<<

I G B P N E W S L E T T E R 4 1

May No. 41 2000 The International Geosphere– Programme (IGBP): A Study of of the International Council for (ICSU)

Sustaining ’s support systems – the challenge for the next decade and beyond by Berrien Moore III, Chair, IGBP

Integration,interdiscplinarity,andasys- • Afocusonthreecross-cutting temsapproachmarktheemergingethos issueswhereadvancesinour inIGBPastheProgrammeevolvesrap- scientificunderstandingare Contents idlyintoitsseconddecadeofinternational requiredtohelp globalchange. societiesdevelopinwaysthat Sustaining Earth’s Life InlateFebruaryinCuernavaca, sustainthegloballifesupport Mexico,theScientificCommitteeofthe Support Systems...... 1 IGBPheldalandmarkmeetinginwhich system. itwasdecidedthatthestrengthandma- Theresearchwillbeundertakeninthecon- turityoftheProgrammewouldallowan textofanexpandingandstrengthening The Waikiki Principles ... 3 increasedemphasisonthesystemicchal- collaborationwiththeInternationalHu- lengesofGlobalEnvironmentalChange. manDimensionsProgrammeonGlobal Earth-System Models Thestrengthhasbeenmadeparticularly EnvironmentalChange(IHDP)andthe apparentinthedevelopingCoreProject WorldResearchProgramme of Intermediate syntheses. (WCRP).Thenewchallengeistobuild, Complexity ...... 4 Thisstrengthandcapabilityofthe onourcollectivescientificfoundation,an IGBPatthispointintimeisextraordinar- internationalprogrammeofEarthSystem ilyvaluablesincetheSC-IGBPalsorec- Science.Thiseffortwillbedrivenbyacom- The Flying Leap ...... 7 ognisedthatthechallengesofGlobalEn- monmissionandcommonquestions, vironmentalChangedemandatreatment employingvisionaryandcreativescien- ofthefullEarthSystem.Itissimplyare- tificapproaches,andbasedonanever- Understanding Earth’s alitythatascientificunderstandingofthe closercollaborationacrossdisciplines,re- Metabolism ...... 9 EarthSystem isrequiredtohelphuman searchthemes,programmes,nations,and societiesdevelopinwaysthatsustainthe regions. globallifesupportsystem. Drivingthenewstructuresandap- Highlights of GAIM’s ThecoreoftheIGBPProgrammefor proachesaretwocriticalmessagesthat First Phase ...... 11 thenextdecadewillbebuiltaroundthree havebecomeeverclearerthroughthepast interlockingandcomplementarystruc- decadeplusofglobalchangeresearch. tures: First,theEarthfunctionsasasystem, The “” ...... 17 withpropertiesandbehaviourthatare • Coreprojectsthatfocusonkey characteristicofthesystemasawhole. processeswillcontinuetobe Theseincludecriticalthresholds,‘switch’ Regional Data thefoundationfortheIGBP; or‘control’points,strongnonlinearities, Bundles ...... 18 teleconnections,andunresolvableuncer- • Aformalintegratedstudyof tainties.Understandingcomponentsofthe theEarthSystemasawhole,in EarthSystemiscriticallyimportant,butis itsfullfunctionaland insufficientonitsowntounderstandthe People and events ...... 19 geographicalcomplexityover functioningoftheEarthSystemasa time,and whole.

1 I G B P N E W S L E T T E R 4 1

Second,areasignificantforce intheEarthSystem,alteringkeyprocess ratesandabsorbingtheimpactsofglo- balenvironmentalchanges.Infact,theen- vironmentalsignificanceofhumanactivi- tiesisnowsoprofoundthatthecurrent geologicaleracanbecalledthe ‘Anthropocene’(seearticlebyPaul CrutzenandEugeneStoermerinthisis- sueoftheNewsLetter). Globalbiogeochemicalcyclingwill remainatthecoreofIGBPresearch,but theProgrammewillevolvetowardsa moresystematicstructurewithmajorac- tivitieslocatedinthethreecompartments –,,andland–andin thethreeinterfacesbetweenthem.These sixdomainswillmoreformallyguidethe emergingCoreProjectsforthenextdec- ade.Thisthemeisalreadyapparent withintheIGBP.Forinstance,LOICZis positionedwellattheLand-inter- face,andtheemergingSurfaceOcean LowerAtmosphereStudy(SOLAS)is clearlyheadedinthisdirection.Weare asking,inthisformulation,hardandchal- lengingquestions.Howcanwejoinbet- terJGOFSsciencewithGLOBECscience? Howcanwebridgemorestronglyand withlessduplicationthescientificagen- dasofBAHCandtheGlobalEnergyWa- terExperiment(GEWEX)withinthe Figure 1. WCRP?Similarly,howdowebetterlink intheIGACwithSPARC (StratosphericProcessesandtheirRolein Climate)?Whatshouldbetheof wheregapsareidentified.Strategicpart- tativelyscheduledforSeptember. thefutureGCTE,andhowdoesittiemore nershipsarebeingdevelopedwithother Theseinitiativeswillplacegreatde- closelywithLUCC? researchinstitutionsoutsidethethree mandsontheIGBP.Thestrengthofthe GAIMisbeingreorientedtowards programmesandwithpolicyandman- Programmewillbetestedandnewstruc- integratingacrossthisstructuretofocus agementinstitutionstoensurethatthe tureswillbedemanded.Therecentlyex- ontheEarthSystemasawhole(seeJohn workisdesignedandimplementedin pandedroleoftheIGBP-DISwithitsim- Schellnhuber’sarticleinthisissueofthe waysthatfacilitateitsapplication. portantworkinbothregionalandglobal NewsLetter).PAGESworkprovidesan TheGlobalCarbonCyclejointproject studieswilladdessentialnewcapabili- essentiallongertimecontextforthedy- isthemostadvanced,withaseriesofac- ties,includingsupportforourkeyre- namicsoftheEarthSystemaswellasfor tivitiesplannedfortherestof2000.A gionalstudies(seethearticleonTheRe- partsofit.Theaccompanyingfigure smallscopingmeetinginAprildeveloped gionalDataBundleConceptbyWolfgang showsthenewstructure. muchofthehumandimensionscontri- CramerinthisNewsLetter). Itishopedthatatleastthreenewjoint butionstotheeffort,whileadditional ThiscontinuingevolutionoftheIGBP projectswillbelaunchedwithWCRPand meetingsinMay(Lisbon,Portugal)and inconcertwiththeWCRPandtheIHDP IHDPoncrosscuttingissuesofmajor October(Durham,NewHampshire, isimportantandmeritsthethoughtsof societalrelevance.Threelinkedissuesare USA)willcompletethedefinitionofa all.Wecontinuetowelcomeandneed currentlyintheplanningstages–theGlo- commoninternationalframeworktohelp insightsondirections,processes,objec- balCarbonCycle,WaterResources,and guideresearchatnational,regionaland tives,andgoalsandtheprocessesby aninitiativeonGlobalChangeandFood globalscales,andwilldesignaseriesof whichtheymayberealised.Thesepages andFibre,withanemphasisonfoodvul- focusedactivitiesfor2001andbeyond. aregenuinelyopentoyourcontributions. nerability/securityandopportunity FortheFoodandFibrejointproject,a Thechallengesofglobalenvironmental analysis.Additionalmajorissues,suchas scopingmeetingwithIHDPandWCRP changearenotgoingtovanish. humanhealthandgoodsand washeldinParisinearlyMarch,which services,areunderconsideration. begantodefinedtheoverallstructurefor Thesejointprojects,whichareclearly theresearch.Furtherplanningmeetings Berrien Moore III crosscuttinginnature,willdependcriti- areproposedforJune/July(Reading, Institute for the Study of Earth, callyupontheresearchintheCore UK),October(London),November/De- Oceans and Space (EOS), ProjectsoftheIGBP,IHDPandWCRP cember(Stockholm)andFebruary2001 University of New Hampshire, thatisalreadybeingundertakenoris (Washington)tocompletethepreparation 39 College Road, 305 Morse Hall, planned.Considerableco-ordinationis ofascienceplanandimplementation Durham, NH 03824-3524, USA needed,however,tobringtheseelements strategy. E-mail: [email protected] intoamoreintegratedframework,and Theinitialco-ordinationmeetingfor somenewworkwillneedtobeinitiated theWaterResourcesjointprojectisten-

2 I G B P N E W S L E T T E R 4 1

The Waikiki Principles: rules for a new GAIM by John Schellnhuber Chair, GAIM

ThefirstNewsLetterinthenewmillen- Butintegrationismuchmorethana andproblemsdimensions niumprovidesaconvenientcanvasfor syntheticbook-keepingexercise–re- primarilyinvestigatedbythe re-sketchingthebasicmissionofGAIM, memberthatittookevolutionalmost4 sisterprogrammesWCRPand thatis,pioneeringEarthSystemscience billiontocomposethehumanbrain IHDP. intoastateofnovelquality.Thissounds frommacro-moleculesavailablealready ratherpreposterousyetturnsintoasolid intheearlydaysoflife.Thevirtualscien- III. GAIMistoimplementEarth ambitionuponcloserinspectionof(i)the tificreconstructionoftheplanetaryma- Systemanalysisbyorganizing giantexplorativestridestakenbythebig chinery(“Gaia”)isnotmuchsmallera theconstruction,evaluationand globalresearchprogrammes(IGBP, task,althoughweexpectittobeaccom- maintenanceofahierarchyof WCRP,IHDP,etc.)duringthelastyears, plishedinlessthanacoupleofeons.What EarthSystemmodels.This and(ii)theopportunitiesarisingfromthe willbeneeded,atanyrate,isasophisti- means,inparticular,tohelp think-tankcharacterofGAIM.Letme catedintegrationmethodologyastranspir- generatemodelsofdifferent brieflyelaborateonbothaspectsinthe ing,e.g.,fromthemoderntheoryofcom- degreesofcomplexityandto following. plexnon-lineardynamicsystems,andit InarecentessayfortheMillennium willbenecessarytoaccountforallsorts employtheresulting SupplementofNature(Vol.402,Supp.2 ofdeterministicandstochasticuncertain- complementaryensemblefor Dec1999,C19-C23)Iarguedthatthe“Sec- ties. conductingvirtualplanetary ondCopernicanRevolution”isjust ThisisthepointwheretheNew experimentswithrespectto aroundthecorner.Thisrevolutionre- GAIMentersthescene:Duringtherecent past,present,andfutureglobal verses,inaway,thegloriousfirstoneby meetingoftheTaskForceinWaikiki, changes. lookingbackonourplanetfroma(real Hawaii(31January–2February2000), orvirtual)distance,strivingtounder- theintegrationchallengewasintensively Asaconsequence,theacronymGAIM standtheso-perceivedsystemasawhole discussedandidentifiedas thecentral shouldfromnowonstandfor“Global andtodevelopconceptsforglobalenvi- researchissueofthenextdecadeofglo- Analysis,IntegrationandModelling”. ronmentalmanagement.Thescientific balchangescience.Andthegroup,which PrincipleIisillustratedbytheTRACES trans-disciplinethusemergingmaybe embracedthetoprepresentativesand (TraceGasandAerosolCyclesinthe called EarthSystemsanalysis ;itissup- executivesofIGBP,concludedunani- EarthSystem)Initiative;principleIIby posedtoyieldaunifiedformalismfor mouslythatGAIMshallbecomethecen- theintra-IGBPCarbonProjectandthe describingthemake-upandfunctioning traldrivingforceforEarthSystemanaly- envisagedinter-programmaticcross-cut- oftheecospheremachineryaswellasits sisbyfullyutilizingthepotentialresult- tingthemeslikewaterandfoodandfi- susceptibilitytoerraticorjudicioushu- ingfromitscross-sectoraldesign.Inor- bre;principleIIIbytheEMIC(EarthSys- maninterventions.Ultimately,EarthSys- dertobespecific,anexplicitsurvey temModelsofIntermediateComplexity) temanalysiswillevenbeabletoaddress amongtheparticipantswasconducted Initiativeandthe“FlyingLeap”towards thechallengeofsustainabledevelopment forrevealingindividualprioritiesand afullycoupledstate-of-the-artocean-at- inano-nonsensewaybydeducingthe suggestionsregardingthelonger-term mosphere-biospheremodel.Thereisno macro-optionsforfutureecosphere- targetstobemet.Aclear-cutpicture doubtthatGAIMwillkeeponproviding antroposphereco-evolutionfromfirst emergedwhichmaybesummarizedin theIGBPcommunitywithsophisticated cognitiveandethicalprinciples. thefollowingthree“WaikikiPrinciples”. serviceslikewell-designedmodeland Inordertoachieveallthis,weclearly dataintercomparisons,butitsthrustwill stillhavealongwaytogo,butthesigns I. GAIMistoexploreand befocussedonresearchattheEarth-sys- ofhopeaccumulateataneverincreasing promotecognitive temlevel. pace.Take,forinstance,thegrowing opportunitiesarisingfromthe Ithastobeemphasizedthatthe streamofinsightsarisingfromthesepa- appropriatecombinationof WaikikiRulesfortheNewGAIMhave rateCoreProjectsofIGBPashighlighted CoreProjectresultsandtools. yettobeapprovedbythe“legislativeand attheSecondIGBPCongressheldinJa- Thismeans,inparticular,to executivebodies”ofIGBP,butIamcon- fidentthattheywillgladlyhelptoopen panlastMay(seeBerrienMoore’skey- playtheroleofatrans-project noteinGlobalChangeNewsletter38,and upthisavenuetowardsthescientificho- topicsscoutandafeasibility rizon. WillSteffen’sreflectionsinResearch assessor. GAIM,Summer1999).Thisbreathtaking Hereendmypre-Cuernavacacon- progresswasmostimpressivelyillus- II. GAIMistoadvancethe templationsontheNewGAIM.Inthe tratedbyHughDucklow’slectureonthe integrationofwisdominside meantime,theScientificCommitteeeof IGBPheldameetingwhichundoubtedly unravellingofthemysteriesoftheglobal andoutsideIGBP.Thismeans, deservesthequalificationasa“landmark oceanicfluxsystem.Soitseemsthat“all” ontheonehand,tomake thatremainstobedoneistotakethesci- event”(seeBerrienMoore’sarticleinthis availablethebestintegrative issueoftheNewsLetter).Ihavetocon- entificbitsandpiecesandtoputthem methodologiesand,ontheother together. fessthatIdidnotexpecttheSCtomake hand,toincludethesystems sofar-reachingandfar-sighteddecisions

3 I G B P N E W S L E T T E R 4 1

aboutthenextdecadeofplanetaryre- citingopportunitytodemonstrateperti- themostadvancedmethodologiesavail- search.Asamatteroffact,thesystems nentskillswillbeprovidedbythenew ableliketheonesthathavebeendevel- approachwasadoptedastheguidingre- initiativeon“SurprisesandNonlinearities opedbythecomplexdynamicscommu- searchprinciple,andastrategicpartner- inGlobalChange”,recentlylaunchedby nity.Itishightimeforjoiningforceswith shipwiththeinternationalsisterpro- GCTE.Thisisactuallyanissueofpara- thiscognitivecommunityandsimilar grammeswasenvisagedinordertocre- mountimportanceforEarthSystemsci- ones,yetthiswillbecomearatherchal- ateajointventurethatmaybecalled“In- enceaswillbeemphasized,i.a.,bythe lengingenterprise. tegratedEarthScience”.Allthecrucial ThirdAssessmentReportoftheIPCC.The Comparedwiththeopportunities pointsofthishistoricalresolutionaresuc- NewGAIMhasalreadystartedtothink ahead,mycaveatscarrylittleweight cinctlysummarizedinBerrien’sabove- aboutestablishinganinternational though.Weareluckytoliveinthiseraof mentionedcontribution. postdocnetworkforadvancingresearch GlobalScientificChange. ForGAIM,thisisanextremelyencour- onthe“irregularsideofGlobalChange”. agingdevelopmentthatputstheWaikiki Letmeconcludewithtwocaveats. John Schellnhuber Principlesonasolidbasisandintothe First,weshouldnotbecarriedawaynow rightcontext.Asaminorconsequence,the byafrenzyofintegrationistenthusiasm. Potsdam Inst for Climate Impact Re- renamingofGAIMinto“GlobalAnaly- Ifirmlybelievethattheso-called search (PIK), sis,IntegrationandModelling”hasbeen reductionistapproachtoEarthScience PO Box 60 12 03, approvedmeanwhile.Muchmoreimpor- willstillhavetoconstitutethebackbone D-14412 Potsdam, tant,however,istheinducedmandatefor ofourresearchbodyinthedecadesto GERMANY GAIMtoexplorefromnowonallintrin- come:Yes,thewholeismorethanthesum E-mail: [email protected] sicandextrinsicoptionsforsystems-ana- ofitsparts,butthesumofzerosiszero. lyticprogress,bothfromthetopicaland Second,systemsscienceisbynomeans themethodologicalpointofview.Anex- aneasyexercise.Wewillneedtoemploy

Earth System Models of Intermediate Complexity by Martin Claussen, Andrey Ganopolski, John Schellnhuber and Wolfgang Cramer

Investigatingthedynamicbehaviorofthe Towards a Definition of anthroposphere,inparticularthepsycho- Earthsystemremainsa“grandchallenge” socialcomponent.Hencedevelopmentof forthescientificcommunity.Itismoti- the Earth System and amodelofthefullEarthSystemhastobe vatedbyourlimitedknowledgeaboutthe undertakenincooperationbetweenIGBP consequencesoflarge-scaleperturbations Earth System Models andIHDP.Forthetimebeing,itwillbe oftheEarthSystembyhumanactivities, WithinIGBPatleast,thefollowingdefi- thetaskofIGBPtopursuemodelsofthe suchasfossil-fuelcombus-tionorthefrag- nitionofthe“EarthSystem”,whichhas naturalEarthSysteminwhichanthropo- mentationofterrestrialvegetationcover. beenproposedbySchellnhuber(1998, genicactivitiesareconsideredasexog- Willthesystemberesilientwithrespect 1999)andClaussen(1998),forexample, enousforcesandfluxes.Henceinthefol- tosuchdisturbances,orcoulditbedriven seemstobegenerallyaccepted:TheEarth lowing,weconsideronlythenatural towardsqualitativelynewmodesofplan- Systemencompassesthenaturalenviron- EarthSystem.EarthSystemmodelsneed etaryoperation? ment,i.e.theclimatesystemaccordingto tobegloballycomprehensivemodels, Thisquestioncannotbeanswered, thedefinitionbyPeixotoandOort(1992), becausethefluxeswithinthesystemare however,withoutprioranalysisofhow orsometimesreferredtoastheecosphere, global(e.g.thehydrologicalcycle): theunperturbedEarthSystembehaves andtheanthroposphere.Theclimatesys- changesinoneregionmaywellbecaused andevolvesintheabsenceofhumanin- temconsistsoftheabioticworld,the bychangesinadistantregion.Acurrently fluence.Suchananalysisshould,forex- geosphere,andthelivingworld,thebio- openquestionishowmuchspatial(re- ample,provideanswerstoquestionscon- sphere.Geosphereandbiospherearefur- gional)resolutionisrequiredtoappropri- cerningtheamplificationofMilankovich therdividedintocomponentssuchasthe atelycaptureprocesseswithglobalsignifi- forcingtoglaciationepisodesorthe atmosphere,hydrosphere,etc.,whichin- cance.EarthSystemmodelsprobably mechanismsbehindtheDansgaard- teractviafluxesofmomentum,energy, neednotcaptureallaspectsofinteraction Oeschgeroscillations.Butalsomoregen- water,carbon,andothersubstances.The betweenthespheresattheregionalscale eralquestionsmaybeaddressed:Doeslife anthropospherecanalsobedividedinto -althoughitwillbeinterestingtotest onEarthsubsistduetoanaccidentaland subcomponentssuchassocio-economy, whethercertainregionalprocessesnev- fragilebalancebetweentheabioticworld valuesandattitudes,etc. erthelessaffectglobalfeedbacks. (thegeosphere)andabiospherethathas Sofar,onlysimplified,moreconcep- emergedbychance?Orarethereself-sta- tualEarthSystemmodelsexist.While bilizingfeedbackmechanismsatworkas modelsofthenaturalEarthSystemcan Models of Intermediate proposedbytheGaiatheory?And,ifthe bebuiltuponthethermodynamicap- lattertheoryisvalid,whatistheroleof proach,thisdoesnotseemtobefeasible Complexity humanityinGaia’suniverse? formanycomponentsofthe Duringthepastdecadesmarkedprogress

4 I G B P N E W S L E T T E R 4 1

hasbeenachievedinmodellingthesepa- rateelementsofthegeosphereandthe biosphere,focusingonatmosphericand oceancirculation,andonlandvegetation andice-sheetdynamics.Thesedevelop- mentshavestimulatedfirstattemptsto putallseparatepiecestogether,firstin formofcomprehensivecoupledmodels ofatmosphericandoceaniccirculation, andeventuallyasso-calledclimatesys- temmodelswhichincludealsobiologi- calandgeochemicalprocesses.Onema- jorlimitationintheapplicationofsuch comprehensiveEarthSystemmodels arisesfromtheirhighcomputationalcost. Ontheotherhand,simplified,more orlessconceptualmodelsoftheareusedforavarietyofapplica- tions,inparticularpaleoclimatestudies aswellasclimatechangeandclimateim- pactprojections.Thesemodelsarespa- tiallyhighlyaggregated,forexample, theyrepresentatmosphereandoceanas twoboxes,andtheydescribeonlyavery limitednumberofprocessesandvari- Figure 1. Tentative definition of EMIC’s ables.Theapplicabilityofthisclassof modelislimitednotbycomputational

Figure 2. Structure of an EMIC

5 I G B P N E W S L E T T E R 4 1

cost,butbythelackofmanyimportant ergybalance(e.g.Marchalet.al,1998; extreme,three-dimensionalcomprehen- processesandfeedbacksoperatinginthe Stockeretal.,1992),orwithastatistical- sivemodels,e.g.couplingatmospheric realworld.Moreover,thesensitivityof dynamicalatmosphericmodule(e.g. andoceaniccirculationwithexplicitge- thesemodelstoexternalforcingisoften Petoukhovetal.,1999),andreduced- ographyandhighspatio-temporalreso- prescribedratherthancomputedinde- formcomprehensivemodels(e.g. lution,areunderdevelopmentinseveral pendently(e.g.Houghtonetal.,1997). Opsteeghetal.,1998). groups.DuringtheIGBPCongressin Tobridgethegap,EarthSystemMod- EMICshavebeenusedforanumber ShonanVillage,Japan,May1999,andthe elsofIntermediateComplexity(EMICs) ofpalaeostudies,becausetheyprovide IGBPworkshoponEMICsinPotsdam, havebeenproposedwhichcanbechar- theuniqueopportunityfortransient, Germany,June1999,itbecamemore acterizedinthefollowingway.EMICsde- long-termensemblesimulations(e.g. widelyrecognizedthatmodelsofin- scribemostoftheprocessesimplicitin Claussenetal.,1999),incontrasttoso termediatecomplexitycouldbevery comprehensivemodels,albeitinamore calledtimeslicesimulationsinwhichthe valuableinexploringtheinteractionsbe- reduced,i.e.amoreparameterizedform. climatesystemisimplicitlyassumedto tweenallcomponentsofthenaturalEarth Theyexplicitlysimulatetheinteractions beinequilibriumwithexternalforcings, System,andthattheresultscouldbe amongseveralcomponentsoftheclimate whichrarelyisarealisticassumption. morerealisticthanthosefromconceptual systemincludingbiogeochemicalcycles. Alsotheclimatesystem’sbehaviourun- models.Thesemeetingshavepointedat Ontheotherhand,EMICsaresimple dervariousscenariosofgreenhousegas thepotentialthatEMICsmighthaveeven enoughtoallowforlong-termclimate emissionshasbeeninvestigatedexplor- forthepolicyguidanceprocess,suchas simulationsoverseveral10,000yearsor ingthepotentialofabruptchangesinthe theIPCC. evenglacialcycles.Similartothoseof system(e.g.StockerandSchmittner,1997; Finally,itshouldbeemphasizedthat comprehensivemodels,butincontrastto RahmstorfandGanopolski,1999).Toil- EMICsareconsideredtobeonepartof conceptualmodels,thedegreesoffree- lustratethecomplexityofEMICswe theabovementionedhierarchyofsimu- domofanEMICexceedthenumberof present-seeFigure2-thestructureof lationmodels.EMICsarenotlikelyto adjustableparametersbyseveralorders CLIMBER2.3,anEMICdevelopedin replacecomprehensivenorconceptual ofmagnitude.Tentatively,wemaydefine PotsdambyPetoukhovetal.(1999). models,buttheyofferauniquepossibil- anEMICintermsofathree-dimensional itytoinvestigateinteractionsand vector:Integration,i.e.numberofcom- feedbacksatthelargescalewhilelargely ponentsoftheEarthSystemexplicitly Perspective maintainingthegeographicintegrityof describedinthemodel,numberofproc- EarthSystemanalysisgenerallyrelieson theEarthSystem. essesexplicitlydescribed,anddetailof ahierarchyofsimulationmodels.De- Martin Claussen descriptionofprocesses(SeeFigure1). pendingonthenatureofquestionsasked Currently,thereareseveralEMICsin andthepertinenttimescales,thereare, Potsdam-Institut für operationsuchas2-dimensional,zonally ontheoneextreme,zero-dimensional Klimafolgenforschung e. V. (PIK), averagedmodels(e.g.Galléeetal.,1991), tutorialorconceptualmodelslikethose Telegrafenberg C 4, 2.5-dimensionalmodelswithasimpleen- inthe“”family.Attheother 14473 Potsdam, GERMANY. References E-mail: [email protected]

Claussen, M., 1998: Von der Klimamodellierung zur Erdsystemmodellierung: Konzepte und erste Versuche. An-nalen der Meteorologie (NF) 36, 119-130. Andrey Ganopolski Claussen, M., Brovkin, V., Ganopolski, A., Kubatzki, C., Petoukov, V., Rahmstorf, S., 1999: A new model for cli-mate system analysis. Env. Mod.Assmt., im Druck. Potsdam Institute for Climate Impact Research, Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P., Pachur, H.J., 1999: Simulation of an abrupt change in Saharan vegetation at the end of the mid-. Geophys. Res. Letters, Telegrafenberg, 24 (No. 14), 2037- 2040. PO Box 60 12 03, Gallée, H., J.-P. van Ypersele, T. Fichefet, C. Tricot, and A. Berger, 1991: Simulation of the last glacial D-144 12 Potsdam, cycle by a coupled, sectorially averaged climate–ice sheet model. I. The , J. Geophys GERMANY Res., 96, 13,139– 13,161. E-mail: Andrey.Ganopolski@pik- Houghton, J.T., Meira, Filho, L.G., Griggs, D.J., Maskell, K., 1997: An introduction to simple climate potsdam.de models used in the IPCC second assessment report. IPCC Technical Paper II 47 pp. Marchal, O., T.F. Stocker, F. Joos, 1998: A latitude-depth, circulation-biogeochemical ocean model for Wolfgang Cramer paleocli-mate studies: model development and sensitivities. Tellus 50B, 290-316. Opsteegh, J. D., R. J. Haarsma, F. M. Selten, and A. Kattenberg, 1998: ECBILT: A dynamic alternative Potsdam Inst for Climate Impact to mixed boundary conditions in ocean models, Tellus, 50A, 348–367. Research (PIK), Peixoto, J.P., Oort, A.H., 1992: Physics of Climate. American Institute of Physics, New York PO Box 60 12 03, D-14412 Potsdam, Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C., and Rahmstorf, S., 2000: CLIMBER-2: a climate system model of intermediate complexity. Part I: Model description and GERMANY performance for present climate. Climate Dyn. 16 (No.1), 1-17. E-mail: wolfgang.cramer@ Rahmstorf, S., Ganopolski, A., 1999: Long-term global warming scenarios computed with an efficient pik-potsdam.de coupled cli-mate model. Climatic Change, 43, 353-367. Schellnhuber, H.J., 1998: Discourse: Earth System Analysis - The Scope of the Challenge. in: John Schellnhuber Schellnhuber, H.-J., Wenzel, V. (eds.) Earth System Analysis - Integrating science for . Springer, Heidelberg. 5-195. Potsdam Inst for Climate Impact Schellnhuber, H.J., 1999: ’Earth system’ analysis and the second Copernican revolution. Nature, 402, Research (PIK), C19 - C PO Box 60 12 03, Stocker T.F., Schmittner, A., 1997: Influence of CO 2 emission rates on the stability of the thermohaline D-14412 Potsdam, circulation. Nature, 388, 862-865. GERMANY Stocker,T.F., Wright, D.G., Mysak, L.A., 1992: A zonally averaged, coupled ocean-atmosphere model for E-mail: [email protected] paleo-climate studies. J Climate, 5, 773-797

6 I G B P N E W S L E T T E R 4 1

Full-Form Earth System Models: Coupled Carbon-Climate Interaction Experiment (the “Flying Leap”) by Inez Fung, Peter Rayner, and Pierre Friedlingstein; Edited by Dork Sahagian

Investigatingthedynamicbehaviour actionsandfeedbacksbetweenprocesses tativelyapproved.Theprojectwouldin- andcomplexitiesoftheEarthSystemre- thatoperateprimarilywithinsubsystems troduceterrestrialandoceaniccarbon mainsa“grandchallenge”forthescien- suchastheterrestrialecosystem,atmos- cyclemodulesintocoupledatmosphere- tificcommunity.Itismotivatedbyour phere,ocean,etc. ocean-landclimatemodels,inessenceto limitedknowledgeabouttheconse- Eachofthesetypesofmodelscanbe introduceCO2asaprognosticvariablein quencesoflarge-scaleperturbationsof usefulandfull-formmodelsareconsid- theclimatemodel,toinvestigatetheco- theEarthSystembyhumanactivities eredtobeonepartofahierarchyofsimu- evolutionofclimateandCO2givenemis- suchasfossil-fuelorthe lationmodels.Informationpassesinboth sionscenarios(ratherthanconcentra- fragmentationofterrestrialvegetation directionsthroughthishierarchy.Anef- tions)ofthegreenhousegas.Theexcite- cover.Duringthepastdecadesmarked fectnotedfirstinanEMICshouldnor- mentliesintheidentificationandinves- progresshasbeenachievedinmodelling mallybesoughtinafull-formmodel. tigationofinteractionsinaclimatespace theseparateelementsofthegeosphere Also,thecandidateprocessesforaphe- beyondknownexperience.Theprojectis andthebiosphere,focusingonatmos- nomenonnoticedinafull-formmodel referredtoas“TheFlyingLeap”toem- phericandoceancirculation,andonland shouldbeincludedinanEMICtotestour phasizetheuncertaintiesandexcitement vegetationandice-sheetdynamics. understanding. oftheendeavour. Thesedevelopmentshavestimulated Itwouldbeunrealisticatpresentto The“FlyingLeap”experimentwill preliminaryattemptstoputallseparate expecttobeabletodevelopfull-form focusonCO 2emissionsandconcentra- piecestogether,firstinformofcompre- modelsthatcanbeusedasworking tionandtheresponseoftheEarthSys- hensivecoupledmodelsofatmospheric simulationsoftheEarthSystem.How- temtoCO2forcing,givenafixedscenario andoceaniccirculation,andeventually ever,forshorttimeslicesandundercer- forfutureemissions.Thisexperiment asso-calledclimatesystemmodels tainconditions,suchcomprehensive usesanemissionsscenariothatwould whichalsoincludebiologicaland modelscanbepractical,andonlysuch giveanincreaseinatmosphericCO2con- geochemicalprocesses.Ithasbeenthe modelscananswercertainkeyquestions centrationof1%/yrwithoutcouplingor ruleratherthantheexceptionthatsur- abouttheEarthSystemandourunder- feedbacks. prisingbehaviourhasemergedwhen standingofthekeyprocessesthatdrive Whilethismaybeamodestincrease thesecomponentsarecoupled. responsesofthesystemtoanthropogenic relativeto“businessasusual”scenarios, Majorchallengeslieattheboundaries perturbations.Onesuchquestionis itprovidesausefulbaselineforthisini- betweensubsystemswithregardtoef- “Howrobustmustourunderstandingbe tialdevelopmentandapplicationofafull- fortstocouplemodelsanddevelopinte- oftheinternalprocessesofsubsystems complexitymodel. gratedEarthSystemmodels.Thedevel- (e.g.terrestrial,atmospheric Theprotocolfortheexperimentwas opmentofacoupledmodelinvolvesre- circulation,marineproductivity)before discussedattheIGBPGAIMTaskForce laxationofprescribedboundarycondi- couplingsubsystemmodelsreducesun- meetinginHonolulu,January31-Febru- tionssothatmodelledsubsystemscan certaintyinherentinthecoupledsystem ary2,2000.Thegoaloftheexperimentis interactdirectly.Assuchmodelsarerun ratherthanincreasingit?” toevaluatethesensitivityofthecoupled overtime,onemeasureoftheirsuccessis AttheOctober1998meetingof carbon-climatesystemtoanthropogenic thestabilitywithwhichtheycharacter- WCRP/WGCM(WorkingGroupon perturbations.Theprocedureistosolve izetheEarthSystemwithouttheneedfor CoupledModelling)inMelbourne(chair: simultaneouslythecoupledfamilyof “fluxcorrections”toadjustformodeldrift L.Bengtsson),aproposalfromGAIMfor equationsfordifferentspecificationsof inanadhocmanner. acollaborativeIGBP/GAIM–WCRP/ externalsource/sinksofCO 2andother Ingeneral,EarthSystemanalysisre- WGCMprojecttoinvestigatecarbon-cli- greenhousegases.SeeFigure1. liesonahierarchyofsimulationmodels. mateinteractionswasdiscussedandten- Dependingonthenatureofquestions askedandthepertinenttimescales,there are,ontheoneextreme,zero-dimensional tutorialorconceptualmodelslikethose inthe“Daisyworld”family.Attheinter- mediatelevel,“Earth-systemModelsof IntermediateComplexity”(EMICs)can runforlongmodeltimes,andcapture mostofthecriticalinteractionsbetween systemcomponents,butdonotinclude allprocesseswithineachpartoftheEarth Where F and F are the fluxes of carbon between the terrestrial biosphere and the System.Attheotherextremearethree- ba ab atmosphere and Foa and Fao are the equivalent fluxes between the ocean and the dimensionalfull-formcomprehensive atmosphere. models,e.g.couplingatmosphericand oceaniccirculationwithexplicitgeogra- phyandhighspatio-temporalresolution, Figure 1. Coupled equations describing climate -C02 interaction. canbeusedtoexplorethedetailedinter-

7 I G B P N E W S L E T T E R 4 1

Theexperimentswillinvolveacon- concentrationsandclimate viewedasoneexplorationofthe trolforthepre-industrialerawithnoex- beforecouplingthesubsystems. nonlinearitiesinherentintheEarthSys- ternalsources/sinksofCO 2,andafor- Thecoupledsystemshouldbe tem. wardintegrationfromthepre-industrial stablebutslowdrifthas Oneshouldtreatthe“FlyingLeap” tobeyondAD2000foraspecifiedemis- characterizedmanyothersuch asagrandchallengetoourunderstand- ingofthecarboncycleaswellasofcar- sionscenarioforCO2andtheothergreen- coupledsystemsandmustnot housegases.Notracegascycleswillbe bediscounted. bon-climateinteractions.Itshouldbethe includedfortheothergreenhousegases. stimulustotakethemodelstoanother

Instead,theywillbeconvertedtoCO 2- 2) Historicalperiod.With level.Glimpsesofrealismshouldbe equivalentsandaddedtotheradiatively prescribedemissionsofCO2 hopedfor,buttheirabsenceshouldnot activeCO2intheatmosphere.TheCO 2- andothergases,werunthe becausesfordespair.Muchcanbe equivalentswillnotbeinteractivewith modelsfromabout1800until learnedduringtheprocessofmodelde- theterrestrialandoceaniccarbondynam- 2000.Wecantestthe velopment,intercomparison,andrefine- ics. atmosphericconcentrationand ment. Tostart,CO 2releasefromfossilfuel distributionofCO andits 2 Inez Fung combustionwouldbespecifiedasaglo- isotopesinsuchmodelsagainst balvalue(PgC/yr)asafunctionoftime icecoreanddirectatmospheric Center for Atmospheric Sciences, basedonascenariothatwouldhave data. University of California, Berkeley, givena1%/yincreaseintheabsenceof 301 McCone Hall #4767, climatefeedbacksonthecarbonuptake. 3) Beyond2000.Weuseprojected Berkeley, CA 94720-4767, Theterrestrialandoceanicmodules emissionswithatmospheric USA wouldbegeographicallyresolving,to compositionfeedbacksturned E-mail: [email protected] takeaccountofthedifferentialecosys- onorofftoinvestigatetheir tem/circulationeffectsonthecarbonex- magnitude.Alsoweuse Peter Rayner change.Theterrestrialandoceanicup- producedbythe takewouldbesummedoverareatoyield feedbackornofeedbackcases CSIRO-DAR, annualvalues(PgC/yr)oftheiruptakes. PMB #1, toinvestigatetheimpactofsuch Carbonuptakebythebiosphereand Aspendale, Vic 3195 feedbacksonpermissible oceanswouldrespondtotheinstantane- AUSTRALIA ouslysimulatedclimate.Inthisway,car- emissionsforstabilization.Off- E-mail: pjr@ bon-climateinteractionsareincludedto lineexperimentswillelucidate vortex.shm.monash.edu.au determinetherateofCO increaseand whichprocessescontributeto 2 thefeedbacks.Itisimportantto consequentlytherateofclimatewarm- Pierre Friedlingstein ing. noteherethattheexperiment Theexperimentalprotocolidentifies willdrawonprevious Unite mixte CEA-CNRS, theprincipalfullycoupledcarbon-cli- experiencesothat,forexample, 91191 Gif sur Yvette, matecalculationsaswellasseveraloff- thedifferentclimatesensitivities FRANCE linecalculationsthathelptoisolatethe oftheparticipatingmodelscan E-mail: [email protected] importanceoftheprocesses.Ifatmos- beaccountedfor. phericcompositionfeedbackssignifi- Dork Sahagian cantlymodifyratesofclimatechangein Inthecontemporarycarbonbudget,the thesimulations,themechanisticunder- fossilfuelsourceis~5%oftheone-way Executive Director, IGBP/GAIM standingwillsuggestregionsandproc- grossterrestrialoroceanicflux.Small Research Center and essestomonitorintherealworld. annualcarbonfluximbalancesorerrors, Dept. of Earth Sciences Theexperimentisinthreegeneral likeair-seaheatandfreshwaterfluxer- Institute for the Study of Earth, Oceans, phases. rors,ifsustainedoveralong-enough and Space time,mayleadtosignificantclimaticmi- University of New Hampshire 1) Spin-upandstability.Herewe grations.Otherlikelysurprisesmaycome Durham NH 03824 equilibratethevariouscarbon fromnonlinearitiesinterrestrialandoce- USA cyclecomponentsforcedwith aniccarbondynamicsorintheclimate Email: [email protected] pre-industrialatmospheric system.Hencetheexperimentsshould

Global The Earth's environment and habitability are now, as never before, affected by human activities. This Change conference will present the latest scientific Open understanding of natural and human-driven Science changes on our planet. It will examine the effects AmsterdamAmsterdam on our societies and , and explore what the 10-1310-13 July,July, 20012001 Conference future may hold.

www.sciconf.igbp.kva.se

8 I G B P N E W S L E T T E R 4 1

An integrated approach to understanding Earth’s metabolism by

Icecoreandotherpalaeorecordsprovide Althoughtheworkshopparticipants strongcorrespondencetothecyclicvari- afascinatingwindowonthemetabolism discussedanddebatedmanyaspectsof ationsintheEarth’sorbit,althoughthe ofEarthoverhundredsofthousandsof carbon-nutrientinteractions,theremark- associatedchangesinincomingsolaren- years.Norecordismoreintriguingthan ablyregularplanetarymetabolicpattern ergyarenotenoughtodrivetheglacial- therhythmic‘breathing’oftheplanetas embodiedintheVostokicecorerecord interglacialcyclingontheirown. revealedintheVostokicecorerecordsof heldaparticularfascination.Itisaclas- Manyhypotheseshavebeenputfor- temperatureandCO 2andCH 4concen- sicexampleof‘controltheory’.Itshows wardtoexplaintheglacial-interglacial trations(Petitetal.,1999,andFigure1). cyclicvariationsofrelativelylongcold cycling,butmostremainessentiallydis- Thehighlyregularwaxingandwan- (glacial)periodsinterruptedbyshorter ciplinary,usuallybasedononeaspectof ingofEarth’sclimateandatmospheric warm(interglacial)periods.Theatmos- theEarthsystemsuchasocean-atmos- compositionthroughtheglacial-intergla- phericCO 2concentrationvariedfrom pheredynamics.TheaimoftheIGBP cialcyclesprovidedthethematiccontext 180-200ppmVduringtheglacialperiods CarbonWorkingGroupwasnottode- forarecentmeetingoftheIGBPCarbon to265-280duringtheinterglacials.The velopyetanotherhypothesisortopro- WorkingGroup.Theworkshopwasthe palaeorecordsshowotherinteresting vide‘theanswer’totheglacial-intergla- firstinaseriesoffiveworkshops,co- detailsinthepattern:(i)duringthegla- cialpuzzle,butrathertoshowthatwhen sponsoredbytheIGBP,theRoyalSwed- cialterminations,theincreaseinatmos- theEarthsystembehavesinsuchahighly ishAcademyofSciences,StockholmUni- phericCO 2isinphasewithsouthern regularandreproduciblefashion,a versity,andtheSwedishUniversityof hemispherewarming;meltingofthe stronglyintegrated,interdisciplinaryap- AgriculturalSciences,aimedataddress- northernhemisphereicecapslagsby proachoffersthebestchancetoadvance ingfocusedtopicsintheIGBPsynthesis thousandsofyears;(ii)thestrongcou- ourunderstanding. project.TheobjectiveoftheOctober1999 plingbetweentemperatureandatmos- TheexplanationdevelopedattheOc- meetingwastosynthesisourcurrentun- phericCO2suggeststhatthelatterisprob- toberworkshopgoessomethinglikethis: derstandingofnutrientinteractionswith ablytheprimaryamplifierofclimate Theprecisenatureoftheupperand thecarboncycleinterrestrial,marineand changeduringglacialterminations;and lowerlimitsofatmosphericCO2concen- coastalsystems. (iii)theperiodicityofthecyclesshowsa trationareevidenceofstrongcontrol mechanisms–bothterrestrialandoceanic biologicalprocessesarecriticalel- ementsofthecontrolloop. Biogeochemicalinteractionsbe- tweenlandandoceantransfercon- trolfromonetotheotheronaperi- odicbasis. Howdothecontrolloops work?Thelowerlevelofca.180

ppmVforatmosphericCO 2repre- sentssomethingofan‘ecosystem/ biomecompensationpoint’.Below thatlevelsystemslosealmostas muchcarbonthroughrespiration astheycantakeupthroughpho-

tosynthesisinthecold,dryCO2-de- pletedclimate.Asweseebelow, thishasimplicationsforthetrans- ferofnutrientsbetweenlandand ocean.Theupperlimit(280ppmV) isthepointatwhichthesolubility-

drivenfluxofCO 2fromtheocean totheatmosphereisbalancedby

theuptakeofCO2bytheterrestrial andoceanicbiota. Howiscontrolpassedbetween terrestrialandoceansystems? Thereisstrongevidencethatthe glacialphase(terrestrialcontrol)is Figure 1. Glacial-interglacial dynamics of the Earth system as recorded in the terminatedinitiallybyanincrease Vostok ice core. Adated from Petit et al. 1999 insolarradiationduetoachange intheEarth’sorbit(Milankovich

9 I G B P N E W S L E T T E R 4 1

Figure 2. Cartoon illustrating glacial-interglacial hypothesis on linked ocean -land biogeochemical cycling.

forcing);thiscouldtriggerareorganisa- tionofoceaniccirculationandstimulate thehydrologicalcycle.Theinitialwarm- ingwouldstarttoaccumulategreen- housegasessuchasH 2O,CO 2andCH 4 intheatmosphere,dueto,forexample, thereducedsolubilityofCO 2inwarmer water.Also,meltingicecapsinthenorth- ernhemisphereandthenorthwardsex- pansionofforestswouldreducethe Earth’salbedo,absorbingmoreincident solarradiationandfurtherwarmingthe planet,releasingevenmoreoceanicCO2 inapositivefeedbackloop.

ButastheclimatewarmsandCO 2 concentrationincreases,theincreasingac- tivityoftheterrestrialbiosphereacceler- atesthemobilisationofelementssuchas P,SiandFefromthegeospherethrough enhancedrootactivity.Theseelements eventuallyleakfromtheterrestrialbio- sphereintoriversandtothecoastalocean. asetoffeedbacks–initialcooling,increas- Overthousandsofyearsthesenutrients atanatmosphericconcentrationofCO 2 ingsolubilityofCO 2,increasingseaice areentrainedintotheoceaniccirculation ofabout280ppm. andfurthercooling–whichdrivethesys- and,inareasofupwelling,stimulateoce- Buttheinvigoratedactivityoftheter- temtowardstheglaciatedstate.Although anicnetprimaryproductionandincrease restrialbiosphereisalreadysowingthe theterrestrialbiosphereistakingupless thedrawdownofCO 2fromtheatmos- seedsofitsown“destruction”.Theinter- CO2,italsoreleasesPthatwastiedupin phere.TheincreasingbioticuptakeofCO2 glacialbalanceappearstobeprecarious, inbothoceansandlandeventually andthevigourofterrestrialandmarine This article continues on matchesthesolubility-drivenoutgassing biologicaluptakeovertakesthe page 16. ofCO2andthesystemreachesabalance outgassingfromtheoceans.Thistriggers

10 I G B P N E W S L E T T E R 4 1

Highlights of GAIM’s first phase: building towards by Dork Sahagian

The‘NewGAIM’,asdescribedinJohn pastdecademuchworkhasbeendone dataandmodels.ThechallengetoGAIM Schellnhuber’sarticleinthisissue,isori- tolayasolidfoundationonwhichto hasbeentoinitiateactivitiesthatwilllead entedstronglytowardsanintegrative buildanEarthSystemScienceeffort. totherapiddevelopmentandapplication systemsapproachtostudyingtheglobal ThegoalofGAIMhasbeentoad- ofasuiteofGlobalPrognostic environment.Thisisnotacompletely vancethestudyofthecoupleddynamics BiogeochemicalModels.InGAIM’sfirst noveltaskforGAIM,however;overthe oftheEarthSystemusingastoolsboth severalyears,attentionwasfocusedon

Figure 1a. Annual net primary production (g C m-2 yr-1) estimated as the average of all model NPP estimates.

Figure 1b. Spatial distribution of the variability in NPP estimates among the models as represented by the standard deviation of model NPP estimated in a grid cell.

11 I G B P N E W S L E T T E R 4 1

Figure 2. Annual mean air-sea flux of anthropogenic CO2 in 1990. developingtheconceptualandproce- EarthSystemmodeldevelopment.Much therefore,theactivitiesofGAIMintersect duraltoolsnecessarytomeetthischal- oftheprogresstodateinmodellingspe- fundamentallywithalltheIGBPCore lenge.Thisentailedscrutinyofeachofthe cificcomponentswithintheglobal Projects. threemainsubsystemsontheEarth,and biogeochemicalsubsystemssetsthecon- Duringthelastdecade,therehasbeen thedevelopmentandrefinementofter- textformodellingactivitieswithinthe enormousprogressinthedevelopment restrial,marine,andatmosphericcarbon variousIGBPCoreProjects.TheGAIM ofbiogeochemicalmodelsforsignificant modelsinpreparationforintegrated activityisbydefinitioncross-cutting; componentsoftheEarthSystem.Build-

Figure 3. Model simulation of the distribution of SF6 emissions for 1992.

12 I G B P N E W S L E T T E R 4 1

inguponprocess-basedmodelsforeco- GAIM’stechniquesforassessing Sinceagriculturalandforestryproduc- systemmetabolisminavarietyofterres- modelperformanceemergedfromaset tionprovidetheprincipalfoodandfuel trialsystems,thescientificcommunity ofmodelintercomparisonactivities,be- resourcesfortheworld,monitoringand begantoextendthesemodelstoglobal ginningwiththeNetPrimaryProductiv- modellingofbiosphericprimaryproduc- scales.Oceancarboncyclemodelswere ity(NPP)modelintercomparison.Prior tionareimportanttosupportglobaleco- developed,comparedandevaluatedby totheNPPIntercomparisonproject,sev- nomicandpoliticalpolicymaking. incorporatingcarbonchemistryand eraldifferentterrestrialecosystemmod- Forestimatesoftheglobalcarbonbal- crudebiologicalconceptsinoceangen- elsexistednationallyandinternationally, ance,alargeamountofuncertainty eralcirculationmodels;atmospheric buttheirresultswerevastlydifferent.This centersontheroleofterrestrialecosys- tracermodelsweredeveloped wasalarming,giventhattheywerede- tems.Geographicallyreferencedgross andevaluatedonthebasisofcompari- scribingthesamesystem.Throughthe primaryproductivity(GPP),netprimary sonofinversionresultsandobservedat- modelintercomparisonprocessdevel- productivity(NPP),andheterotrophic mospherictracerconcentrationsand opedbytheGAIMTaskForce,techniques respiration(Rh)andtheircorresponding sources;andfinally,theinitialstepswere weredevisedtobothcomparemodelre- seasonalvariationarekeycomponentsin takentobegintolinkthesecomponent sultsinanobjectivemanner,andtode- theterrestrialcarboncycle.Atleasttwo modelswithatmosphericGCMs.Thishas terminethesourcesofmodelresultdif- factorsgovernthelevelofterrestrialcar- settheforamorecomprehensive ferences.Thisprocessmadeitpossiblefor bonstorage.Firstandmostobviousisthe EarthSystemapproachtoglobal individualmodeldeveloperstoreturnto anthropogenicalterationoftheEarth’s biogeochemicalcyclingandthedevelop- theirlabsandrefineorcorrecttheirmod- surface,suchasthroughtheconversion mentofprognosticmodelsatvariouslev- elsonthebasisofwhatwaslearnedat offoresttoagriculture,whichcanresult elsofcomplexity. theintercomparisonworkshops.The inanetreleaseofCO2totheatmosphere. Aspartofits“Analysis”program, sametypeofprocesswasappliedto Second,andmoresubtle,arethepossi- GAIMdevotedconsiderableeffortin oceanmodelsintheOceanCarbon-Cy- blechangesinnetecosystemproduction identifyinggapsinbothconceptualun- cleModelIntercomparisonProject resultingfromchangesinatmospheric derstandinganddatathatwouldbenec- (OCMIP),andtotheatmosphereinthe CO2,otherglobalbiogeochemicalcycles, essaryformodellingpurposes.Working AtmosphericTracerTransportModel and/orthephysicalclimatesystem.The towardfillingthosegaps,GAIMhascon- IntercomparisonProject(TransCom). significantinfluenceoftheterrestrialbio- venedanumberoftargetedworkshops GAIM’sthreemajorsub-systemlevel sphereontheglobalcarbonbalanceand ontopicssuchasWetland modelintercomparisonprojectsarede- henceontheproblemofclimatechange BiogeochemicalFunctioning(GAIMre- scribedbelow.Eachofthethreewere hasbecomemorewidelyrecognizeddur- port#2),RegionalInteractionsbetween highlightedasspecialsessionsatthelast ingthepasttwodecades,andnowthe ClimateandEcosystems(GAIMReport IUGGmeeting(July23,1999Birming- roleofterrestrialecosystemsisrecognized #3),andSeaLevelandGlobalHydrol- ham,UK).Thetoolsdevisedthrough tobeanimportantfactorinfluencingthe ogy(GAIMReport#8).Inaddition, theseactivitieswillbeappliedtothein- concentrationofcarbondioxideintheat- outreachprogramssuchastheAfrican terpretationandassessmentofthe mosphere. GAIMModellingWorkshop(GAIMRe- broaderEarthSystemmodelsnowbeing Oneoftheearlyresultsthatemerged port#1),targetedatentrainingmoreof developed(e.g.EMIC,FlyingLeap.See fromthefirstofaseriesofNPPmodel thedevelopingworldintointernational otherarticlesinthisNewsLetter). intercomparisonworkshops,“Potsdam globalchangeresearch,haveaddedtoour ‘94”,wasthatamajorreasonfordiffer- poolofexpertise.Alloftheseactivities encesbetweenoutputsofthesamevari- areaimedtowardplacingtheresearch Global Net Primary ablebetweendifferentmodelswasthat communityinastrongerpositiontode- theinputdataforthesamevariablewere veloptheglobalprognostic Productivity: A model fromdifferentsourcesandcarrieddiffer- biogeochemicalmodelsthataretheulti- intercomparison entuncertainties(thiswastrueforboth mategoalofGAIM. ground-basedobservationssuchascli- Amongthemostsignificantresults Task Leaders: Wolfgang maticdataandforremotesensingdata producedbyGAIMtodateisasetoftech- suchasAVHRR-derivedNDVI).Conse- niquesforcomparingandassessingcom- Cramer, Kathy Hibbard quently,manyofthesedatawerestand- plexmodelperformance.Withoutthe Globalprimaryproductionofecosystems ardizedforthesecondworkshop, abilitytoassessmodelsdevelopedbythe onlandandintheoceansisacrucialcom- “Potsdam’95.”Thecompositeresultsof globalchangeresearchcommunity,there ponentofbiogeochemicalmodeldevel- themodelsareillustratedinFig1a,in willbenobasisformakingreliablepro- opmentwithinIGBP.Askeycomponents whichtheNPPvaluesareaveraged jectionsregardingfuturesystemre- intheterrestrialcarboncycle,geographi- amongstthe17participatingmodels. sponsestoanthropogenicforcing,andno callyreferencednetprimaryproductiv- Whiletheresultsappearreasonable,it wayforthecommunitytoproperlycon- ity(NPP)andgrossprimaryproductiv- shouldbestressedthattherewerelarge tributetotheIPCCprocessbeyondbroad ity(GPP)andtheircorrespondingsea- differencesbetweenmodels(Figure.1b). scenario-basedprojections.Whereasin- sonalvariationareneededtoenhance TheNPPmodelintercomparisonhas dividualscientistsormodellinggroups understandingofboththefunctionofliv- madeitclearthatexistingdatamustbe cananddodevelopnumericalmodelsof ingecosystemsandalsotheireffectson chosenandusedinastandardizedway variousaspectsoftheEarthSystem,the theenvironment.Productivityisalsoa iflikemodelsaretobecompared,and valueoftheresultsofisolatedmodelsis keyvariableforthesustainabilityofhu- ultimately,ifcomplementarymodelsare greatlyenhancedbycomparisonwith manuseofthebiosphereby,forexam- tocoupled.Ithasalsoclarifieddatagaps othermodels.Thediscrepanciesinmodel ple,agricultureandforestry.Recently,it whichcannowbefilledbeforemodels resultsbetweendifferentapproachesto hasbecomepossibletoinvestigatethe canreliablysimulatetheroleofterrestrial thesameproblemprovidecriticalinsights magnitudeandgeographicaldistribution ecosystemsintheglobalcarboncycle. intomodelshortcomings,andpavethe oftheseprocessesonaglobalscalebya However,itisnotnecessaryformodel wayformodelrefinementandimprove- combinationofecosystemprocessmod- developmenttowaituntilallgapsinthe ment. ellingandmonitoringbyremotesensing. globalobservingsystemsareclosed.

13 I G B P N E W S L E T T E R 4 1

Rather,IGBPcantaketheleadincoordi- OceanCarbon-CycleModel Almostallotherforwardmodelsstruggle natingexistingandfuturedatasources IntercomparisonProject(OCMIP)isto togetadequateCFC-11verticalpenetra- inawaythatwilloptimizetheirutility identifytheprincipaldifferencesbetween tioninthesouth.Onlythemodelswitha throughouttheglobalchangeresearch global-scale,three-dimensional,ocean coupledsea-icemodeldoareasonablejob. community. carbon-cyclemodels,toacceleratetheir Aninterestingfeatureistheobserved TheNPPintercomparisonactivityre- development,andtoimprovetheirpre- bumpataround40 oSwhichischaracter- vealedastrongneedtonotonlycompare dictivecapacity. isticofformationofintermediatewaters. modelstoeachother,buttosomeobjec- OCMIP’sprimaryconcernhasbeen Modelswithexplicitmixingalongsurfaces tivemeasureofperformance.Thismeas- tofocusontheabilitiesofmodelstopre- ofconstantdensity(isopycnals)doarea- urecanonlycomefromvalidationdata dictoceancarbondistributionsandair- sonablejobofcapturingthisfeature;other thatisdifficulttoobtaindirectlyforNPP. seafluxesofCO 2.Thefirstphaseof modelswithonlyhorizontalandvertical However,indirectinformationisavail- OCMIPiscomplete(GAIMReport#7, mixingdoamuchpoorerjob. ablethatbearsonNPP,andthiswascom- 1998),andOCMIP-2isnowunderway Studiesduringthefirsttwophasesof piledina“GrossPrimaryProductivity (http://www.ipsl.jussieu.fr/OCMIP/). OCMIPhavereliedonoceanmodelsrun DataInitiative(GPPDI),whichthenled TheOCMIP-1strategywastostudy(1) underpresentclimatologicalconditions, tothecurrentefforttoassessmodelper- naturalCO 2 fluxes,withsimulations wherecirculationpatternsdonotevolve formanceusingdatafromspecifickey whichwereallowedtoreachequilibrium withtime.BeyondOCMIP-2,futurework sitesfromaroundtheworldinanewEco- withpre-industrialatmosphericCO 2(at willprobablyfocusontheimpactof systemModel-DataIntercomparison 278ppm),and(2)anthropogenicCO 2 changingclimateonmarinebiogeochem- (EMDI). fluxes,withsimulationsforcedbyob- istryaswellasthefeedbackofchanges

TheobjectiveofEMDIistocompare servedatmosphericCO2frompre-indus- inmarineonclimate.To modelestimatesofterrestrialcarbon trialtimetopresent.Inaddition,toevalu- validatesuchsimulations,itwillbecru- fluxes(NPPandnetecosystemproduc- atemodelbehaviour,OCMIP-1com- cialtofocusonhowwellmodelsareable tion(NEP),whereavailable)toestimates paredsimulatedvs.observed 14Cdistri- toreproduceobservedinterannualvari- fromground-basedmeasurements,and bution.Aglobalnetworkof 14Csamples ability. improveourunderstandingofenviron- wastakenduringGEOSECSinthe1970s mentalcontrolsofcarbonallocation.The andmorerecentsectionsfromWOCEare primaryquestionstobeaddressedbythis nowavailable.Natural14Coffersapow- Atmospheric Tracer activityaretotestsimulatedcontrolsand erfultestofanoceanmodel’sdeepocean modelformulationonthewater,carbon, circulation;“bomb 14C”helpsconstrain Transport Model andnutrientbudgetswiththeobserved themodelledcirculationofsurfaceand Intercomparison Project NPPdataprovidingtheconstraintfor intermediatewaters.Bomb 14Calsoap- autotrophicfluxesandtheintegrityof pearstoexhibitsimilarbehaviourtoan- (TRANSCOM) scaledbiophysicaldrivingvariables.The thropogenicCO 2undercertaincondi- 14 experimentaldesignconsistsofamulti- tions.Exploitingthe C-CO2relationship, Task Leader: Scott Denning tieredapproachtomakemaximumuse whenappropriate,offersonewaytocir- oftheavailableNPPandNEEmeasure- cumventthedifficultyofdirectlymeas- TheAtmosphericTracerTransportModel ments.Thesetiersincludesitemodel- uringthesmallanthropogenicchangein IntercomparisonProject(TransCom)is datacomparisons,grid-cellmodel-data dissolvedinorganiccarbon(DIC)inthe partofalargerGAIMresearchprogram comparisons,globalmodel-datacom- ocean,relativetothelargeDICpool focusedonthedevelopmentofcoupled parisons,andfluxdata.TheNPPdatasets whichisnaturallypresent. ecosystem-atmospheremodelsthatde- emergingfromGPPDIarederivedfrom OCMIPPhase1demonstratedthat scribethetimeevolutionoftracegases bothpointandspatiallyexplicitsampling predictionsfromoceancarbon-cyclemod- withchangingclimateandchangesin designs,thusenablingavalidcompari- elsdifferregionallybyasubstantial anthropogenicforcing.Muchofourcur- sonbetweenpointandarea-basedmod- amount,particularlyintheSouthern rentunderstandingabouttheglobalcar- elsanddata.Analysesandvisualizations Ocean,wheremodelledair-seafluxesof boncyclehascomefromobservingthe changesinatmosphericCO 2concentra- arebeingcarriedoutwithineachtierto anthropogenicCO2arealsolargest(Fig. investigatethemodelcontrolsonNPP 2).TherecentlylaunchedOCMIP-2in- tionsovertime.Timeseries(e.g.,Mauna andtheirunderlyingformulations.Initial volves13modelsandadditional Loarecord)provideinsightintothesea- sonalcycleaswellasglobalsource/sink resultsshowedgeneralagreementbe- simulations.ThefocusremainsonCO 2, tweenmodelsanddatabutwithobvious butOCMIP-2alsoincludesemphasison andinterannualvariations.Additionally, differencesthatindicateareasforpoten- newcirculationtracers,suchasCFC-11 existingflasknetworks(e.g.CMDL, tialdataandmodelimprovement. andCFC-12,andnewbiogeochemical CSIRO,etc.)provideinformationabout thedistributionofatmosphericCO2.For tracerssuchasO2.OCMIP-2alsoincludes simulationswithacommon example,adisproportionateamountof Ocean Carbon-Cycle biogeochemicalmodelsothatparticipants fossilfuelemissionsoccurinthenorth- canbetterstudyeffectsduetodifferences ernhemisphere,andalargeterrestrial Model Intecomparison CO sinkisrequiredtoexplaintheweak inmodelledoceancirculation.OCMIP-2 2 Project (OCMIP) alsoincludesdataspecialistswhoarelead- observednorth-southgradient.However, ingtheJGOFSandWOCEsynthesisfor anaccuratequantitativeinterpretationof Task Leaders: Jim Orr, Patrick CO , 14C,andCFCs,thusstrengthening thespatialstructurerequiresrealistic 2 modelsoftracegastransport. Monfray, Ray Najjar modelvalidationefforts. StandardsimulationsforCFC-11and Chemicaltracertransportmodels Theoceanplaysacriticalroleintheglo- CFC-12havebeencompletedbyall13 (CTMs)areusedtostudyatmospheric CO andcanbecharacterizedbythe balcarbonbudgetbecausethesolubility participatingOCMIP-2modelgroups.The 2 mechanismstheyincorporatetotransport ofCO2inseawaterprovidesanenormous AJAXsectionforCFC-11revealslargedif- reservoirforsequestration(orrelease)of ferencesbetweenstorageofthattracerin tracershorizontallyandverticallyacross theglobe.OneclassofCTMstransport atmosphericCO 2.Thus,thegoalofthe theSouthernOcean,e.g.,southof50˚S.

14 I G B P N E W S L E T T E R 4 1

CO2usingofflineanalyzedwindsfrom anthropogenictracerwhichisreleased scoretheuncertaintiesandexcitementof weatherforecastcentersorGlobalCircu- primarilyfromelectricaldistribution attemptingtorunfullycoupledEarth lationModels(GCMs),othersactually equipmentwithaspatialpatternchar- Systemmodelsintothefuture.While calculatetracerconcentrationswitha acteristicoffossilfuelemissions,was GAIMwillcontinuethecarboncyclere- GCMinternaltothetransportmodel. chosen.Becausetheemissionsandcon- latedsubsystemmodelintercomparisons

Thereareconsiderablemodel-dependent centrationfieldforSF 6aremuchbetter thathavebeenitshallmarktodate,its differencesinsimulatingtheglobalmove- knownthanforCO 2,theresultsofthis foraysintothebroaderscopeofEarth mentofatmospherictracers. “calibrationexperiment”wereusedto Systemmodellingwillrequireahigher ThegoalofTransComistoquantify evaluatetherealismofthelarge-scale levelofintegrationofIGBPsciencethan anddiagnosetheuncertaintyininversion inter-hemispherictransportcharacteris- everbefore.Inresponsetothisshiftin calculationsoftheglobalcarbonbudget ticsofeachmodelinacontextforwhich emphasis,andbyagreementoftheSci- thatresultfromerrorsinthesimulated the“rightanswer”wasknown.Inaddi- entificCommitteeoftheIGBP,GAIMhas transport.Animportantsourceofuncer- tion,thecalibrationexperimentincluded changeditstoGlobalAnalysis, taintyinthesecalculationsisthesimu- thecalculationoftransportdiagnostics INTEGRATION,andModelling. latedtransportitself,whichvariesamong designedtohelpelucidatethemecha- Trulyexcitingtimesareahead,asthe themanytransportmodelsusedbythe nismsbywhichthevariousmodelspro- effortsofthevariouspartsofIGBPare community.TransCominvestigators ducedtheirdifferenttracerdistributions. broughttogethertoformacoherent haveconductedaseriesof3-dimensional ResultsfromPhaseIIindicatedcloser conceptualizationoftheEarthSystem. tracermodelintercomparisonexperi- modelagreementthaninPhase1,partly Weareapproachingathresholdinour mentswhichareintendedto(1)quantify duetoaslightlydifferentsuiteofmod- abilitiesasaresearchcommunitytoad- thedegreeofuncertaintyincurrentcar- els,andperhapspartlyreflectingmodel dresswhole-systemlevelproblems,and bonbudgetestimatesthatresultsfrom improvement(Figure3).Oneverysig- theresultsthatemergeinthenextfew uncertaintyinmodeltransport;(2)iden- nificantconclusionisthatthedifferences yearswillsurelycontainsomeimportant tifythespecificsourcesofuncertainties amongthesimulatednorth-southhemi- answerstolong-standingquestions,and inthemodels;and(3)identifykeyareas sphericgradientsacrossmodels(which evenafewsurprisesregardingthefunc- tofocusfuturetransportmodeldevelop- isusedtointerpretthestrengthofthe tioningoftheEarthSystem. mentandimprovementsintheglobalob- meridionalCO2sinkininversecalcula- servingsystemthatwillreducetheun- tions)dependsverystronglyonthede- certaintyincarbonbudgetinversioncal- tailsofthesub-gridscaleverticalmix- Dork Sahagian culations. ing.Again,themodelscouldbeclassi- Executive Director, IGBP/GAIM ThefirstphaseofTransComcom- fiedintotwocategories:thefirstsimu- Climate Change Research Center and paredmodelperformancefortwosalient latedrelativelyweakverticalgradients Dept. of Earth Sciences featuresofatmosphericCO 2:theannual overthenorthernextratropics(SF 6 meannorth-southgradient(dominated sourceregion),whereasthesecond Institute for the Study of Earth, Oceans, byfossilfuelemissions),andtheseasonal groupofmodelssimulatedstrongerver- and Space cycle(dominatedbyexchangewithter- ticalgradientsoverthesourceregion. University of New Hampshire restrialecosystems).Twelvemodelling Thisbreakdownislikelytheresultof Durham NH 03824 groupsfromfourcontinentsparticipated; differentmodelformulationswithre- USA manyofthemodelshavebeenusedex- gardtohowtransportbyconvectionand Email: [email protected] tensivelyincarboncycleresearch.Theex- diffusionisparameterizedatthesubgrid perimentaldesignforboththeannual scale. andseasonalsimulationsconsistedof ThethirdphaseofTransComispres- modelrunsforatleastthreeyearsfrom entlyunderwayandinvolves aninitialatmospherewithuniformCO2, intercomparisonofinversioncalculations providingsufficienttimeforthemodel ofthecarbonbudgetoftheatmosphere, atmospheretoestablishan“equilibrium” withtheobjectiveofquantifyingtheun- (annuallyrepeating)concentrationdistri- certaintyinsuchcalculationsthatarises butions.Eachsetofmodelresultswere directlyfromuncertaintyinthesimulated normalizedsuchthattheJanuaryglobal transport.Computationofthecontempo- three-dimensionalmeanwaszero.Re- rarycarbonbudgetoftheatmosphere sultsshowedasurprisingdegreeofvari- usingthesuiteofcalibratedandim- anceamongmodelswithregardtome- provedmodelswillprovidebothmore ridionalnorth-southgradientatthesur- reliableestimatesoftheterrestrialsink face,andespeciallyaloft. andabettersetoftracertransportmod- Tounderstandtheperformanceof elsforfutureresearch. thevariousmodelswithrespecttothe inter-hemisphericgradientsofpassive tracers,TransComneededtomovebe- yondthesimulationsofunobserved GAIM in the future

(andunobservable)fossilfuelCO 2toa Theactivitiesofthelastfewyearshave tracerthatiswellobservedandwhose beendirectedtowardlayingtheground- atmosphericbudgetisnotcomplicated workforthedevelopmentofEarthSys- bymissingsinks.Thisrequiredatracer temmodelsofvariouslevelsofcomplex- withwell-documentedconcentrations ity.GAIMisnowturningitsattentionto aroundtheworld,withaquantifiable focusonEarthSystemModelsofInter- emissionsfield,andpreferablywithin- mediateComplexity(EMICs),andfull- significantsinks.ForTransComPhaseII, formCoupledEarthSystemModels,re- sulfurhexafluoride(SF6),anon-reactive ferredtoasour“FlyingLeap”tounder-

15 I G B P N E W S L E T T E R 4 1

References Erratum 1. Encyclopaedia Britannica, Micropaedia, IX, (1976). 2. G.P. Marsh, The Earth as Modified by Human Action, Belknap Press, In the previous edition of the Global Harvard University Press, 1965. Change NewsLetter (Vol 40, December 3. W. C. Clark, in of the Biosphere, W. C. Clark and R. E. Munn, Eds., (Cambridge University Press, Cambridge, 1986), 1999) on page 15 we erroneously stated chapt. 1. that the Global Environment Facility (GEF) 4. V. I. Vernadski, The Biosphere, translated and annotated version from the original of 1926, (Copernicus, Springer, New York, 1998). was funded by the World Bank. This is 5. B.L. Turner II et al., The Earth as Transformed by Human Action, not the case. The Global Environment Cambridge University Press, 1990. Facility is independent of the World Bank 6. P. J. Crutzen and T. E. Graedel, in Sustainable Development of the Biosphere, W. C. Clark and R. E. Munn, Eds., (Cambridge University and its funding does not come from the Press, Cambridge, 1986). chapt. 9. World Bank. We apologise for this error. 7. R. T. Watson, et al, in Climate Change. The IPCC Scientific Assessment J. T. Houghton, G. J. Jenkins and J. J. Ephraums, Eds., (Cambridge The GEF is a multilateral financial University Press, 1990), chapt. 1. mechanism that assists developing 8. P. M. Vitousek et al., Science, 277, 494, (1997). 9. E.O. Wilson, The Diversity of Life, Penguin Books, 1992. countries to protect the global environment 10. D. Pauly and V. Christensen, Nature, 374, 255-257, 1995. in four areas: loss, climate 11. E. F. Stoermer and J. P. Smol Eds. The Diatoms: Applications for the change, degradation of international Environmental and Earth Sciences (Cambridge University Press, Cambridge, 1999). waters, and depletion of the ozone layer. 12. C. L. Schelske and E. F. Stoermer, Science, 173, (1971); D. Verschuren The GEF is jointly implemented by the et al. J. Great Lakes Res., 24, (1998). 13. M. S. V. Douglas, J. P. Smol and W. Blake Jr., Science 266 (1994). Development Program, 14. A. Berger and M.-F. Loutre, C. R. Acad. Sci. Paris, 323, II A, 1-16, 1996. the United Nations Environment Program, 15. H.J. Schellnhuber, Nature, 402, C19-C23, 1999. and the World Bank.

...continued from page 11.

cessityofworkingacrossdisciplinesand CO2of365ppmViswellabovetheupper internalcycling.ThisPfindsitswayinto ‘compartments’toaddressthem.Thehy- controllimitoftheEarth’srecentpast; theoceanandstimulatesproductivity pothesisputforwardabovecouldnot thereisnoevidenceofastablestateor‘do- there.Atseveralpointsduringthelong havebeendevelopedbyonediscipline mainofattraction’aboveabout280ppmV. slideintoglaciation,pulsesofaeolianFe withintheEarthsciencesworkingalone. Furthermore,therateofincreaseofatmos- fromthedryingterrestrialbiospherefur- Itrequiredscientistsfrom, phericCO2isabouttwoordersofmagni- therstimulateoceanproductivity.Ice oceanography,geochemistryandterres- tudelargerthanthatduringtheglacialter- coverbeginstoadvanceastheclimate trialandmarine,anditrequired minations.Therateofincreaseofmean coolsandoceancirculationreorganisesto understandingofphysical,chemicaland globaltemperatureoverthepastseveral itsglacialstate. biologicalprocesses. decadesalsoappearstobewithoutprec- Ascoolinganddryingproceeds,ter- TheStockholmworkshopwasevi- edentintherecentpast(Mannetal.1998). restrialbioticactivitycontinuestodecline, denceofthetrendhighlightedattheSec- IntermsofEarth’smetabolism,weare andthefluxofnutrientsfromthelandinto ondIGBPCongressatShonanVillage,Ja- sailingintoterraincognita.Nowmorethan theoceaneventuallygrindstoahalt.Oce- pan,earlierthis.Buildingonasound ever,wemustbuildatrulyintegrated, baseofcompartmentandprocess-level interdisciplinaryEarthSystemscienceto anicuptakeofCO 2thenstartstodecline aswell,andthesystemeventuallyreaches understandinginthecoreprojects,weare understandtheevolutionofourplanet andbouncesalongits‘floor’at180ppm nowmovingrapidlytobuildupexper- andourroleinit. tiseandactivityinEarthSystemscience, Extractedfrom:IGBPCarbonWork- CO2,effectivelycontrolledbyaquiescent terrestrialbiosphereuntilthenextcyclic bothinmodellingandinanalysis,asout- ingGroup(2000)Integratedunderstand- changeintheEarth’sorbitjoltsitbackinto linedinthisarticle.Thisistrulyacom- ingoftheglobalcarboncycle:Atestof theglacialterminationphaseandthe munityeffort,acrossallofIGBP.Botha ourknowledge.Science,submitted.IGBP wholeintertwinedloopofforcingsand soundunderstandingofbasicprocesses CarbonWorkingGroup:P.Falkowski,R.J. feedbacksstartsover. ANDtheinteractionsandfeedbacks Scholes,E.Boyle,J.Canadell,D.Canfield, ThecartooninFigure2showsthesuite amongprocessesandcompartmentsare J.Elser,N.Gruber,K.Hibbard,P.Högberg, ofprocessesthatlinklandandoceanbiota requiredtoevenbegintounderstandthe S.Linder,F.T.Mackenzie,B.MooreIII,J. inthecontrolloops. functioningoftheEarth. Raven,Y.Rosenthal,S.Seitzinger,V. Again,thepurposeofthisexplanation Finally,returningtotheglacial-inter- Smetacek,W.Steffen. isnottoprovidetheultimateexplanation glacialrhythmofthepast400,000years, FundingfortheStockholmSynthesis ofglacial-interglacialcycling;thatwillre- itisfascinatingtoputtheveryrecenthu- WorkshopandLectureSeriesisprovided quiremuchfurtherwork.Rather,wewant manperturbationstotheEarthSystemin bytheSwedishMilleniumCommittee todemonstratethecomplexityoftheis- thecontextofthishighlyregularpattern. andMISTRA,theFoundationforStrate- sueswearefacingandtheabsolutene- Thecurrentconcentrationofatmospheric gicEnvironmentalResearch.

16 I G B P N E W S L E T T E R 4 1

Will Steffen References IGBP Secretariat, The Royal Swedish

Mann, M.E., Bradley, R.S. and Hughes, M.K. (1998) Global-scale temperature patterns and climate Academy of Sciences, S104 05 forcing over the past six centuries. Nature 392: 779-787 Stockholm, Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., SWEDEN Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., E-mail: [email protected] Ritz, C., Saltzman, E. and Stievenard, M. (1999) Climate and atmospheric of the past 420,000 years from the Vostok ice core, . Nature 399: 429-436.

The “Anthropocene” by Paul J. Crutzen and Eugene F. Stoermer

ThenameHolocene(“RecentWhole”)for paniede.g.byagrowthincattlepopu- groves.Finally,mechanizedhumanpre- thepost-glacialgeologicalepochofthe lationto1400million(6)(aboutonecow dation(“fisheries”)removesmorethan pasttentotwelvethousandyearsseems peraveragesizefamily).Urbanisation 25%oftheprimaryproductionofthe tohavebeenproposedforthefirsttime hasevenincreasedtenfoldinthepast oceansintheupwellingregionsand35% bySirCharlesLyellin1833,andadopted century.Inafewgenerationsmankind inthetemperatecontinentalshelfre- bytheInternationalGeologicalCongress isexhaustingthefossilfuelsthatwere gions(10).Anthropogeniceffectsarealso inBolognain1885 (1).Duringthe generatedoverseveralhundredmillion wellillustratedbythehistoryofbiotic

Holocenemankind’sactivitiesgradually years.ThereleaseofSO2,globallyabout communitiesthatleaveremainsinlake grewintoasignificantgeological,mor- 160Tg/yeartotheatmospherebycoal sediments.Theeffectsdocumentedin- phologicalforce,asrecognisedearlyon andoilburning,isatleasttwotimes cludemodificationofthegeochemical byanumberofscientists.Thus,G.P. largerthanthesumofallnaturalemis- cycleinlargefreshwatersystemsandoc- Marshalreadyin1864publishedabook sions,occurringmainlyasmarinedime- curinsystemsremotefromprimary withthetitle“ManandNature”,more thyl-sulfidefromtheoceans(7);from sources(11-13). recentlyreprintedas“TheEarthasModi- Vitouseketal.(8)welearnthat30-50% Consideringtheseandmanyother fiedbyHumanAction”(2).Stoppaniin ofthelandsurfacehasbeentransformed majorandstillgrowingimpactsofhu- 1873ratedmankind’sactivitiesasa“new byhumanaction;morenitrogenisnow manactivitiesonearthandatmosphere, telluricforcewhichinpoweranduniver- fixedsyntheticallyandappliedasferti- andatall,includingglobal,scales,it salitymaybecomparedtothegreater lizersinagriculturethanfixednaturally seemstousmorethanappropriateto forcesofearth”[quotedfromClark(3)]. inallterrestrialecosystems;theescape emphasizethecentralroleofmankind Stoppanialreadyspokeofthe intotheatmosphereofNOfromfossil ingeologyandecologybyproposingto anthropozoicera.Mankindhasnowin- fuelandcombustionlikewise usetheterm“anthropocene”forthecur- habitedorvisitedalmostallplaceson islargerthanthenaturalinputs,giving rentgeologicalepoch.Theimpactsof Earth;hehasevensetfootonthemoon. risetophotochemicalozone(“smog”) currenthumanactivitieswillcontinue ThegreatRussiangeologist formationinextensiveregionsofthe overlongperiods.Accordingtoastudy V.I.Vernadsky(4)in1926recognizedthe world;morethanhalfofallaccessible byBergerandLoutre(14),becauseofthe increasingpowerofmankindaspartof freshwaterisusedbymankind;human anthropogenicemissionsofCO2,climate thebiospherewiththefollowingexcerpt activityhasincreasedthespeciesextinc- maydepartsignificantlyfromnatural “...thedirectioninwhichtheprocesses tionratebythousandtotenthousand behaviouroverthenext50,000years. ofevolutionmustproceed,namelyto- foldinthetropicalrainforests(9)and Toassignamorespecificdatetothe wardsincreasingconsciousnessand severalclimaticallyimportant“green- onsetofthe“anthropocene”seems thought,andformshavinggreaterand house”gaseshavesubstantiallyin- somewhatarbitrary,butweproposethe greaterinfluenceontheirsurroundings”. creasedintheatmosphere:CO2bymore latterpartofthe18thcentury,although He,theFrenchJesuitP.Teilhardde than30%andCH 4byevenmorethan weareawarethatalternativeproposals ChardinandE.LeRoyin1924coinedthe 100%.Furthermore,mankindreleases canbemade(somemayevenwantto term“noösphere”,theworldofthought, manytoxicsubstancesintheenviron- includetheentireholocene).However, tomarkthegrowingroleplayedbyman- mentandevensome,the wechoosethisdatebecause,duringthe kind’sbrainpowerandtechnologicaltal- gases,whicharenot pasttwocenturies,theglobaleffectsof entsinshapingitsownfutureandenvi- toxicatall,butwhichneverthelesshave humanactivitieshavebecomeclearly ronment. ledtotheAntarctic“ozonehole”and noticeable.Thisistheperiodwhendata Theexpansionofmankind,bothin whichwouldhavedestroyedmuchof retrievedfromglacialicecoresshowthe numbersandpercapitaexploitationof theozonelayerifnointernationalregu- beginningofagrowthintheatmos- Earth’sresourceshasbeenastounding latorymeasurestoendtheirproduction phericconcentrationsofseveral“green-

(5).Togiveafewexamples:Duringthe hadbeentaken.Coastalwetlandsare housegases”,inparticularCO2andCH4 past3centurieshumanin- alsoaffectedbyhumans,havingresulted (7).Suchastartingdatealsocoincides creasedtenfoldto6000million,accom- inthelossof50%oftheworld’sman- withJamesWatt´sinventionofthesteam

17 I G B P N E W S L E T T E R 4 1

enginein1784.Aboutatthattime,bi- againsthumaninducedstresseswillbe Paul J. Crutzen oticassemblagesinmostlakesbeganto oneofthegreatfuturetasksofmankind, Max-Planck-Institute for Chemistry showlargechanges(11-13). requiringintensiveresearcheffortsand Division of Withoutmajorcatastropheslikean wiseapplicationoftheknowledgethus P.O. Box 3060 enormousvolcaniceruption,anunex- acquiredinthenoösphere,betterknown D-55020 Mainz pectedepidemic,alarge-scalenuclear asknowledgeorinformationsociety.An GERMANY war,anasteroidimpact,anewiceage,or exciting,butalsodifficultanddaunting Email: [email protected] continuedplunderingofEarth’sre- taskliesaheadoftheglobalresearchand sourcesbypartiallystillprimitivetech- engineeringcommunitytoguideman- nology(thelastfourdangerscan,how- kindtowardsglobal,sustainable,envi- Eugene F. Stoermer ever,bepreventedinarealfunctioning ronmentalmanagement(15). Center for Great Lakes and Aquatic noösphere)mankindwillremainama- Sciences jorgeologicalforceformanymillennia, Wethankthemanycolleagues,especially University of Michigan maybemillionsofyears,tocome.Tode- themembersoftheIGBPScientificCom- Ann Arbor, Michigan 48109-1090 velopaworld-wideacceptedstrategy mittee,forencouragingcorrespondence USA leadingtosustainabilityofecosystems andadvice.

Contribution to the regional data bundle concept: The IGBP-DIS – MEDIAS-France partnership by Wolfgang Cramer, Chair, IGBP-DIS

Thereislittledoubtoftheimportanceof bundlebutisessentiallya ScientistProgramme.MEDIASalso theregionalscaleforEarthSystemSci- ‘one-off’. worksinclosecooperationwithPASS enceandtheneedtostudysystemicfea- (PanAfricanSTARTSecretariat),itscoun- turesofEarthSystemfunctioningatthat • LBA(theLarge-scale terpartregionalstructureinAfrica. scale.Avarietyoftoolsarerequiredfor Biosphere-Atmosphere Inaddition,MEDIAS-FRANCEisal- integratedregionalstudies,butacrucial ExperimentinAmazonia)has readyinvolvedwithseveralIGBPcore elementinthestrategyisthedevelop- itsowndataandinformation projects–PAGES,JGOFS,IGAC-tode- mentandapplicationofregional‘data system,welldevelopedanda velopcomputertoolsforthegeneration bundles’. goodmodelforotherlarge ofnewdatabasesforIGBPresearch Theconceptofregionaldatabundles regionalstudies. projects.Morerecently,MEDIAS- wasfirstproposedatthe1998DISSSC FRANCEhasbeenaskedbyIGACto meetinginToulouse,andhasnowbeen • Specificdatafunctionshave developanoriginaltooltoassistitsSyn- developedfurtherasamajoractivity beenestablishedinsome thesisandIntegrationproject.MEDIAS aimedatpromotinganintegratedsuite STARTregionalsecretariats, alsomaintainsa“mirror”siteoftheglo- ofregionalstudies.Theimplementation suchasNairobi(Pan-African) balPAGESdatabasebelongingtothe oftheregionaldatabundleconceptwill andBangkok(Southeast). WorldDataCenter-Afor beundertaken,interalia,asapartnership paleoclimatologyinBoulder,USA. betweenIGBP-DIS,STARTandMEDIAS- • TheIGBPTerrestrialTransects Basedontheseexistingstrengthsof FRANCE. havedevelopedtheirown MEDIAS,itsexperienceinregionaldata Regionaldatabundlesconsistofa datasets. development,anditsknowledgeofIGBP, consistentcollectionofdatabases,data theFrenchspaceagencyCNEShasof- products,in-situmeasurementsaswell However,theseinitiativesarelargely feredtoallocateresourcesviaMEDIAS asremotelysenseddata.Databundles independentofoneanother,makingcom- tosupportamajoreffortoverthenext2- mayincludemodelsand/ormodelout- parabilityacrossregionsvirtuallyimpos- 3yearstoproduceacoherentsetofre- putatregionalscale.Specialattentionis sible.Whatisneedednowiscoordina- gionaldatabundles.IGBP-DISwillpro- giventothepresentationofthevarious tionofthesedataactivitiestobuildupa videguidancefortheeffort,andwillrely datasetsinordertofacilitatetheirvisu- coherentglobalpicturefromthevarious oninputfromSTART,GAIMandthecore alizationandinterpretationforresearch regionalstudies.Thisrequiresmuchmore projects,manyofwhichhavetheirown purposes. consistencyandcoherenceacrossthe setsofregionalstudies. Considerableworkonregional variousdatainitiatives,aswellasacom- databaseshasalreadybeenundertaken monframeworkforprocessstudiesand Wolfgang Cramer inassociationwithIGBP: modelling. MEDIAS-FRANCEiswellplacedto Potsdam Inst for Climate Impact contributetotheimplementationofaco- Research (PIK), • TheMiomboCD-ROM, ordinatedapproachtotheregionaldata PO Box 60 12 03, coordinatedbySTART,LUCC bundleinitiative.MEDIAShasactedasa D-14412 Potsdam, andIGBP-DIS,isanearly regionalcoordinatingsecretariatfor GERMANY versionofaregionaldata START,actingthroughprojectsfundedby E-mail: wolfgang.cramer@ theEU’sENRICHprogrammeand pik-potsdam.de throughtheSTARTFellowship/Visiting

18 I G B P N E W S L E T T E R 4 1

People and events Neil Swanberg Sails On…….

An era in IGBP ended recently with the resignation of Neil Swanberg from his position of Deputy Executive Director, to take up a position with the National Science Foundation in the United States. Neil joined the IGBP Secretariat in 1993, while the programme was still in its early implementation phase. He has served under all three Chairs (Jim McCarthy, Peter Liss and Berrien Moore) and under all four Executive Directors (Thomas Rosswall, John Marks, Chris Rapley and Will Steffen). For the past seven years, Neil has been a mainstay and pillar of strength in the IGBP Secretariat. He has helped to keep the office ticking over efficiently, has become a master at trouble-shooting (often anticipating problems before they occur), dealt effectively with bureaucracies on both sides of the , and navigated our small Macintosh computer network throughout the sometimes turbulent waters of a PC-oriented host institution. I’m sure one of Neil’s biggest frustrations has been trying to cope with computer-illiterate colleagues in the Secretariat making big computer problems Neil, right, farewells his colleagues João Morais and Elise Wännman during his last day in the Secretariat. out of small ones. He has always dropped whatever he is doing to come to the aid of his co- workers and has invariably solved problems quicker than professional computer consultants could manage. Only one incident stopped Neil – a beer-soaked keyboard and disk drive on a certain laptop – but that is another story…… Neil was particularly well-known in the marine components of IGBP. He is a marine biologist by training, and that coupled with his broad understanding of international science has enabled him to make valuable contributions to JGOFS, LOICZ and, more recently, GLOBEC and SOLAS. In fact, Neil played an instrumental role in working with the GLOBEC community to guide the development and publication of both the science and implementation plans. His nous and understanding both of the science and the science politics in international marine science has been a major factor in the smooth transition now underway within the oceanic components of IGBP. Perhaps Neil’s least known contribution to IGBP, but his most important, has been his broad understanding of the programme as a whole and his vision for where IGBP should be going. His article in NewsLetter 40 is a good summary of his views on how the pieces of the puzzle should fit together. But this view has been characteristic of Neil for quite some time. Well before the recent push in the Programme towards a more integrated Earth System Science approach, Neil has been quietly but effectively promoting a more systemic and logical structure and approach for IGBP’s science. The process is now coming to fruition, and he has made strong and consistent intellectual contributions to it over a number of years. Neil has always maintained that about five or six years is long enough in the job. So he leaves IGBP in the spirit of ‘job well done’ and of making major contributions to a complex scientific endeavour. All of us throughout the IGBP community wish Neil, his lovely wife Inger and their two lively sons, Kevin and Carl, all the very best for their life in the US.

19 I G B P N E W S L E T T E R 4 1

New members of the Scientific Committee of the IGBP

Upon graduating from Leningrad State University, Faculty of Physics, in 1953, Victor Gorshkov worked in the field of physics of elementary particles, high-energy physics and atomic physics, with about 60 papers published in leading journals. At present, he is Professor of Theoretical Physics and works in Petersburg Nuclear Physics Institute, St.-Petersburg, Russia. In the early eighties Victor gradually turned to global ecological problems, being impressed by their importance and by the potential impact that the theoretical physics approach may have there. Having accomplished several studies in such diverse fields as the global , ecology of locomotive animals, evolutionary genetics and informatics, Victor formulated the concept of biotic regulation of the environment, a concept around which his own work and that of his group is devoted (see, e.g., Gorshkov et al. (2000) Biotic Regulation of the Environment: Key Issue of Global Change. Springer, Praxis). In his free time, Victor enjoys field research in the areas of Siberia and the north of European Russia. Closer to home, he often enjoys a keen game of tennis.

S. Krishnaswami was born and brought up at Thiruvananthapuram, the southernmost city of India. He received his B.Sc. degree in chemistry from the University College, Thiruvananthapuram. He began his research career in 1964 at the Tata Institute of Fundamental Research, Bombay and obtained his Ph.D. degree in 1974 from the Bombay University. A part of his thesis was on the successful development of 210Pb method to date lake sediments, which has found extensive applications to chronologically decipher historical records of natural and anthropogenic events stored in them. Krishnaswami is a geochemist, focusing on the applications of environmental isotopes, stable and radioactive, to study earth surface processes. His interests include solute- particle interactions and particle dynamics in the ocean, Edited by Will Steffen sedimentation and authigenic mineral formation in the lakes and Layout by John Bellamy deep sea, nuclide mobility (contaminant transport) in sub-surface Requests for reproduction of articles aquifers and more recently chemical weathering of the Himalaya appearing in this distribution should be and its impact on the chemical and isotopical budget of the oceans. addressed to the Editor: (E-mail: [email protected]) Currently, Krishnawami is a professor at the Physical Research Laboratory, Ahmedabad, where he has been working for the past Newsletter requests and change of address information should be sent to: 25 years. He has served as a member of the JGOFS SSC and as IGBP Secretariat one of the Vice-Presidents of SCOR. This year he was elected as The Royal Swedish Academy of Sciences one of the Vice-Presidents of IAPSO. Box 50005,S-104 05 Stockholm, Sweden Tel: (+46-8) 16 64 48 Fax: (+46-8) 16 64 05 E-mail: [email protected] http://www.igbp.kva.se The IGBP Report Series is published in annex to the Global Change Newsletter ISSN 0284-5865

20