . V AlsX ee n lineaire ruimte over K is,Y ee nDedekin d complete Riesz ruin en p:X - >Y eensublineair e operatorva nd evor m |Lx| (Lee nlineair e operator vanX naa r Y),da ni svoo r iederex e X d everzamelin g K ={ ye X ; p(x+ y )= p(x )+ p(y) }ee npre-kege l in X. VI Zij voor allen e H den x n matri x A gegeven door A (i,j)= e ' 1J ' (i,j = 1 ,.. ., n). e+ 1 Voord espectraa lstraa l p(A )va n A geldt lim p(A)= _ •, . VII Vekslere nGeile r hebben bewezenda tieder e voorwaardelijk lateraal com­ plete Archimedische Riesz ruimted eprojecti e eigenschap bezit. Bernau zegtva ndez e stellingee ngeneralisati e tegeve n intralie-geor ­ dende groepen. Integenstellin g tot zijn bewering iszij n resultaat voor Riesz ruimten zwakker dan dat van Vekslere nGeiler . Veksler, A.I.e nGeiler , V.A. Order and disjoint completeness of linear partially ordered spaces (Russisch), Sibirsk Mat. 1., Tom. 13,pp . 43-51, English transi.: Siberian Math.J. ,Vol . 13,pp . 30-35. Bernau, S.J. Lateral and Dedekind completion of archimedean lattice groups, J. London Math. Soc. (2),Vol . 12,pp .320-322 . VIII De statistische selectie-e nrangschikkingstechnieken , waarvoor recent ind estatistisch e literatuur veel belangstelling aand eda g isgelegd , verdienen inhe tlandbouwkundi g onderzoek grote aandacht. IX Het verdient aanbeveling deuitdrukkin g "een x-aantal" niett ebezige n zonder specificatie vanx . X De overheid dientte n aanzienva nalternatiev e groeperingen geen alter­ natieve gedragslijn tevolgen . Stellingen bij het proefschrift "Disjunctive linear operators andparti e multiplications inRies z spaces". B.va nPutte n Wageningen,1 7decembe r 19Î VOORWOORD De aanleiding tot het schrijven van dit proefschrift was een projectvoor­ stel, gericht aan de Vaste Commissie voor de Wetenschapsbeoefening van de Landbouwhogeschool,da t als titel had "vectorial norms on linearspaces" . Ditwa s tevens de titel van mijn afstudeerverslag (mei 1976). Ditproject ­ voorstel werd goedgekeurd en in september 1977wer d begonnen met de uit­ werking van dit project. Daartoe werden normen bestudeerd,di e waarden aannemen in Dedekind comple­ te Riesz ruimten.A l spoedig kreeg ik daarbij temake n met de operatoren, die in dit proefschrift een belangrijke plaats innemen en die zeer de moeitewaar d leken om teworde n bestudeerd. Voor verdere studie van heton ­ derwerp was kennis van deze operatoren noodzakelijk en zo langzamerhand werden de ruimten die het bereik zijn van deze normen het domein van studie. Intussen bleek dat de operatoren die mijn belangstelling hadden ook bestu­ deerd werden door enkele anderen,meesta l vanuit verschillende achtergronden. Het resultaat is nu een proefschrift op het gebied van de zuiverewiskunde ; de titel ervan heeft met de titel van het projectvoorstel toch nog twee woorden gemeen. Bij dezen dank ik mijn ouders voor hun zorg door alle jaren heen en ook mijn overige familie dank ik voor hun belangstelling. Professor Dr.A . van der Sluis dank ik vriendelijk voord e fijne afstudeer- periode en voor het vele dat ik in die tijd van hem heb geleerd. Mijn promotor,Professo r Dr.B . van Rootselaar,dan k ik hartelijk voor zijn hulp en zijn aanmoediging om de sprong in het oneindig dimensionale temaken . Ook de overige leden van de Vakgroep Wiskunde dank ik voor hun belangstel­ ling, in het bijzonder Drs.B.R . Damsté voor het corrigeren van de tekst in de zeer korte tijd die daarvoor nog overig was. Iwoul d like to thank Professor Dr.W.A.J . Luxemburg (Pasadena,California ) and Professor Dr.H.H . Schaefer (Tübingen,B.R.D. ) for their kind invitation to visit the conference about "Riesz spaces and order bounded operators", which was held in Oberwolfach, from June 24 till June 30,1979 . Jodien Houwers en Ans van der Lande-Heij dank ik voor het typen van dit proefschrift. Mijn vrouw Riet dank ik voorhaa r steun en voor het accepteren vanmij n dag­ en avondindeling. AMS(MOS) subject classifications (1980) 06F20,47B55 . CONTENTS page Chapter I. RIESZSPACE S ] 1.Orde r relation 1 2. Partially ordered linear spaces and Riesz spaces 3 3. Elementary properties of Riesz spaces 6 4. Linearoperator s 13 Chapter II. SOMETYPE SO F CONVERGENCE 19 5. Sequences in Riesz spaces 19 6. Order convergence 19 7. Regulator convergence 21 8. Characteristic convergence 23 9. Comparison of convergences of sequences 25 10. Some notions of ideals 27 11. Continuity of linearoperator s 29 Chapter III.DISJUNCTIV E LINEAR OPERATORS 32 12. Orthomorphisms 32 13. Nullspaces of disjunctive linear operators 40 14. Examples of unbounded stabilizers 51 Chapter IV. f-ALGEBRAS 53 15. Introduction to f-algebras 53 16. Faithful f-algebras 57 17. Ideals and ring ideals 60 18. Ring homomorphisms inArchimedea n f-algebras 63 19. Normalizers and local multipliers on f-algebras 69 Chapter V. INVERSIONS AND SQUARE ROOTS INARCHIMEDEA N $-ALGEBRAS 72 20. Inversion inArchimedea n $-algebras 72 21. Square roots inArchimedea n $-algebras 76 22. A generalization ofth e Ellis-Phelps theorem 79 Chapter VI. PARTIAL f-MULTIPLICATION INARCHIMEDEA N RIESZSPACE S 81 23. Introduction and definitions 81 24. Intrinsically defined p<ï>-multipl icatio n onArchimedea n Riesz 88 spaces with a strong order unit 25. Orth(E)fo r Ea n Archimedean Riesz spacewit h a strong order 92 unit REFERENCES 95 SAMENVATTING 100 CURRICULUM VITAE 101 ChapterI RIESZSPACE S Inthi s chapterw e give anexpositio n of theelement s of the theory of Rieszspace ;fo ra shorthistorica l introduction we refer to thebook s ofAlipranti s and Burkinshaw [1978] and Luxemburg and Zaanen [1971]. 1.Orde r relation An order relation on a non-empty set Si sa subset< of the Cartesian product Sx S o fS wit h the following properties: < istransitive ,i.e . if (x,y)e < and (y,z)e < for x,y,ze s,the n also (x,z)e < , < is reflexive,i.e . (x,x)e < for all xe S,< is anti-symmetric,i.e . (x,y)e < and (y,x)e < forx,y' eS implie s x= y . Iti scommo n towrit e x< y instead of (x,y)e < . A partially ordered set is now defined as apai r (S,<)wher e Si sa non-empty setan d< is anorde r relation on S. Twoelement s xan dy are called comparable ifa t least one of thestate ­ ments x< y ,y < xholds ,otherwis e theyar ecalle d incomparable. A non-empty subset Xo fa partially ordered set (S,<) iscalle d achai n in (S,<) ifal l pairs ofelement s of Xar ecomparable . (S,<) is said tob e totally ordered ifS itsel f isa chai n in (S,<). Ifx isa n element ofa partially ordered set (S,<) such that x< y for y s s implies x= y , then x iscalle d amaxima l element of (S,<). x isa minima l element of (S,<) ify < xfo ry eS implie sy =x . Forelement s x,y,z ofa partially ordered set (S,<) the following nota­ tions are used: x< y for x< y &x # y; y > xfo r x< y; y > xfo r x< y; x< y< zfo rx < y &y < z; x,y< z for x< z& y < z; [x,y] for the order interval {zeS; x< z< y} .
Recommended publications
  • Locally Solid Riesz Spaces with Applications to Economics / Charalambos D
    http://dx.doi.org/10.1090/surv/105 alambos D. Alipr Lie University \ Burkinshaw na University-Purdue EDITORIAL COMMITTEE Jerry L. Bona Michael P. Loss Peter S. Landweber, Chair Tudor Stefan Ratiu J. T. Stafford 2000 Mathematics Subject Classification. Primary 46A40, 46B40, 47B60, 47B65, 91B50; Secondary 28A33. Selected excerpts in this Second Edition are reprinted with the permissions of Cambridge University Press, the Canadian Mathematical Bulletin, Elsevier Science/Academic Press, and the Illinois Journal of Mathematics. For additional information and updates on this book, visit www.ams.org/bookpages/surv-105 Library of Congress Cataloging-in-Publication Data Aliprantis, Charalambos D. Locally solid Riesz spaces with applications to economics / Charalambos D. Aliprantis, Owen Burkinshaw.—2nd ed. p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 105) Rev. ed. of: Locally solid Riesz spaces. 1978. Includes bibliographical references and index. ISBN 0-8218-3408-8 (alk. paper) 1. Riesz spaces. 2. Economics, Mathematical. I. Burkinshaw, Owen. II. Aliprantis, Char­ alambos D. III. Locally solid Riesz spaces. IV. Title. V. Mathematical surveys and mono­ graphs ; no. 105. QA322 .A39 2003 bib'.73—dc22 2003057948 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • Boolean Valued Analysis of Order Bounded Operators
    BOOLEAN VALUED ANALYSIS OF ORDER BOUNDED OPERATORS A. G. Kusraev and S. S. Kutateladze Abstract This is a survey of some recent applications of Boolean valued models of set theory to order bounded operators in vector lattices. Key words: Boolean valued model, transfer principle, descent, ascent, order bounded operator, disjointness, band preserving operator, Maharam operator. Introduction The term Boolean valued analysis signifies the technique of studying proper- ties of an arbitrary mathematical object by comparison between its representa- tions in two different set-theoretic models whose construction utilizes principally distinct Boolean algebras. As these models, we usually take the classical Canto- rian paradise in the shape of the von Neumann universe and a specially-trimmed Boolean valued universe in which the conventional set-theoretic concepts and propositions acquire bizarre interpretations. Use of two models for studying a single object is a family feature of the so-called nonstandard methods of analy- sis. For this reason, Boolean valued analysis means an instance of nonstandard analysis in common parlance. Proliferation of Boolean valued analysis stems from the celebrated achieve- ment of P. J. Cohen who proved in the beginning of the 1960s that the negation of the continuum hypothesis, CH, is consistent with the axioms of Zermelo– Fraenkel set theory, ZFC. This result by Cohen, together with the consistency of CH with ZFC established earlier by K. G¨odel, proves that CH is independent of the conventional axioms of ZFC. The first application of Boolean valued models to functional analysis were given by E. I. Gordon for Dedekind complete vector lattices and positive op- erators in [22]–[24] and G.
    [Show full text]
  • On Universally Complete Riesz Spaces
    Pacific Journal of Mathematics ON UNIVERSALLY COMPLETE RIESZ SPACES CHARALAMBOS D. ALIPRANTIS AND OWEN SIDNEY BURKINSHAW Vol. 71, No. 1 November 1977 FACIFIC JOURNAL OF MATHEMATICS Vol. 71, No. 1, 1977 ON UNIVERSALLY COMPLETE RIESZ SPACES C. D. ALIPRANTIS AND 0. BURKINSHAW In Math. Proc. Cambridge Philos. Soc. (1975), D. H. Fremlin studied the structure of the locally solid topologies on inex- tensible Riesz spaces. He subsequently conjectured that his results should hold true for σ-universally complete Riesz spaces. In this paper we prove that indeed Fremlin's results can be generalized to σ-universally complete Riesz spaces and at the same time establish a number of new properties. Ex- amples of Archimedean universally complete Riesz spaces which are not Dedekind complete are also given. 1* Preliminaries* For notation and terminology concerning Riesz spaces not explained below we refer the reader to [10]* A Riesz space L is said to be universally complete if the supremum of every disjoint system of L+ exists in L [10, Definition 47.3, p. 323]; see also [12, p. 140], Similarly a Riesz space L is said to be a-univer sally complete if the supremum of every disjoint sequence of L+ exists in L. An inextensible Riesz space is a Dedekind complete and universally complete Riesz space [7, Definition (a), p. 72], In the terminology of [12] an inextensible Riesz space is called an extended Dedekind complete Riesz space; see [12, pp. 140-144]. Every band in a universally complete Riesz space is in its own right a universally complete Riesz space.
    [Show full text]
  • Version of 3.1.15 Chapter 56 Choice and Determinacy
    Version of 3.1.15 Chapter 56 Choice and determinacy Nearly everyone reading this book will have been taking the axiom of choice for granted nearly all the time. This is the home territory of twentieth-century abstract analysis, and the one in which the great majority of the results have been developed. But I hope that everyone is aware that there are other ways of doing things. In this chapter I want to explore what seem to me to be the most interesting alternatives. In one sense they are minor variations on the standard approach, since I keep strictly to ideas expressible within the framework of Zermelo-Fraenkel set theory; but in other ways they are dramatic enough to rearrange our prejudices. The arguments I will present in this chapter are mostly not especially difficult by the standards of this volume, but they do depend on intuitions for which familiar results which are likely to remain valid under the new rules being considered. Let me say straight away that the real aim of the chapter is §567, on the axiom of determinacy. The significance of this axiom is that it is (so far) the most striking rival to the axiom of choice, in that it leads us quickly to a large number of propositions directly contradicting familiar theorems; for instance, every subset of the real line is now Lebesgue measurable (567G). But we need also to know which theorems are still true, and the first six sections of the chapter are devoted to a discussion of what can be done in ZF alone (§§561-565) and with countable or dependent choice (§566).
    [Show full text]
  • Save Pdf (0.42
    J. Austral. Math. Soc. 72 (2002), 409-417 NUCLEAR FRECHET LATTICES ANTONIO FERNANDEZ and FRANCISCO NARANJO (Received 8 November 2000; revised 2 May 2001) Communicated by A. Pryde Abstract We give a characterization of nuclear Fr6chet lattices in terms of lattice properties of the seminorms. Indeed, we prove that a Frdchet lattice is nuclear if and only if it is both an AL- and an AM-space. 2000 Mathematics subject classification: primary 46A04,46A11,46A40, 06F30. Keywords and phrases: Frichet lattice, generalized AL-spaces, generalized AM-spaces, nuclear spaces, Kothe generalized sequences spaces. 1. Introduction and preliminaires Since its introduction by Grothendieck [5], nuclear spaces have been intensively studied, and nowadays their particular structure is very well understood. Main contri­ butions to these facts were made by Pietsch [11] in the sixties, characterizing nuclear spaces in terms of an intrinsic condition involving a fundamental system of seminorms. Namely, a locally convex space E is nuclear, if and only if for each absolutely convex Zero neighbourhood U in E there exist an absolutely convex zero neighbourhood V and a measure (i on the a*-compact set V, so that 11*11* < [ l(*,/>l<W) for all x € E. At the same time the structure of nuclear Fr6chet lattices was studied, amongst others, by Komura and Koshi [8], Popa [12], Wong [13, 14] and Wong and Ng [15]. This research has been partially supported by La Consejerfa de Educaci6n y Ciencia de la Junta de Andalucfa and the DGICYT project no. PB97-0706. © 2002 Australian Mathematical Society 1446-7887/2000 $A2.00 + 0.00 409 Downloaded from https://www.cambridge.org/core.
    [Show full text]
  • Cones, Positivity and Order Units
    CONES,POSITIVITYANDORDERUNITS w.w. subramanian Master’s Thesis Defended on September 27th 2012 Supervised by dr. O.W. van Gaans Mathematical Institute, Leiden University CONTENTS 1 introduction3 1.1 Assumptions and Notations 3 2 riesz spaces5 2.1 Definitions 5 2.2 Positive cones and Riesz homomorphisms 6 2.3 Archimedean Riesz spaces 8 2.4 Order units 9 3 abstract cones 13 3.1 Definitions 13 3.2 Constructing a vector space from a cone 14 3.3 Constructing norms 15 3.4 Lattice structures and completeness 16 4 the hausdorff distance 19 4.1 Distance between points and sets 19 4.2 Distance between sets 20 4.3 Completeness and compactness 23 4.4 Cone and order structure on closed bounded sets 25 5 convexity 31 5.1 The Riesz space of convex sets 31 5.2 Support functions 32 5.3 An Riesz space with a strong order unit 34 6 spaces of convex and compact sets 37 6.1 The Hilbert Cube 37 6.2 Order units in c(`p) 39 6.3 A Riesz space with a weak order unit 40 6.4 A Riesz space without a weak order unit 42 a uniform convexity 43 bibliography 48 index 51 1 1 INTRODUCTION An ordered vector space E is a vector space endowed with a partial order which is ‘compatible’ with the vector space operations (in some sense). If the order structure of E is a lattice, then E is called a Riesz space. This order structure leads to a notion of a (positive) cone, which is the collection of all ‘positive elements’ in E.
    [Show full text]
  • Vector Measures, Integration and Applications
    VECTOR MEASURES, INTEGRATION AND APPLICATIONS G. P. CURBERA* AND W. J. RICKER We will deal exclusively with the integration of scalar (i.e. R or C)- valued functions with respect to vector measures. The general theory can be found in [32; 36; 37],[44, Ch.III] and [67; 124], for example. For applications beyond these texts we refer to [38; 66; 80; 102; 117] and the references therein, and the survey articles [33; 68]. Each of these references emphasizes its own preferences, as will be the case with this article. Our aim is to present some theoretical developments over the past 10 years or so (see 1) and to highlight some recent ap- plications. Due to space limitation we restrict the applications to two topics. Namely, the extension of certain operators to their optimal domain (see 2) and aspects of spectral integration (see 3). The inter- action between order and positivity with properties of the integration map of a vector measure (which is dened on a function space) will become apparent and plays a central role. Let Σ be a σ-algebra on a set Ω 6= ∅ and E be a locally convex Hausdor space (briey, lcHs), over R or C, with continuous dual space E∗.A σ-additive set function ν :Σ → E is called a vector measure. By the Orlicz-Pettis theorem this is equivalent to the scalar-valued function x∗ν : A 7→ hν(A), x∗i being σ-additive on Σ for each x∗ ∈ E∗; its variation measure is denoted by |x∗ν|. A set A ∈ Σ is called ν-null if ν(B) = 0 for all B ∈ Σ with B ⊆ A.
    [Show full text]
  • UNBOUNDED P-CONVERGENCE in LATTICE-NORMED VECTOR LATTICES
    UNBOUNDED p-CONVERGENCE IN LATTICE-NORMED VECTOR LATTICES A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MOHAMMAD A. A. MARABEH IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MATHEMATICS MAY 2017 Approval of the thesis: UNBOUNDED p-CONVERGENCE IN LATTICE-NORMED VECTOR LATTICES submitted by MOHAMMAD A. A. MARABEH in partial fulfillment of the require- ments for the degree of Doctor of Philosophy in Mathematics Department, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Mustafa Korkmaz Head of Department, Mathematics Prof. Dr. Eduard Emel’yanov Supervisor, Department of Mathematics, METU Examining Committee Members: Prof. Dr. Süleyman Önal Department of Mathematics, METU Prof. Dr. Eduard Emel’yanov Department of Mathematics, METU Prof. Dr. Bahri Turan Department of Mathematics, Gazi University Prof. Dr. Birol Altın Department of Mathematics, Gazi University Assist. Prof. Dr. Kostyantyn Zheltukhin Department of Mathematics, METU Date: I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name: MOHAMMAD A. A. MARABEH Signature : iv ABSTRACT UNBOUNDED p-CONVERGENCE IN LATTICE-NORMED VECTOR LATTICES Marabeh, Mohammad A. A. Ph.D., Department of Mathematics Supervisor : Prof. Dr. Eduard Emel’yanov May 2017, 69 pages The main aim of this thesis is to generalize unbounded order convergence, unbounded norm convergence and unbounded absolute weak convergence to lattice-normed vec- tor lattices (LNVLs).
    [Show full text]
  • Category Measures, the Dual of $ C (K)^\Delta $ and Hyper-Stonean
    CATEGORY MEASURES, THE DUAL OF C(K)δ AND HYPER-STONEAN SPACES JAN HARM VAN DER WALT Abstract. For a compact Hausdorff space K, we give descriptions of the dual of C(K)δ, the Dedekind completion of the Banach lattice C(K) of con- tinuous, real-valued functions on K. We characterize those functionals which are σ-order continuous and order continuous, respectively, in terms of Ox- toby’s category measures. This leads to a purely topological characterization of hyper-Stonean spaces. 1. Introduction It is well known that the Banach lattice C(K) of continuous, real-valued functions on a compact Hausdorff space K fails, in general, to be Dedekind complete. In fact, C(K) is Dedekind complete if and only if K is Stonean, i.e. the closure of every open set is open, see for instance [25]. A natural question is to describe the Dedekind completion of C(K); that is, the unique (up to linear lattice isometry) Dedekind complete Banach lattice containing C(K) as a majorizing, order dense sublattice. Several answers to this question have been given, see for instance [3, 8, 10, 14, 21, 22, 27] among others. A further question arises: what is the dual of C(K)δ? As far as we are aware, no direct answer to this question has been stated explicitly in the literature. We give two answers to this question; one in terms of Borel measures on the Gleason cover of K [13], and another in terms of measures on the category algebra of K [23, 24].
    [Show full text]
  • On Fatou Topologies of Inextensible Riesz Spaces
    12Tribhuvan University Journal Vol. 35, No. 2: 12-21, December, 2020 Research Directorate, Tribhuvan University, Kathmandu, Nepal DOI: https://doi.org/10.3126/tuj.v35i2.36184 ON FATOU TOPOLOGIES OF INEXTENSIBLE RIESZ SPACES Nabonarayan Jha1*, Jaynarayan Jha2 1Department of Mathematics, Patan Multiple Campus, Lalitpur, TU. 2Department of Mathematics, Padma Kanya Multiple Campus, Kathmandu, TU. *Corresponding Author: [email protected] ABSTRACT In this paper we shall discuss the general properties of Fatou topologies on Inextensible Riesz Spaces. We find that on a given inextensible Riesz Spaces, there may be no non-trival Fatou topologies but if it has any Hausdorff Fatou topology, it has only one and this has several special properties. Keywords: fatou - inextensible - riesz spaces - pseudo-norm - maharam measure space - archimedean spaces INTRODUCTION The theory of Riesz space, is very rich and its properties have been extensively studied as the center of research activities. A Riesz space due to Hangarian Mathematician Frigyes Riesz (1880- 1956 AD) is a pre- ordered vector Lattice whose per-order is a partial order. Equivalently, it is an ordered vector space for which the order is a Lattice. In 1975, D.H. Fremlin studied the structure of the locally solid topologies on inextensible Riesz spaces. He subsequently conjectured that his results should hold true for ρ- universally complete Riesz spaces. In 1977, C. D. Aliprantis and O. Burkinshaw proved that indeed Fremlin's result can be generalized to ρ- universally complete Riesz spaces and established a number of interesting properties. The notion of Fatou topology has been discussed in a book edited by C.
    [Show full text]
  • Remarks on the Riesz-Kantorovich Formula
    REMARKS ON THE RIESZ-KANTOROVICH FORMULA D. V. RUTSKY Abstract. The Riesz-Kantorovich formula expresses (under cer- tain assumptions) the supremum of two operators S; T : X ! Y where X and Y are ordered linear spaces as S _ T (x) = sup [S(y) + T (x − y)]: 06y6x We explore some conditions that are sufficient for its validity, which enables us to get extensions of known results characterizing lattice and decomposition properties of certain spaces of order bounded linear operators between X and Y . 0. Introduction Ordered linear spaces, and especially Banach lattices, and various classes of linear operators between them, play an important part in modern functional analysis (see, e. g., [3]) and have significant appli- cations to mathematical economics (see, e. g., [9], [10]). The following famous theorem was established independently by M. Riesz in [19] and L. V. Kantorovich in [16] (all definitions are given in Section 1 below; we quote the statement from [8]). Riesz-Kantorovich Theorem. If L is an ordered vector space with the Riesz Decomposition Property and M is a Dedekind complete vec- tor lattice, then the ordered vector space Lb(L; M) of order bounded linear operators between L and M is a Dedekind complete vector lat- b tice. Moreover, if S; T 2 L (L; M), then for each x 2 L+ we have (1) [S _ T ](x) = supfSy + T (x − y) j 0 6 y 6 xg; (2) [S ^ T ](x) = inffSy + T (x − y) j 0 6 y 6 xg: arXiv:1212.6243v1 [math.FA] 26 Dec 2012 In particular, this theorem implies that under its conditions every order bounded operator T : L ! M is regular.
    [Show full text]
  • A. G" Kusraev and S. S. Kutateladze Subdifferentials: Theory And
    Mathematicsand lts Applications A. G" Kusraevand S.S. Kutateladze Subdifferentials: Theoryand Applications KluwerAcademic publishers Subdifferentials: Theory andApp htcations b A. G. Kusraev North,O ssetian Sn rc Ut t i vers i ty, vtadtkavkLz,Russia and S.S. Kutateladze In.uit ute of M athe nnt i cs. ttbertanDivision oIthe Rus.siattAcademy of Sciences, Novosibirsk,Russia \s 7W KLUWERACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON Contents Preface vii Chapter 1. Convex Correspondences and Operators 1. Convex Sets .................................................. 2 2. Convex Correspondences ..................................... 12 3. Convex Operators ............................................ 22 4. Fans and Linear Operators ................................... 35 5. Systems of Convex Objects ................................... 47 6. Comments ................................................... 58 Chapter 2. Geometry of Subdifferentials 1. The Canonical Operator Method ............................. 62 2. The Extremal Structure of Subdifferentials ................... 78 3. Subdifferentials of Operators Acting in Modules .............. 92 4. The Intrinsic Structure of Subdifferentials .................... 108 5. Caps and Faces .............................................. 123 6. Comments ................................................... 134 Chapter 3. Convexity and Openness 1. Openness of Convex Correspondences ......................... 137 2. The Method of General Position .............................. 151 3. Calculus of Polars ...........................................
    [Show full text]