The Geometry of the Group of Symplectic Diffeomorphisms

Total Page:16

File Type:pdf, Size:1020Kb

The Geometry of the Group of Symplectic Diffeomorphisms The geometry of the group of symplectic di®eomorphisms Leonid Polterovich October 15, 2007 Preface The group of Hamiltonian di®eomorphisms Ham(M; ­) of a symplectic manifold (M; ­) plays a fundamental role both in geometry and clas- sical mechanics. For a geometer, at least under some assumptions on the manifold M, this is just the connected component of the identity in the group of all symplectic di®eomorphisms. From the viewpoint of mechanics, Ham(M; ­) is the group of all admissible motions. What is the minimal amount of energy required in order to generate a given Hamiltonian di®eomorphism f? An attempt to formalize and answer this natural question has led H. Hofer [H1] (1990) to a remarkable dis- covery. It turns out that the solution of this variational problem can be interpreted as a geometric quantity, namely as the distance between f and the identity transformation. Moreover this distance is associated to a canonical biinvariant metric on Ham(M; ­). Since Hofer's work this new geometry has been intensively studied in the framework of modern symplectic topology. In the present book I will describe some of these developments. Hofer's geometry enables us to study various notions and prob- lems which come from the familiar ¯nite dimensional geometry in the context of the group of Hamiltonian di®eomorphisms. They turn out to be very di®erent from the usual circle of problems considered in sym- plectic topology and thus extend signi¯cantly our vision of the sym- plectic world. Is the diameter of Ham(M; ­) ¯nite or in¯nite? What are the minimal geodesics? How can one ¯nd the length spectrum? In general, these questions are still open. However some partial answers do exist and will be discussed below. There is one more, to my taste even more important reason why it is useful to have a canonical geometry on the group of Hamiltonian i ii di®eomorphisms. Consider a time dependent vector ¯eld »t; t 2 R on a manifold M. The ordinary di®erential equation x_ = »(x; t) on M de¯nes a flow ft : M ! M which takes any initial condition x(0) to the solution x(t) at time t. The trajectories of the flow form a complicated system of curves on the manifold. Usually, in order to understand the dynamics, one should travel along the manifold and thoroughly study behaviour of the trajectories in di®erent regions. Let us change the point of view and note that our flow can be interpreted as a simple geometric object - a single curve t ! ft on the group of all di®eomorphisms of the manifold. One may hope that geometric properties of this curve reflect the dynamics, and thus complicated dynamical phenomena can be studied by purely geometric tools. Of course, the price we pay is that the ambient space - the group of di®eomorphisms - is in¯nite-dimensional. Moreover, we face a serious di±culty: in general there are no canonical tools to perform geometric measurements on this group. Remarkably, Hofer's metric provides such a tool for systems of classical mechanics. In Chapters 8 and 11 we will see some situations where this ideology turns out to be successful. As it often happens with very young and fast developing areas of mathematics, the proofs of various elegant statements in Hofer's geometry are technical and complicated. Thus I selected the simplest non-trivial versions of the main phenomena (according to my taste, of course) without making an attempt to present them in the most general form. For the same reason many technicalities are omitted. Though formally speaking this book does not require a special back- ground in symplectic topology (at least necessary de¯nitions and for- mulations are given), the reader is cordially invited to consult two remarkable introductory texts [HZ] and [MS]. Both of them contain chapters on the geometry of the group of Hamiltonian di®eomor- phisms. I have tried to minimize the overlaps. The book contains a number of exercises which presumably will help the reader to get into the subject. This book arose from two sources. The ¯rst one is lectures given to graduate students, namely mini-courses at Universities of Freiburg iii and Warwick, and a Nachdiplom-course at ETH, ZÄurich. The second source is the expository article [P8] which contains a brief outline of the material presented below. Let me introduce briefly the main characters of the book. A dif- feomorphism f of a symplectic manifold (M; ­) is called Hamiltonian if it can be included into a compactly supported Hamiltonian flow fftg with f0 = 1l and f1 = f. Such a flow is de¯ned by a Hamiltonian function F : M £ [0; 1] ! R. In the language of classical mechanics F is the energy of a mechanical motion described by fftg. We interpret the total energy of the flow as a length of the corresponding path of di®eomorphisms: Z 1 lengthfftg = max F (x; t) ¡ min F (x; t)dt: 0 x2M x2M De¯ne a function ½ : Ham(M; ­) £ Ham(M; ­) ! R by ½(Á; Ã) = inf lengthfftg; where the in¯mum is taken over all Hamiltonian flows fftg which generate the Hamiltonian di®eomorphism f = Áá1. It is easy to see that ½ is non-negative, symmetric, vanishes on the diagonal and satis¯es the triangle inequality. Moreover, ½ is biinvariant with respect to the group structure of Ham(M; ­). In other words, ½ is a biinvariant pseudo-distance. It is a deep fact that ½ is a genuine distance function, that is ½(Á; Ã) is strictly positive for Á 6= Ã. The metric ½ is called Hofer's metric. The group Ham(M; ­) and Hofer's pseudo-distance ½ are intro- duced in Chapters 1 and 2 respectively. In Chapter 3 we prove that ½ is a genuine metric in the case when M is the standard symplectic linear space R2n. Our approach is based on Gromov's theory of holomor- phic discs with Lagrangian boundary conditions which is presented in Chapter 4. Afterwards we turn to the study of basic geometric invariants of Ham(M; ­). There is a (still open!) conjecture that the diameter of iv Ham(M; ­) is in¯nite. In Chapters 5-7 we prove this conjecture for closed surfaces. In Chapter 8 we discuss the concept of the growth of a one- parameter subgroup fftg of Ham(M; ­) which reflects the asymptotic behaviour of the function ½(1l; ft) when t ! 1. We present a link be- tween the growth and the dynamics of fftg in the context of invariant tori of classical mechanics. In many interesting situations the space Ham(M; ­) has compli- cated topology, and in particular a non-trivial fundamental group. For an element γ 2 ¼1(Ham(M; ­)) set º(γ) = inf lengthfftg; where the in¯mum is taken over all loops fftg of Hamiltonian di®eomorphisms (that is periodic Hamiltonian flows) which represent γ. The set ¯ ¯ fº(γ) ¯ γ 2 ¼1(Ham(M; ­))g is called the length spectrum of Ham(M; ­). In Chapter 9 we present an approach to the length spectrum which is based on the theory of symplectic ¯brations. An important ingredient of this approach is Gromov's theory of pseudo-holomorphic curves which is discussed in Chapter 10. In Chapter 11 we give an application of our results on the length spectrum to the classical ergodic theory. In Chapters 12 and 13 we develop two di®erent approaches to the theory of geodesics on Ham(M; ­). One of them is elementary, while the other requires a powerful machinery of Floer homology. Chapter 13 suggests to the reader a brief visit to Floer homology. Finally, in Chapter 14 we deal with non-Hamiltonian symplectic di®eomorphisms, which appear naturally in Hofer's geometry as isome- tries of Ham(M; ­). In addition, we formulate and discuss the famous flux conjecture which states that the group Ham(M; ­) is closed in the group of all symplectic di®eomorphisms endowed with the C1- topology. v Acknowledgments. I cordially thank Meike Akveld for her in- dispensable help in typing the preliminary version of the manuscript, preparing the pictures and enormous editorial work. I am very grateful to Paul Biran and Karl Friedrich Siburg for their detailed comments on the manuscript and for improving the presentation. I am indebted to Rami Aizenbud, Dima Gourevitch, Misha Entov, Osya Polterovich and Zeev Rudnick for pointing out a number of inaccuracies in the pre- liminary version of the book. The book was written during my stay at ETH, Zurich in the academic year 1997-1998, and during my visits to IHES, Bures-sur-Yvette in 1998 and 1999. I thank both institutions for the excellent research atmosphere. vi Contents 1 Introducing the group 1 1.1 The origins of Hamiltonian di®eomorphisms . 1 1.2 Flows and paths of di®eomorphisms . 4 1.3 Classical mechanics . 5 1.4 The group of Hamiltonian di®eomorphisms . 7 1.5 Algebraic properties of Ham(M; ­) . 13 2 Introducing the geometry 15 2.1 A variational problem . 15 2.2 Biinvariant geometries on Ham(M; ­) . 16 2.3 The choice of the norm: Lp vs. L1 . 18 2.4 The concept of displacement energy . 19 3 Lagrangian submanifolds 25 3.1 De¯nitions and examples . 25 3.2 The Liouville class . 27 3.3 Estimating the displacement energy . 31 4 The @¹-equation 35 4.1 Introducing the @¹-operator . 35 4.2 The boundary value problem . 37 4.3 An application to the Liouville class . 39 4.4 An example . 41 5 Linearization 45 5.1 The space of periodic Hamiltonians . 45 5.2 Regularization .
Recommended publications
  • Density of Thin Film Billiard Reflection Pseudogroup in Hamiltonian Symplectomorphism Pseudogroup Alexey Glutsyuk
    Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomorphism pseudogroup Alexey Glutsyuk To cite this version: Alexey Glutsyuk. Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomor- phism pseudogroup. 2020. hal-03026432v2 HAL Id: hal-03026432 https://hal.archives-ouvertes.fr/hal-03026432v2 Preprint submitted on 6 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Density of thin film billiard reflection pseudogroup in Hamiltonian symplectomorphism pseudogroup Alexey Glutsyuk∗yzx December 3, 2020 Abstract Reflections from hypersurfaces act by symplectomorphisms on the space of oriented lines with respect to the canonical symplectic form. We consider an arbitrary C1-smooth hypersurface γ ⊂ Rn+1 that is either a global strictly convex closed hypersurface, or a germ of hy- persurface. We deal with the pseudogroup generated by compositional ratios of reflections from γ and of reflections from its small deforma- tions. In the case, when γ is a global convex hypersurface, we show that the latter pseudogroup is dense in the pseudogroup of Hamiltonian diffeomorphisms between subdomains of the phase cylinder: the space of oriented lines intersecting γ transversally. We prove an analogous local result in the case, when γ is a germ.
    [Show full text]
  • Lecture 1: Basic Concepts, Problems, and Examples
    LECTURE 1: BASIC CONCEPTS, PROBLEMS, AND EXAMPLES WEIMIN CHEN, UMASS, SPRING 07 In this lecture we give a general introduction to the basic concepts and some of the fundamental problems in symplectic geometry/topology, where along the way various examples are also given for the purpose of illustration. We will often give statements without proofs, which means that their proof is either beyond the scope of this course or will be treated more systematically in later lectures. 1. Symplectic Manifolds Throughout we will assume that M is a C1-smooth manifold without boundary (unless specific mention is made to the contrary). Very often, M will also be closed (i.e., compact). Definition 1.1. A symplectic structure on a smooth manifold M is a 2-form ! 2 Ω2(M), which is (1) nondegenerate, and (2) closed (i.e. d! = 0). (Recall that a 2-form ! 2 Ω2(M) is said to be nondegenerate if for every point p 2 M, !(u; v) = 0 for all u 2 TpM implies v 2 TpM equals 0.) The pair (M; !) is called a symplectic manifold. Before we discuss examples of symplectic manifolds, we shall first derive some im- mediate consequences of a symplectic structure. (1) The nondegeneracy condition on ! is equivalent to the condition that M has an even dimension 2n and the top wedge product !n ≡ ! ^ ! · · · ^ ! is nowhere vanishing on M, i.e., !n is a volume form. In particular, M must be orientable, and is canonically oriented by !n. The nondegeneracy condition is also equivalent to the condition that M is almost complex, i.e., there exists an endomorphism J of TM such that J 2 = −Id.
    [Show full text]
  • LECTURE 12: LIE GROUPS and THEIR LIE ALGEBRAS 1. Lie
    LECTURE 12: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups Definition 1.1. A Lie group G is a smooth manifold equipped with a group structure so that the group multiplication µ : G × G ! G; (g1; g2) 7! g1 · g2 is a smooth map. Example. Here are some basic examples: • Rn, considered as a group under addition. • R∗ = R − f0g, considered as a group under multiplication. • S1, Considered as a group under multiplication. • Linear Lie groups GL(n; R), SL(n; R), O(n) etc. • If M and N are Lie groups, so is their product M × N. Remarks. (1) (Hilbert's 5th problem, [Gleason and Montgomery-Zippin, 1950's]) Any topological group whose underlying space is a topological manifold is a Lie group. (2) Not every smooth manifold admits a Lie group structure. For example, the only spheres that admit a Lie group structure are S0, S1 and S3; among all the compact 2 dimensional surfaces the only one that admits a Lie group structure is T 2 = S1 × S1. (3) Here are two simple topological constraints for a manifold to be a Lie group: • If G is a Lie group, then TG is a trivial bundle. n { Proof: We identify TeG = R . The vector bundle isomorphism is given by φ : G × TeG ! T G; φ(x; ξ) = (x; dLx(ξ)) • If G is a Lie group, then π1(G) is an abelian group. { Proof: Suppose α1, α2 2 π1(G). Define α : [0; 1] × [0; 1] ! G by α(t1; t2) = α1(t1) · α2(t2). Then along the bottom edge followed by the right edge we have the composition α1 ◦ α2, where ◦ is the product of loops in the fundamental group, while along the left edge followed by the top edge we get α2 ◦ α1.
    [Show full text]
  • Symplectic Topology Math 705 Notes by Patrick Lei, Spring 2020
    Symplectic Topology Math 705 Notes by Patrick Lei, Spring 2020 Lectures by R. Inanç˙ Baykur University of Massachusetts Amherst Disclaimer These notes were taken during lecture using the vimtex package of the editor neovim. Any errors are mine and not the instructor’s. In addition, my notes are picture-free (but will include commutative diagrams) and are a mix of my mathematical style (omit lengthy computations, use category theory) and that of the instructor. If you find any errors, please contact me at [email protected]. Contents Contents • 2 1 January 21 • 5 1.1 Course Description • 5 1.2 Organization • 5 1.2.1 Notational conventions•5 1.3 Basic Notions • 5 1.4 Symplectic Linear Algebra • 6 2 January 23 • 8 2.1 More Basic Linear Algebra • 8 2.2 Compatible Complex Structures and Inner Products • 9 3 January 28 • 10 3.1 A Big Theorem • 10 3.2 More Compatibility • 11 4 January 30 • 13 4.1 Homework Exercises • 13 4.2 Subspaces of Symplectic Vector Spaces • 14 5 February 4 • 16 5.1 Linear Algebra, Conclusion • 16 5.2 Symplectic Vector Bundles • 16 6 February 6 • 18 6.1 Proof of Theorem 5.11 • 18 6.2 Vector Bundles, Continued • 18 6.3 Compatible Triples on Manifolds • 19 7 February 11 • 21 7.1 Obtaining Compatible Triples • 21 7.2 Complex Structures • 21 8 February 13 • 23 2 3 8.1 Kähler Forms Continued • 23 8.2 Some Algebraic Geometry • 24 8.3 Stein Manifolds • 25 9 February 20 • 26 9.1 Stein Manifolds Continued • 26 9.2 Topological Properties of Kähler Manifolds • 26 9.3 Complex and Symplectic Structures on 4-Manifolds • 27 10 February 25
    [Show full text]
  • Double Groupoids and the Symplectic Category
    JOURNAL OF GEOMETRIC MECHANICS doi:10.3934/jgm.2018009 c American Institute of Mathematical Sciences Volume 10, Number 2, June 2018 pp. 217{250 DOUBLE GROUPOIDS AND THE SYMPLECTIC CATEGORY Santiago Canez~ Department of Mathematics Northwestern University 2033 Sheridan Road Evanston, IL 60208-2730, USA (Communicated by Henrique Bursztyn) Abstract. We introduce the notion of a symplectic hopfoid, a \groupoid-like" object in the category of symplectic manifolds whose morphisms are given by canonical relations. Such groupoid-like objects arise when applying a version of the cotangent functor to the structure maps of a Lie groupoid. We show that such objects are in one-to-one correspondence with symplectic double groupoids, generalizing a result of Zakrzewski concerning symplectic double groups and Hopf algebra objects in the aforementioned category. The proof relies on a new realization of the core of a symplectic double groupoid as a symplectic quotient of the total space. The resulting constructions apply more generally to give a correspondence between double Lie groupoids and groupoid- like objects in the category of smooth manifolds and smooth relations, and we show that the cotangent functor relates the two constructions. 1. Introduction. The symplectic category is the category-like structure whose objects are symplectic manifolds and morphisms are canonical relations, i.e. La- grangian submanifolds of products of symplectic manifolds. Although compositions in this \category" are only defined between certain morphisms, this concept has nonetheless proved to be useful for describing many constructions in symplectic ge- ometry in a more categorical manner; in particular, symplectic groupoids can be characterized as certain monoid objects in this category, and Hamiltonian actions can be described as actions of such monoids.
    [Show full text]
  • A C1 Arnol'd-Liouville Theorem
    A C1 Arnol’d-Liouville theorem Marie-Claude Arnaud, Jinxin Xue To cite this version: Marie-Claude Arnaud, Jinxin Xue. A C1 Arnol’d-Liouville theorem. 2016. hal-01422530v2 HAL Id: hal-01422530 https://hal-univ-avignon.archives-ouvertes.fr/hal-01422530v2 Preprint submitted on 16 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A C1 ARNOL’D-LIOUVILLE THEOREM MARIE-CLAUDE ARNAUD†, JINXIN XUE Abstract. In this paper, we prove a version of Arnol’d-Liouville theorem for C1 commuting Hamiltonians. We show that the Lipschitz regularity of the foliation by invariant Lagrangian tori is crucial to determine the Dynamics on each Lagrangian torus and that the C1 regularity of the foliation by invariant Lagrangian tori is crucial to prove the continuity of Arnol’d- Liouville coordinates. We also explore various notions of C0 and Lipschitz integrability. Dedicated to Jean-Christophe Yoccoz 1. Introduction and Main Results. This article elaborates on the following question. Question. If a Hamiltonian system has enough commuting integrals1, can we precisely describe the Hamiltonian Dynamics, even in the case of non C2 integrals? When the integrals are C2, Arnol’d-Liouville Theorem (see [4]) gives such a dynamical description.
    [Show full text]
  • Mixed States from Diffeomorphism Anomalies Arxiv:1109.5290V1
    SU-4252-919 IMSc/2011/9/10 Quantum Gravity: Mixed States from Diffeomorphism Anomalies A. P. Balachandran∗ Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA and International Institute of Physics (IIP-UFRN) Av. Odilon Gomes de Lima 1722, 59078-400 Natal, Brazil Amilcar R. de Queirozy Instituto de Fisica, Universidade de Brasilia, Caixa Postal 04455, 70919-970, Brasilia, DF, Brazil October 30, 2018 Abstract In a previous paper, we discussed simple examples like particle on a circle and molecules to argue that mixed states can arise from anoma- lous symmetries. This idea was applied to the breakdown (anomaly) of color SU(3) in the presence of non-abelian monopoles. Such mixed states create entropy as well. arXiv:1109.5290v1 [hep-th] 24 Sep 2011 In this article, we extend these ideas to the topological geons of Friedman and Sorkin in quantum gravity. The \large diffeos” or map- ping class groups can become anomalous in their quantum theory as we show. One way to eliminate these anomalies is to use mixed states, thereby creating entropy. These ideas may have something to do with black hole entropy as we speculate. ∗[email protected] [email protected] 1 1 Introduction Diffeomorphisms of space-time play the role of gauge transformations in grav- itational theories. Just as gauge invariance is basic in gauge theories, so too is diffeomorphism (diffeo) invariance in gravity theories. Diffeos can become anomalous on quantization of gravity models. If that happens, these models cannot serve as descriptions of quantum gravitating systems. There have been several investigations of diffeo anomalies in models of quantum gravity with matter in the past.
    [Show full text]
  • Area-Preserving Diffeomorphisms of the Torus Whose Rotation Sets Have
    Area-preserving diffeomorphisms of the torus whose rotation sets have non-empty interior Salvador Addas-Zanata Instituto de Matem´atica e Estat´ıstica Universidade de S˜ao Paulo Rua do Mat˜ao 1010, Cidade Universit´aria, 05508-090 S˜ao Paulo, SP, Brazil Abstract ǫ In this paper we consider C1+ area-preserving diffeomorphisms of the torus f, either homotopic to the identity or to Dehn twists. We sup- e pose that f has a lift f to the plane such that its rotation set has in- terior and prove, among other things that if zero is an interior point of e e 2 the rotation set, then there exists a hyperbolic f-periodic point Q∈ IR such that W u(Qe) intersects W s(Qe +(a,b)) for all integers (a,b), which u e implies that W (Q) is invariant under integer translations. Moreover, u e s e e u e W (Q) = W (Q) and f restricted to W (Q) is invariant and topologi- u e cally mixing. Each connected component of the complement of W (Q) is a disk with diameter uniformly bounded from above. If f is transitive, u e 2 e then W (Q) =IR and f is topologically mixing in the whole plane. Key words: pseudo-Anosov maps, Pesin theory, periodic disks e-mail: [email protected] 2010 Mathematics Subject Classification: 37E30, 37E45, 37C25, 37C29, 37D25 The author is partially supported by CNPq, grant: 304803/06-5 1 Introduction and main results One of the most well understood chapters of dynamics of surface homeomor- phisms is the case of the torus.
    [Show full text]
  • Right-Angled Artin Groups in the C Diffeomorphism Group of the Real Line
    Right-angled Artin groups in the C∞ diffeomorphism group of the real line HYUNGRYUL BAIK, SANG-HYUN KIM, AND THOMAS KOBERDA Abstract. We prove that every right-angled Artin group embeds into the C∞ diffeomorphism group of the real line. As a corollary, we show every limit group, and more generally every countable residually RAAG ∞ group, embeds into the C diffeomorphism group of the real line. 1. Introduction The right-angled Artin group on a finite simplicial graph Γ is the following group presentation: A(Γ) = hV (Γ) | [vi, vj] = 1 if and only if {vi, vj}∈ E(Γ)i. Here, V (Γ) and E(Γ) denote the vertex set and the edge set of Γ, respec- tively. ∞ For a smooth oriented manifold X, we let Diff+ (X) denote the group of orientation preserving C∞ diffeomorphisms on X. A group G is said to embed into another group H if there is an injective group homormophism G → H. Our main result is the following. ∞ R Theorem 1. Every right-angled Artin group embeds into Diff+ ( ). Recall that a finitely generated group G is a limit group (or a fully resid- ually free group) if for each finite set F ⊂ G, there exists a homomorphism φF from G to a nonabelian free group such that φF is an injection when restricted to F . The class of limit groups fits into a larger class of groups, which we call residually RAAG groups. A group G is in this class if for each arXiv:1404.5559v4 [math.GT] 16 Feb 2015 1 6= g ∈ G, there exists a graph Γg and a homomorphism φg : G → A(Γg) such that φg(g) 6= 1.
    [Show full text]
  • Differential Topology: Exercise Sheet 3
    Prof. Dr. M. Wolf WS 2018/19 M. Heinze Sheet 3 Differential Topology: Exercise Sheet 3 Exercises (for Nov. 21th and 22th) 3.1 Smooth maps Prove the following: (a) A map f : M ! N between smooth manifolds (M; A); (N; B) is smooth if and only if for all x 2 M there are pairs (U; φ) 2 A; (V; ) 2 B such that x 2 U, f(U) ⊂ V and ◦ f ◦ φ−1 : φ(U) ! (V ) is smooth. (b) Compositions of smooth maps between subsets of smooth manifolds are smooth. Solution: (a) As the charts of a smooth structure cover the manifold the above property is certainly necessary for smoothness of f : M ! N. To show that it is also sufficient, consider two arbitrary charts U;~ φ~ 2 A and V;~ ~ 2 B. We need to prove that the map ~ ◦ f ◦ φ~−1 : φ~(U~) ! ~(V~ ) is smooth. Therefore consider an arbitrary y 2 φ~(U~) such that there is some x 2 M such that x = φ~−1(y). By assumption there are charts (U; φ) 2 A; (V; ) 2 B such that x 2 U, −1 f(U) ⊂ V and ◦ f ◦ φ : φ(U) ! (V ) is smooth. Now we choose U0;V0 such ~ ~ that x 2 U0 ⊂ U \ U and f(x) 2 V0 ⊂ V \ V and therefore we can write ~ ~−1 ~ −1 −1 ~−1 ◦ f ◦ φ j = ◦ ◦ ◦ f ◦ φ ◦ φ ◦ φ : (1) φ~(U0) As a composition of smooth maps, we showed that ~ ◦ f ◦ φ~−1j is smooth. As φ~(U0) x 2 M was chosen arbitrarily we proved that ~ ◦ f ◦ φ~−1 is a smooth map.
    [Show full text]
  • Classification of Partially Hyperbolic Diffeomorphisms Under Some Rigid
    Classification of partially hyperbolic diffeomorphisms under some rigid conditions Pablo D. Carrasco ∗1, Enrique Pujals y2, and Federico Rodriguez-Hertz z3 1ICEx-UFMG, Avda. Presidente Antonio Carlos 6627, Belo Horizonte-MG, BR31270-90 2CUNY Graduate Center, 365 Fifth Avenue, Room 4208, New York, NY10016 3Penn State, 227 McAllister Building, University Park, State College, PA16802 June 30, 2020 Abstract Consider a three dimensional partially hyperbolic diffeomorphism. It is proved that under some rigid hypothesis on the tangent bundle dynamics, the map is (modulo finite covers and iterates) either an Anosov diffeomorphism, a (gener- alized) skew-product or the time-one map of an Anosov flow, thus recovering a well known classification conjecture of the second author to this restricted setting. 1 Introduction and Main Results Let M be a manifold. One of the central tasks in global analysis is to understand the structure of Diffr(M), the group of diffeomorphisms of M. This is of course a very com- plicated matter, so to be able to make progress it is necessary to impose some reduc- tions. Typically, as we do in this article, the reduction consists of studying meaningful subsets in Diffr(M), and try to classify or characterize elements on them. We will consider partially hyperbolic diffeomorphisms acting on three manifolds. We choose to do so due to their flexibility (linking naturally algebraic, geometric and dynamical aspects), and because of the large amount of activity that this particular research topic has nowadays. Let us spell the precise definition that we adopt here, and refer the reader to [CRHRHU17, HP16] for recent surveys.
    [Show full text]
  • Homotopy Type of Symplectomorphism Groups of S2 × S2 S´Ilvia Anjos
    ISSN 1364-0380 (on line) 1465-3060 (printed) 195 Geometry & Topology Volume 6 (2002) 195–218 Published: 27 April 2002 Homotopy type of symplectomorphism groups of S2 × S2 S´ılvia Anjos Departamento de Matem´atica Instituto Superior T´ecnico, Lisbon, Portugal Email: [email protected] Abstract In this paper we discuss the topology of the symplectomorphism group of a product of two 2–dimensional spheres when the ratio of their areas lies in the interval (1,2]. More precisely we compute the homotopy type of this sym- plectomorphism group and we also show that the group contains two finite dimensional Lie groups generating the homotopy. A key step in this work is to calculate the mod 2 homology of the group of symplectomorphisms. Although this homology has a finite number of generators with respect to the Pontryagin product, it is unexpected large containing in particular a free noncommutative ring with 3 generators. AMS Classification numbers Primary: 57S05, 57R17 Secondary: 57T20, 57T25 Keywords: Symplectomorphism group, Pontryagin ring, homotopy equiva- lence Proposed:YashaEliashberg Received:1October2001 Seconded: TomaszMrowka,JohnMorgan Revised: 11March2002 c Geometry & Topology Publications 196 S´ılvia Anjos 1 Introduction In general symplectomorphism groups are thought to be intermediate objects between Lie groups and full groups of diffeomorphisms. Although very little is known about the topology of groups of diffeomorphisms, there are some cases when the corresponding symplectomorphism groups are more understandable. For example, nothing is known about the group of compactly supported dif- feomorphisms of R4 , but in 1985, Gromov showed in [4] that the group of compactly supported symplectomorphisms of R4 with its standard symplectic structure is contractible.
    [Show full text]