JOURNAL OF FOREST SCIENCE, 55, 2009 (4): 184–192

Composition and diversity of psocid (Insecta: ) taxocoenoses in forest ecosystems of the Abieti-fageta s. lat. zone in the Western Carpathian Mts.

O. Holuša

Faculty of Forestry and Wood Technology, Mendel University of Agriculture and Forestry in Brno, Brno, Czech Republic Forest Management Institute, Brandýs nad Labem, branch office Frýdek-Místek, Czech Republic

AbstraCt: Psocid (Psocoptera) taxocoenoses were studied in forest ecosystems of the Western Carpathian Mts. in 1997–2001. As a study frame, vegetation tiers (VT = altitudinal vegetation zones) of geobiocoenological or for- est-typological system were used. Lower units of forest typological system (forest type complexes) were used for the classification of ecological conditions and the material found in forest ecosystems of Abieti-fageta s. lat. com- munities (5th fir- VT) was evaluated in detail. This VT is the most widespread in the regions under study (the Moravskoslezské Beskydy Mts., the Vsetínské vrchy Hills and Javorníky). 2,023 adults comprising 28 species were found in the 5th VT. Caecilius burmeisteri was found as eudominant species; Philotarsus picicornis, Caecilius flavidus and Peripsocus subfasciatus were found as dominant species. In natural geobiocoenoses with the level of naturalness 1 or 2, the following species were found: unipunctatus, Caecilius flavidus, and Caecilius burmeisteri as eudominant and Caecilius despaxi as dominant. Taxocoenoses of psocids were evaluated by De- trended Correspondence Analysis (DCA) and Divisive Cluster Analysis (DvClA). The axes were interpreted in DCA-analysis as follows: the x-axis denotes the influence of VTs and the q-axis refers to the influence of hydricity. This material was compared with other material obtained from various vegetation tiers in the Western Carpathians Mts. The characteristic species composition of psocids in the 5th VT was as follows: Caecilius flavidus – C. bur- meisteri – C. despaxi – Metylophorus nebulosus – Philotarsus picicornis.

Keywords: Psocoptera; taxocoenoses; diversity; forest ecosystems; vegetation tier; Abieti-fageta s. lat.; Moravskoslezské Beskydy Mts.; Vsetínské vrchy Hills; Javorníky Mts.; Western Carpathian Mts.

The psocids were studied only in some areas of Mostly faunistic data are available in this country the Czech Republic, mostly in various mountains of at present. However, Holuša (2001) studied an Moravia and Silesia, e.g. in the Hrubý Jeseník Mts., ecological problem of the dependence of psocid Kralický Sněžník Mt. (Obr 1949) and the Moravsko- taxocoenoses composition on vegetation tier (VT slezské Beskydy Mts. (Obr 1952, 1965). Only occa- = altitudinal vegetation zone) in the Smrk Nature sional captures were published from other areas of Reserve, Holuša (2003b) in the Mazák Nature Re- the Czech Republic. A complex psocopterological serve and the same author (Holuša 2007b) in the research was initiated in the territory of the Czech V Podolánkách Nature Reserve. All these reserves Republic and Slovakia in 1997 (cf. Holuša 2003a). are located in the Moravskoslezské Beskydy Mts. In

Supported by the Ministry of Education, Youth and Sports of the Czech Republic, Research Project No. MSM 6215648902-DZ04 of the Faculty of Forestry and Wood Technology of Mendel University of Agriculture and Forestry in Brno.

184 J. FOR. SCI., 55, 2009 (4): 184–192 the Podbeskydská pahorkatina Hills psocid occur- ginning of May to the middle of September). The rence was also evaluated in the framework of forest samples were collected by sweeping with a sweep type complexes in the Kamenec Nature Reserve net of 50 cm mouth in diameter. Branches of (Holuša 2005) and in the alluvium of the Odra and bushes were beaten with the same sweep net River (Poodří Protected Landscape Area) (Holuša in the extent of about 1 m from the branch end 2007a). Moreover, Mückstein and Holuša (2003) and up to approximately 2.5 m height, 30 sweep- studied the composition of psocid taxocoenoses in ings or beatings were carried out in each locality. different ecosystem types and its dependence on Individual collecting of adults also complemented the naturalness level of forest ecosystems in the these methods. Caught psocids were sucked into region of the Žďárské vrchy Hills. The latest ecologi- an exhauster and stored in a small test tube with cal study brings data on the composition of psocid 70% alcohol in the author’s collection. All samples taxocoenoses of 7th (Fageti-piceeta s. lat.) and 8th (Pi- were collected and identified by the author. Mono- ceeta s. lat.) VT in the Moravskoslezské Beskydy Mts. graphs by Günther (1974) and Lienhard (1998) and the Oravské Beskydy Mts. in Slovakia (Holuša were used for identification; nomenclature, zo- 2007c). ogeographical distribution and ecological demands The aim of the systematic study of psocids were commented according to Lienhard (1977, conducted in the Western Carpathian Mts. in 1998). Samples were sorted into vectors which 1997–2001 was to define species diversity and represent “habitats of psocids”. The following fac- characteristic species composition of psocids in tors were taken into account for the purpose of particular vegetation tiers (vegetation tiers accord- sorting: biogeographical region, ecological condi- ing to Plíva 1971, 1991 were used) and to prove tions (according to the forest type complexes) and an applicability of vegetation tiers or lower units of or shrub species from which the material was geobiocoenological or forest-typological systems in obtained (samples were also distinguished accord- zoocoenological studies. ing to the capture method, i.e. captured either in a herb layer or by the Malaise trap). For example: Methods BE5Ssm, where BE denotes the Beskydský bio- geographical region (No. 3.10, cf. Culek 1996), 5S The net of equally distributed geobiocoenologi- represents forest type complexes Abieto-Fagetum cal research plots was situated in regions of eastern mesotroficum and sm is an acronym for the tree Moravia, eastern Silesia and northern Slovakia species Picea abies. in the territory of Polonic and West Carpathian Diversity was evaluated by Shannon-Wiener biogeographical subprovinces (i.e. in the region of (HS) and Brillouin diversity index (HB), which were the Western Carpathian Mts.). Plots were selected computed according to Kaesler and Mulvany in all VTs occurring in this region, i.e. from the (1976a,b). Diversity indexes of individual habitats 3rd (communities of Querci-fageta s. lat.) to the were calculated from the total number of captured 9th tier (communities of Pineta mugi s. lat.) (cf. specimens, however, in the case of a higher number Holuša, Holuša 2008). Plots were located in such of specimens these were reduced to a constant parts of forest stands that represent a particular VT number (30, 60, 120, 240 and 480) (Table 1). Some and where it was possible to collect a representative material was excluded from statistical processing material of psocids. Approximately the same number because of a small number of collected specimens of permanent plots was located in all VTs. Perma- in some plots (i.e. species with a lower number than nent plots were marked out in the best-preserved 5 specimens or 2 species even less than 3 specimens) parts of nature reserves [with the level of natural- to prevent data distortion. ness 1 or 2 according to Ellenberg (1973, 1978)] The material was evaluated by Detrended Cor- and additional plots were selected in modified parts respondence Analysis (DCA) and by Divisive of nature reserves or in managed forests with the Cluster Analysis (DvClA) in modification – Twin- level of naturalness 3 or 4 according to Ellenberg span algorithm. Modified SW Decorana was used (1973, 1978). to process the DCA analysis, which was adapted Sampling was carried out in the same way in all for zoocoenological data processing (Povolný, VTs during the research and the material from the Znojil 1990). 5th (i.e. Abieti-fageta s. lat.) VT is presented in this Acronyms of trees and shrubs (investigated tree study. The research was conducted in 1997–2001. species): sm – Picea abies (L.) Karsten, bk – Fagus Material was obtained from permanent sampling sylvatica L., jd – Abies alba Mill., jb – Malus sylves- sites during the vegetation period (from the be- tris Mill., jiv – Salix caprea L., pod – copse.

J. FOR. SCI., 55, 2009 (4): 184–192 185 B E 0.340 B H 0.930 480 S E 0.332 S H 0.882 B – Brillouin index of diversity, E B 0.375 H B H 0.964 240 S E 0.362 S H 0.890 B E 0.395 B H s. lat. vegetation tier 0.905 120 S E 0.377 S H 0.807 Abieti-fageta B E 0.773 0.417 0.734 – equitability to Shannon-Wiener index of diversity, S E B H ), in the case of a higher number of specimens they were reduced for the constant number 1.768 0.871 1.682 N 60 S E 0.766 0.391 0.728 S H 1.558 0.734 1.482 B E 0.444 0.807 0.772 0.492 0.803 B H 0.595 1.149 1.583 0.814 1.512 30 S E 0.414 0.800 0.763 0.461 0.797 – Shannon-Wiener index of diversity, S S H H 0.487 0.993 1.307 0.655 1.269 B – – E 0.720 0.855 0.429 0.664 0.325 0.744 0.722 0.657 0.693 0.661 0.618 0.815 0.960 0.335 0.544 0.888 0.700 0.836 1.000 B – – H 1.160 1.878 0.690 1.190 0.524 1.546 0.500 1.177 1.829 1.184 1.108 1.460 1.055 0.950 0.377 1.231 1.740 0.918 1.099 c N S – – E 0.694 0.854 0.408 0.639 0.294 0.736 0.699 0.651 0.689 0.641 0.597 0.812 1.000 0.331 0.489 0.885 0.695 0.825 1.000 – number of specimens, S N – – H 0.816 1.607 0.602 0.920 0.423 1.320 0.322 1.074 1.710 1.002 0.922 1.253 0.680 0.924 0.260 0.953 1.612 0.718 0.597 5 5 8 8 3 N 11 40 59 20 42 39 70 37 33 33 35 13 12 176 136 1,234 5 9 5 6 5 8 2 6 6 6 6 3 2 1 4 1 3 3 14 17 12 Nsp – number of species, – equitability to Brillouin index of diversity B Table 1. Values of indices of diversity and equitability of indices particular the for psocid biotopes 1. Values zone of in the Table Biotope BE5Bbk BE5Bjd BE5Bsm BE5Ejb BE5Fbk BE5Fjd BE5Fpod BE5Fsm BE5Hsm BE5Nsm BE5Sbk BE5Sjd BE5Sjiv BE5Ssm VS5Asm VS5Bbk VS5Bjd VS5Bsm VS5Dbk VS5Dsm VS5Dsm Nsp E Indexes of diversity for individual habitats out of the total number of captured specimens ( of specimens – 30, 60, 120 and 240

186 J. FOR. SCI., 55, 2009 (4): 184–192 The characteristics of the 5th vegetation tier abies. Abies alba and other tree species are mostly (Abieti-fageta s. lat.) missing also in stands of Fagus sylvatica. Abies alba is represented relatively commonly only in NFA 41 th The 5 vegetation tier (Abieti-fageta s. lat.) (cf. (the Hostýnsko-vsetínské vrchy Hills and Javorníky Holuša, Holuša 2008) represents geobiocoenoses Mts.) (mostly within the Czech Republic). The Salaj- where Fagus sylvatica is a dominant species in natu- ka National Nature Reserve was characterized by ral conditions, it creates the main level and also fills Průša (1985) as the best-preserved virgin forest of the overtopped level (of the height ca 47–48 m). the 5th VT, both with tree species composition and Significant edificators Abies– alba has its optimum spatial structure. With a high probability, there are there (with the representation up to 40%, of the the best-preserved geobiocoenoses in the whole height in the co-dominant level up to 60 m) and Czech Republic. This locality was studied also in the Picea abies occurs only individually (with the rep- framework of this work. Natural geobiocoenoses are resentation reaching up to 10%, of the height up to represented in the Mazák National Nature Reserve 60 m). Acer pseudoplatanus L. and Ulmus glabra (Holuša, Holuša 2003) in the Moravskoslezské Huds. occur as additional tree species mostly in the Beskydy Mts. overtopped level. They increase their representation The following forest type complexes were classified at debris sites. There are Tilia cordata Mill., Tilia at the study plots (ranked according to the system): platyphyllos Scop., Acer platanoides L. and also 5N – Abieto-Fagetum lapidosum acidophilum, Padus avium L. as individual additions (generally in 5S – Abieto-Fagetum mesotrophicum, 5B – Abie- the overtopped level). The occurrence of these spe- to-Fagetum eutrophicum, 5F – Abieto-Fagetum th cies ends in the 5 VT, they do not occur in higher fastigiosum lapidosum mesotrophicum, 5H – Abie- th VTs. Localities with the 5 VT can be characterized to-Fagetum illimerosum trophicum, 5D – Fagetum th as higher uplands and parts of mountains. The 5 VT acerosum deluvium, 5A – Acereto-Fagetum lapido- occurs at the altitude from 460 to 920 m a.s.l. with sum, “5E” – code is used for solitaire trees outside the centre of occurrence in the interval of 640–660 m forests, without sorting into forest type complexes. a.s.l. Soil types were formed on the flysch series of rocks of sandstones, claystones and shales, sporadi- Results and discussion cally on deluvial loams. Cambisols are the prevail- ing soil type; less frequently there are podzols or 2,023 adults comprising 28 species were found in th rankers. The 5 VT takes up large areas in Natural total – only Caecilius burmeisteri was a eudominant Forest Area (= NFA) 40 and 41. It fills the territory species, and Philotarsus picicornis, Caecilius flavidus of ca 18.0% in the north-eastern Moravia and Si- and Peripsocus subfasciatus were dominant species. th lesia. A greater part of the 5 VT area was changed In natural geobiocoenoses with the level of natural- to monoculture or stands with dominance of Picea ness 1 or 2, Mesopsocus unipunctatus, Caecilius

350

300 3th3rd VT 4th4th VT 250 5th5th VT th 200 6th6 VT 7th7th VT 150 th 8th8 VT th 100 9th9 VT

50

0 0 50 100 150 200 250 300 350 400 450 500 Fig. 1. DCA analysis of psocid biotopes with marked biotopes of Abieto-fageta (5th VT) tier (axis x – gradient of vegetation tiers, axis q – gradient of hydricity)

J. FOR. SCI., 55, 2009 (4): 184–192 187

BE6Rsm

BE6Psm

VS4Bsm

VS5Bsm

PB2Lsm BE5Hsm

------1 ------1 ------1 ------5 3 5 5 3 6 1 1 1 5 4 6 3 3 1 5 5 5 3 1 1 4 2 2 1 2 1 2 4 5 5 3 4 6 4 6 1 1 1 10 1 0 1 0 01 0 1 0 1 11 1 1 1 1 10 1 0 1 0 00 1 0 1 0 1 0 0 2 2 4 6 6 6

PB3Loll

PB3Hlpm

PB2Ltrn

PB1Tvrp

PB1Toll PB1Tkro

24111 1 ---1-- PB4Djd BE5Ejb

3 1 2 1 1 1 1 - VS3Lolx

VS3Lols

PB3Hdbl

PB3Hbk OP3Hkro

A-II-a-2

OP3Hbk

OD1Lkl BK3Bdbz

1111-111-1111-- 1 BK2Cdbp

BE6Obk

VS4Bos

PB3Lkl

OP1Lvrk BK2Ctrn

1112111-1-1111--21112 - -1-4--

PB4Hsm

VS4Bpod

VS4Bdbl

PB4Ddbl

PB3Oma

OP3Hpod

OD1Uvrk

BE5Sjiv

BE5Fpod

BE4Sdbl

VS5Fsm VS4Ddbz

------21-136

BE7Zbk

BE7Sjr

BE7Sbk BE6Bbk

1 1 1 1

VS5Dsm

VS5Dbk

VS5Bbk VS4Fbk

------1-12--

VS4Ejb

VS4Blpm

VS4Bhb

VS4Bbk

VS4Bbb

PB4Wsvk PB4Dbk VT are marked by vertical columns of grey colour (with regard to the table size the central part of the graph is

A-I-b

PB4Blpm th

PB4Bhb

PB4Bbk

PB4Ajs

PB3Hpod

PB3Hhb

OR6Bbk

BE6Fbk

BE5Ubk

BE5Fbk

BE4Blpm

BE4Bhb

BE4Bbk

BE4Bdbl

VS4Bjb

PB4Bpod

VS4Esv VS4Bdbz

------21-2- -

VS3Bjs

PB4Ajv

PB4Ajlh

PB3Los

PB1Ljlv

PB1Ldbl

OD1Lolx PB4Bjd ------1------1------1-1--1------1------1-212111111113243434233444334245322422 1 2------1--1------1 ------1------1 ------1------1------1------1------1-1------1------1------1------2213------1------211111111211 ------1------1------1------1------1------1------11111111111121--111-3 ------1------1------111------1------1-1----1------1-1------1------1---1------1------1------1------2 ------1-1------12------3 ------1-----1------1--1------112------1-----1------11------2------31--1 ------1------1------1-----1 ------1--11-1------2------1------1 1----1 ------1---2------1--- 2 -3------31-214 ------1 ------1--1----1---1------1------3------1-3------1------1------11-2-3 ------1----- 11------1------1 ------2------1------352------1----1---1 - - -1-433 1---24 - - --12------1------1------251- ---123 - - - 11-1-- 1-141- 000000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111111111111111111111000000000000011111111111111111111111111111111110000000000000000000000000000111111111001000000000000000000000000 0000 1111 1111 1111 000000000000 0000 111111111111 1111 111111111111 111111111111 001111111111 110000000001 000000000000000000000 000000000000000000000 111111111111111111111 000000000000000000000 111111111111110000000 000011111111110011111 0 0 1 0 0 1 1112111-123341311-1-11-111---1--11------1--1---1----1-1--11----1-11---1-----1 ------11--1------1---1-1--- - unctatum us p j s i s p p s terus s asciata p s us f p unctatus uttatus g maticus terus p ar ano terus asciatus g mus u g p ibbosa f y p p ata f y axi g g arvice icicornis p alinu haeo arvulus uiliarum na uercus edicularia p p y umilis p p q iceus q p us c lavidus usco ulsatorium p f gy p f earmani p p asciata socus cruciatus f p uis horus nebulosus uadrimaculata erontia contaminata erontia bi al p q socus immaculatus socus sti socus lachlani p q g g p socus latice socus uni socus meridionalis p p p p p socus socus sub socus socus did socus albo ho lo ium hi socus luci hi p socus socus abdominalis socus h p p p p p p y g p p p oscelis corrodens p p p i p Groups of biotopes li cto li nderleinella obsoleta li sococerastis eri hilotarsus eri eri eri eri hilotarsus Elipsocus moebiusi Meso Steno Steno Caecilius E Am Caecilius Lachesilla E Gra P P P P Caecilius atricorni P Trichadenotecnum ma Blaste Kolbia Ep Li E E Hemineura dis Reuterella helvimaculata Caecilius P P Met Loensia Loensia varie Caecilius E Steno Tro Caecilius burmeister Loensia P Cuneo Am Trichadenotecnum sex Lachesilla Meso Caecilius des Fig. 2. Results of DvClA-analysis – algorithm; Twinspan biotopes of the 5 shown only)

188 J. FOR. SCI., 55, 2009 (4): 184–192

1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 00 0 1 0 00 0 1 0 00 1 1 0 10 0 1 0 10 0 1 0 1 1 0 1 1 00 1 1 1 0 1 1 1 0 01 0 1 0 01 0 1 0 01 1 1 0 0 01 1 1 0 0 0 1 1 1 1 0 01 1 1 1 0 0 1 1 1 1 1 0 1 1 1 11 0 1 0 1 11 0 1 1 1 11 0 1 1 1 11 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 11 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0

OR9Ksm

OR9Kkos

OR8Zsm

OR8Ssm

OR8Sjr OR7Ssm

------

BE8Zsm

BE8Zma

BE8Zkos

BE8Zbk BE7Zsm

1 1 1 1 1 BE7Ssm

1111-3---1-2

BE7Sjiv

BE7Fsm

BE6Zsm B-II-b-1

BE6Ssm

BE6Sjd

BE6Fsm BE5Sjd

322513-43-114--45-63226253661366226214

VS4Sjd VS4Djd

11111513-451145226525 BE7Fbk

----1-3-3-22---42-11-1 231234515145--151-12-3 BE6Gsm

------

BE5Fsm

BE5Fjd OR6Bsm

2 2 3 3 01111110000000000000000000

OR8Zkos

BE8Zpod

OR5Sjd

BE7Spod

BE6Spod

VS5Bjd

VS5Asm

VS3Ltrn

OR8Zjan BE4Ssm

----1 ------1-----11---1-- PB4Dsm

------11-3 ---1-

BE6Sbk B-II-a-1 B-II-a-2

------1-- --11----1---1------BE5Sbk

11100000 001 VS4Emd

------1---11-----1--1------VS4Dsm

------11------1------1------111------

PB3Hsm

PB3Hma

PB4Bsm BE6Pbk

1 1 3 1 - - 4 3 1

BE5Nsm

BE5Bsm

BE5Bjd

BE6Osm

BE5Ssm BE5Lsm ------1 ---1------1--2------11------22--1--1------1------1------2------2------1------1-----2-- 4-1------1------2------2------1 1 ------1 ------2------1 ------1------1 ------1------1-1------1------1------2------1 ------1------11 ------2---1------1------2-11--1--1 ------1------1------1------1-3- ---- 1-1------1123-1--2112111-211------1 3 2 4 --1 11 1 2442----1-1 - 1 1 - 2 1 1 - 3 1 2 6 ----- 2 3511--11642613543443 ------352-211------1---12-1------1--14431-1-1-- 112332122211111111110000000000 ------111111111111100000001110000011 11--1-----1 1 1 0 1----1------1--- --11--1--- 1 11111 1 1111111111 1 1111111111 1 0000000000 0000000000 0011111111 11--- 334 ------11 11111 11111 ------1-51--11-141-1 00000 11111 00011 11111111111111111111111111 134 11111111111111111111111111 11111111111111111111111111 00000000000000000000000000 00001111111111111111111111 unctatum us p j s i s p p s terus s asciata p s us f p unctatus uttatus g maticus terus p ar ano terus asciatus g mus u g p ibbosa f y p p ata f y axi g g arvice icicornis p alinu haeo arvulus uiliarum na uercus edicularia p p y umilis p p q iceus q p us c lavidus usco ulsatorium p f gy p f earmani p p asciata socus cruciatus f p uis horus nebulosus uadrimaculata erontia contaminata erontia bi al p q socus immaculatus socus sti socus lachlani p q g g p socus latice socus uni socus meridionalis p p p p p socus socus sub socus socus did socus albo ho lo ium hi socus luci hi p socus socus abdominalis socus h p p p p p p y g p p p oscelis corrodens p p p i p Groups of biotopes B-I-b li cto li nderleinella obsoleta li sococerastis eri hilotarsus eri eri eri eri hilotarsus Elipsocus moebiusi Meso Steno Steno Caecilius E Am Caecilius Lachesilla E Gra P P P P Caecilius atricorni P Trichadenotecnum ma Blaste Kolbia Ep Li E E Hemineura dis Reuterella helvimaculata Caecilius P P Met Loensia Loensia varie Caecilius E Steno Tro Caecilius burmeister Loensia P Cuneo Am Trichadenotecnum sex Lachesilla Meso Caecilius des Fig. 2 to beFig. 2 to continued

flavidus, and Caecilius burmeisteri were found as tree species and Abies alba and Fagus sylvatica were eudominant species and Caecilius despaxi was colonized by a lower number of species (Table 1). dominant. Resulting from the comparison of tree Fagus sylvatica was colonized by psocids in low colonization, Picea abies was the most colonized abundances.

J. FOR. SCI., 55, 2009 (4): 184–192 189 Higher values of diversity indexes were computed The results of this work and previous records for the 5H communities in the BE5Hsm psocid bi- (Holuša 2007c) verify the hypothesis that veg- otope with a reduced number, i.e. N30 – HS 1.31 and etation tiers have proved to be a suitable frame for HB 1.58, a high value was also found for the VS5Bsm zoocoenological studies. VTs and lower units of psocid biotope with a reduced number, i.e. N30 – HS geobiocoenological or forest-typological system, 1.27 and HB 1.51 (Table 1). together with the description of tree species com- The DCA-analysis might be interpreted as fol- position and the level of naturalness form a perfect lows: the x-axis denotes the influence of VTs and the base for studies focused on the taxocoenoses q-axis refers to the influence of hydricity (cf.Holuša structure. We support the hypothesis that psocids, 2007c). These factors might increase a presumption as a part of forest ecosystem, fully comply with of mutual correlation, but all VTs include habitats the theorem of geobiocoenoses (Zlatník 1976). with high hydricity – flooded habitats, waterlogged Geobiocoenoses consist of specific biocoenoses in and peaty habitats as well as dry or desiccating relation with abiotic environment; the biocoenosis habitats. As each VT comprehends a large scale of is formed not only by plants or trees as the main habitats – from dry to peaty habitats, the hydricity community determinants while the zoocoenosis also of the habitat does not correlate with the altitude constitutes an important part. within the collected material. Habitats of the 5th VT Vegetation tiers are units which complexly take create a large field in the gradient of VTs (along the into consideration ecological factors of ecosystems x-axis, Fig. 1), which has a small shift into higher VTs in landscape segments and they are an ideal frame in comparison with the fields of the 4th or 3rd VTs. for animal studies. According to the results (cf. From the aspect of hydricity, the field is narrower Holuša 2007c), psocid taxocoenoses are dependent than the field of the 4th VT and it is placed into the on the main ecological factors of the environment; field centre of the 4th VT. Habitats of the 5th VT are therefore the VTs are the most appropriate units “drier” than habitats of the 3rd VT. considering changes in the main ecological factors in Habitats of the 5th VT are represented in more landscape segments. This study also confirmed that groups in the DvClA-analysis, which is caused by the VT is the main factor with the greatest influence on tree species spectrum in this VT. Habitats of broad- the variability of psocid taxocoenoses. Finally, the leaf trees are sorted into the following groups: A-I-b order of psocids can be used for the geobiocoeno- and A-II-a; habitats of Picea abies and Abies alba are logical classification of ecosystems. sorted into the following groups: B-I-b, B-II-a and B-II-B-1 (Fig. 2). There is a clear similarity of broad- References leaf habitats (i.e. tree species, mainly Fagus sylvatica) and habitats of “lower” VTs, i.e. the 3rd and 4th VT. Culek M. (ed.), 1996. Biogeografické členění České repub- The characteristic species combination of the liky. Praha, Enigma: 347. 5th VT can be identified as follows: Caecilius flavidus Ellenberg H. (ed.), 1973. Ökosystemforschung. Berlin – C. burmeisteri – C. despaxi – Metylophorus nebu- – Heidelberg – New York, Springer Verlag: 282. losus – Philotarsus picicornis. Elipsocus moebiusi is Ellenberg H., 1978. Vegetation Mitteleuropas mit dem missing in this VT, in contrast to the 4th VT. There Alpen in ökologischer Sicht. Stuttgart, Eugen Ulmer: 943. are numerous representations of psocid species Günther K.K., 1974. Die Tierwelt Deutschlands. 61. Teil. typical of middle altitude – Enderleinella obsoleta, Stabläse, Psocoptera. Jena, VEB Gustav Fischer: 314. Cuneopalpus cyanops and Caecilius piceus. The oc- Holuša O., 2001. Příspěvek k poznání fauny pisivek (In- currence of Caecilius despaxi was found as the dif- secta: Psocoptera) Přírodní rezervace Smrk (Beskydský th th ferential feature between the 4 and 5 VT. bioregion, Česká republika). Práce a studie Muzea Beskyd, 11: 83–97. Conclusion Holuša O., 2003a. Vegetační stupňovitost a její bioindikace pomocí řádu pisivek (Insecta: Psocoptera). [Dizertační Compositions of psocid taxocoenoses are, as a práce.] Brno, MZLU, LDF: 258. matter of fact, influenced by the tree species compo- Holuša O., 2003b. Fauna pisivek (Insecta: Psocoptera) sition, therefore the difference between natural and Národní přírodní rezervace Mazák (Beskydský bioregion, changed forest geobiocoenoses is clear. It is possible Česká republika). Práce a studie Muzea Beskyd (Přírodní that the diversity of psocid taxocoenoses was “high- vědy), 13: 83–98. er” in virgin forests due to the representation of other Holuša O., 2005. Fauna pisivek (Insecta: Psocoptera) tree species which are rare or missing at present, and Přírodní památky Kamenec v Podbeskydské pahorkatině also due to a “better” stand structure.

190 J. FOR. SCI., 55, 2009 (4): 184–192 (Podbeskydský bioregion, Česká republika). Práce a studie Lienhard C., 1998. Psocoptères Euro-méditerranéens. Muzea Beskyd (Přírodní vědy), 15: 75–89. Faune de France. Vol. 83. Paris, Fédération Française des Holuša O., 2007a. Fauna pisivek (Insecta: Psocoptera) Sociétés de Sciences naturelles: 517. vybraných lokalit Poodří (Pooderský bioregion, Česká Mückstein P., Holuša O., 2003. Composition of psocid republika). Práce a studie Muzea Beskyd (Přírodní vědy), taxocenoses (Insecta: Psocoptera) in dependence of level of 19: 105–126. naturalness of forest ecosystems in the Žďárské vrchy hills. Holuša O., 2007b. Příspěvek k poznání fauny pisivek Journal of Forest Science, 49: 208–219. (Insecta: Psocoptera) Přírodní rezervace V Podolánkách Obr S., 1949. Pisivky ze Slezských Jeseníků a Kralického v Moravskoslezských Beskydech (Beskydský bioregion, Sněžníku. Přírodovědecký sborník ostravského kraje, 10: Česká republika). Práce a studie Muzea Beskyd (Přírodní 219–234. vědy), 19: 127–141. Obr S., 1952. Pisivky ze Slezských Beskyd. Přírodovědecký Holuša O., 2007c. Composition of psocid taxocenoses sborník ostravského kraje, 13: 216–231. (Insecta: Psocoptera) in Fageti-Piceeta s. lat. and Piceeta Obr S., 1965. Pisivky Moravských Beskyd. Spisy Přírodovědecké s. lat. forests in the Western Carpathian Mts. Journal of fakulty UJEP Brno, Serie M 21, L 24, 2: 51–80. Forest Science (Special Issue), 53: 3–10. Plíva K., 1971. Typologický systém ÚHÚL. Brandýs nad Holuša O., Holuša J. st., 2003. Charakteristiky lesních Labem, ÚHÚL: 90. geobiocenóz Národní přírodní rezervace Mazák (Beskydský Plíva K., 1991. Funkčně integrované lesní hospodářství. bioregion, Česká republika). Práce a studie Muzea Beskyd 1 – Přírodní podmínky v lesním plánování. Brandýs nad (Přírodní vědy), 13: 55–82. Labem, ÚHÚL: 263. Holuša O., Holuša J. st., 2008. Characteristics of 3rd Povolný D., Znojil V., 1990. Vergleich zwischen Sarco- (Querci-fageta s. lat.) and 4th (Fageta (abietis) s. lat.) veg- phagini-Taxozönosen (Insecta, Diptera) Thürigens und etation tiers of north-eastern Moravia and Silesia (Czech der Tschechoslowakei. Rudolstädter Naturhistorische Republic). Journal of Forest Science, 54: 439–451. Schriften, 3: 43–61. Kaesler R.L., Mulvany P.S., 1976a. Fortran IV program Průša E., 1985. Die böhmischen und mährischen Urwälder to compute diversity indices from information theory. – ihre struktur und Ökologie. Vegetace ČSSR, Praha, Serie Computer & Geosciences, 2: 509–514. A, 15: 1–578. Kaesler R.L., Mulvany P.S., 1976b. Fortran IV program Zlatník A., 1976. Přehled skupin typů geobiocénů původně to compute replicated diversity indices for random samples lesních a křovitých v ČSSR. Brno, Zprávy Geografického of specified size. Computer & Geosciences, 2: 515–519. ústavu ČSAV, 13: 55–65. Lienhard C., 1977. Die Psocopteren des Schweizerischen Nationalparks und seiner Umgebung (Insecta: Psocoptera). Received for publication August 13, 2008 Ergebnisse der wissenschaftlichen Untersuchungen im Accepted after corrections October 29, 2008 Schweizerischen Nationalpark, Band 14: 417–551.

Složení a diverzita taxocenóz pisivek (Insecta: Psocoptera) v lesních ekosystémech vegetačního stupně jedlových bučin (Abieti-fageta s. lat.) v západních Karpatech

AbstraKt: Během období 1997–2001 byly v lesních ekosystémech v oblasti západních Karpat studovány taxocenó- zy pisivek (Psocoptera). Jako rámec pro studium byly použity vegetační stupně podle systému geobiocenologie, resp. lesnické typologie. Pro klasifikaci stanoviště, tj. ekologických podmínek, byly použity jednotky – soubory lesních typů lesnicko-typologického systému. V práci jsou vyhodnocena pouze společenstva 5. jedlobukového vegetační- ho stupně, tedy společenstva jedlových bučin (Abieti-fageta s. lat.). 5. jedlo-bukový VS je široce rozšířen v oblasti Moravskoslezských Beskyd, Vsetínských vrchů a Javorníků. Celkově bylo zjištěno 2 023 imag 28 druhů: pro všechny stupně přirozenosti geobiocenóz byl eudominantním druhem Caecilius burmeisteri, dominantní druhy byly Philo- tarsus picicornis, Caecilius flavidus a Peripsocus subfasciatus. V přírodních a přirozených geobiocenózách (stupeň přirozenosti 1 a 2) byly jako eudominantní zjištěny druhy Mesopsocus unipunctatus, Caecilius flavidus, Caecilius burmeisteri, jako dominantní druh Caecilius despaxi. Taxocenózy pisivek byly vyhodnoceny statistickými metodami

J. FOR. SCI., 55, 2009 (4): 184–192 191 – detrendovanou korespondenční analýzou (DCA) a shlukovou divizní analýzou (DvClA). V DCA analýze byly osy interpretovány: x osa představuje vliv vegetační stupňovitosti, q osa vliv hydricity. Materiál byl vyhodnocen v rámci širšího srovnání materiálu pocházejícího i z ostatních VS v rámci vnějších západních Karpat. Charakteristická druhová kombinace pisivek pro 5. VS byla stanovena takto: Caecilius flavidus – C. burmeisteri – C. despaxi – Metylophorus nebulosus – Philotarsus picicornis.

Klíčová slova: Psocoptera; taxocenózy; diverzita; lesní geobiocenózy; vegetační stupeň; Abieti-fageta s. lat.; Morav- skoslezské Beskydy; Vsetínské vrchy; Javorníky; západní Karpaty

Corresponding author:

Doc. ing. Otakar Holuša, Ph.D., Mendelova zemědělská a lesnická univerzita v Brně, Fakulta lesnická a dřevařská, Lesnická 37, 613 00 Brno, Česká republika tel.: + 420 606 960 769, fax: + 420 545 211 422, e-mail: [email protected]

192 J. FOR. SCI., 55, 2009 (4): 184–192