AARON C. WATERS 5 River Plateau, One of the World’S Great Outpourings of Tholei- Itic Plateau Basalt

Total Page:16

File Type:pdf, Size:1020Kb

AARON C. WATERS 5 River Plateau, One of the World’S Great Outpourings of Tholei- Itic Plateau Basalt NATIONAL ACADEMY OF SCIENCES AARON CLEMENT WATERS 1905–1991 A Biographical Memoir by CLIFFORD A. HOPSON Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs COPYRIGHT 2006 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Department of Earth Sciences, University of Claifornia, Santa Barbara AARON CLEMENT WATERS May 6, 1905–May 18, 1991 BY CLIFFORD A. HOPSON ARON C. WATERS, ONE OF the leading volcanologists of the A twentieth century, passed away on May 18, 1991, at age 86 in Tacoma, Washington. Professor Waters, best known for his pioneering work on the Columbia River Basalt, led the way also in other studies of basaltic volcanism in the Pacific Northwest, the mechanics of basaltic lava flows, the development of lava-tube cave systems, and violently explo- sive basaltic volcanism recorded by maar-type volcanoes. This expertise led directly to his participation in studies of lunar geology as the U.S. space program got underway, including composition and origin of the lunar surface, the assessment of Apollo landing sites, and geologic training of the Apollo astronauts. But it was the breadth of Aaron Waters’s geo- logic accomplishments, rather than specialization, that marks his distinguished career. He made important contributions to our understanding of calc-alkaline volcanism, to grani- toid batholiths and their hypabyssal intrusive complexes, to deep-seated metamorphism, and to the geomorphic evolu- tion of landscapes as well as facets of structural and eco- nomic geology. The Pacific Northwest region was the focus of his diversified studies, and he was regarded for many years as the leading geologic authority on that region. Yet, his studies extended also to other parts of the United States, 4 BIOGRAPHICAL MEMOIRS the world, and the Moon. Professor Waters was known, too, as an outstanding mentor of graduate students, the coau- thor of a leading textbook on the principles of geology, the builder of distinguished geology departments in leading universities, and, late in his career, a valued geologic con- sultant to federal research organizations. BEGINNINGS AND EARLY DIRECTIONS Aaron Waters was born in Waterville, Washington, on May 6, 1905, the son of pioneer parents and the youngest of seven children. His early years were spent on the family homestead and wheat ranch near Waterville, on the west- ern edge of the Columbia River Plateau in the shadow of the Cascade Mountains. He worked on the ranch during his youth and helped to run it at age 12 and 13 during the last years of World War I, when his older brothers went off to war. Following graduation from high school, Aaron en- tered the University of Washington, supporting himself by work in a gas station and other jobs. He began prelaw stud- ies but later changed to geology, partly from his love of the out-of-doors but influenced especially by his college friend Richard E. Fuller, who later became both a distinguished geologist and a long-time director of the Seattle Museum of Art. Waters earned a B.Sc. in geology (cum laude) in 1927 and an M.Sc. in 1928, both from the University of Washing- ton. Waters continued his studies at Yale University, known for its program in geology and development of leaders in that field. He earned his Ph.D. in 1930 under the mentorship of Professor Adolph Knopf. His dissertation, “Geology of the Southern Half of the Chelan [30'] Quadrangle, Wash- ington,” provided the basis for several outstanding papers, and had a lasting influence on the direction of his career. The eastern part of his map area overlapped the Columbia AARON C. WATERS 5 River Plateau, one of the world’s great outpourings of tholei- itic plateau basalt. His doctoral study of those lavas was a first step toward later preeminence in the study of plateau basalts and leadership in establishing the stratigraphy of the Columbia River Basalt Group. The western part of the Ph.D. map area exposed the pre-Tertiary crystalline base- ment of the North Cascades. Here his work encompassed both the bedrock geology and the geomorphology, also lead- ing to important publications. THE STANFORD YEARS: PART 1, 1930-1941 The first taste of university teaching came during his doctoral studies at Yale, where Waters served as instructor in the Geology Department (1928-1930). Teaching proved congenial and complimentary to his research interests, and it was here that his ability to stimulate and motivate stu- dents first blossomed. Here, too, the choice of a career was determined and with his scholarly reputation growing, Wa- ters accepted appointment as assistant professor of geology at Stanford University. He soon rose to professor and re- mained at Stanford for 21 years (1930-1951). Waters’s early research was not yet focused on volcanic rocks but reflected broad interests in Pacific Northwest re- gional geology, interests that spanned igneous and meta- morphic petrology, geomorphology, and tectonics. His stat- ure and reputation grew as the excellence of his published research during the prewar period (1930-1941) became widely recognized and appreciated. Two influential papers soon emerged from continued work on the bedrock geology of his Washington field area: “A Petrologic and Structural Study of the Swakane Gneiss” (1932) and “Petrology of the Con- tact Breccias of the Chelan Batholith” (1938). The latter was the first of several perceptive studies of granitoid plu- ton emplacement and crystallization. 6 BIOGRAPHICAL MEMOIRS Aaron’s interest in geomorphology vied with that in petrology during his early years at Stanford. He deciphered the complex record of Pleistocene glaciation, where the continental ice sheet—advancing across and retreating from the Columbia River Plateau—had dueled with the alpine glaciers flowing down from the Cascade Mountains. Their interaction is brilliantly documented in “Terraces and Cou- lees along the Columbia River near Lake Chelan, Washing- ton” (1933). His “Resurrected Erosion Surface in Central Washington” (1939) was followed later by other papers (e.g., 1955) that describe the geomorphic evidence for Neogene deformation of the southwestern margin of the Columbia River Plateau and uplift of the Cascade Mountains. These and other aspects of Aaron’s early studies in north-central Washington and his coeval projects in Oregon (e.g., 1927, 1929, 1935), along with his exceptional breadth spanning volcanism, plutonism, metamorphism, geomorphology, and tectonics contributed to Aaron’s growing reputation as an expert on regional geology of the Pacific Northwest. Aaron Waters’s arrival at Stanford also ignited a new interest (cataclasites and mylonites) launched by his discov- ery of those distinctive rock types along the San Andreas Fault zone near Crystal Springs Lake. The San Andreas was an enigma back then: It was thought to be a “big” fault from the contrasting rocks on each side, but its huge strike- slip displacement was not yet recognized. Mylonites had first been described along faults in Scotland, so their occur- rence here within the San Andreas Fault zone seemed con- sistent with a fault-related origin. With doctoral student Charles Campbell he studied the rocks petrographically, reviewed the occurrence of similar rocks elsewhere, and devised a descriptive and genetic classification for mylonitic rocks (1934) that remained authoritative for many years. AARON C. WATERS 7 His papers led to a Guggenheim Fellowship for studies in Scotland and Scandinavia in 1938-1939, where other mylonites reinforced his awareness of the role of penetra- tive mechanical deformation in developing fine-grained, banded crystalline rocks. It was therefore no accident that his next major field study, with doctoral student and later distinguished professor Konrad Krauskopf, addressed the unique banded granodioritic rocks that bordered the east- ern side of Washington’s Okanogan Valley. Their resulting paper, “The Protoclastic Border of the Colville Batholith, Washington” (1941), attracted wide interest. Known now as the Okanogan gneiss dome and recognized as one of a semicontinuous belt of metamorphic core complexes that extend from southern Arizona to British Columbia, it records the penetrative deformation of midcrustal crystalline rocks and hypersolidus mushes, later brought to the surface dur- ing crustal extension. But the fundamental role of protoclastic deformation—the penetrative crushing, granulation, and neo- recrystallization of rock in the presence of an interstitial melt phase—first established by Waters and Krauskopf, re- mains valid today. Another aspect of Professor Waters’s Guggenheim studies in Scotland, however, had greater influence on the direc- tion of his future work. His examination of the Tertiary volcanic centers and ring-dike complexes on the Inner Hebrides islands of Mull, Ardnamurchan, and Skye returned his attention to basaltic volcanism and its shallow plutonic connections, This became a focus of his research. THE WAR YEARS (1942-1945) AND AFTERMATH World War II intervened, and Waters took leave from Stanford to join the U.S. Geological Survey’s expanded ex- ploration program for strategic minerals, deemed vital to the war effort. Mercury was among those essential metals 8 BIOGRAPHICAL MEMOIRS whose known reserves were limited, and Waters teamed with other volcanologists—mercury ores being associated with volcanic and subvolcanic rocks—to improve the inventory. His introduction to mercury (quicksilver) deposits had be- gun in the prewar years in southwestern Oregon (1935), and these were now the focus of his war-related fieldwork in Arkansas, Oregon, and elsewhere in the western United States. Resulting U.S. Geological Survey (USGS) publica- tions appeared in 1951. Beyond the primary purpose of strategic mineral assessment, this work extended Waters’s grasp of regional volcanism in Oregon, and the volcanogenic processes that concentrated trace elements. A brief return to ore deposits research came with Waters’s participation in the USGS’s uranium exploration program on the Colorado Plateau (1951-1952), where volcanogenic processes once again proved important (1953).
Recommended publications
  • National Science Board, Staff, Divisional Committees And
    . APPENDIX I NATIONALSCIENCEBOARD, STAFF, D~VISIONALCOMMMTEESAND ADVISORY PANELS NATIONALSCIENCEBOARD Terms Expire May lo,1956 JOHN W. DAVIS, President (ret.), West Virginia State College, Englewood, N. J. EDWIN B. FRED, President, the University of Wisconsin, Madison, Wis. hJRENCE M. GOULD, President, Carleton College, Northfield, Minn. PAUL M. GROSS: Vice President and Dean of Duke University, Duke University, Durham, N. C. GEORGE D. HUMPHREY, President, the University of Wyoming, Laramie, wyo. 0. W. HYMAN, Vice President, the University of Tennessee, Memphis, Term. FREDERICK A. MIDDLEBUSH,~ President Emeritus, University of Missouri, Columbia, MO. EARL P. STJWENSON,~ President, Arthur D. Little, Inc., Cambridge, Mass. Terms Expire May lo,1958 SOPHIE D. ABERLE,~ Special Research Director, the University of New Mexico, Albuquerque, N. Mex. CHESTER I. BARN~,~ Chairman of the Board, President (ret.), Rocke- feller Foundation, New York, N. Y. ROBERT P. BARNES, Professor of Chemistry, Howard University, Washing- ton, D. C. DETLEV W. BRONIC,~ Vice Chairman of the Board and Chairman of the Executive Committee, President, National Academy of Sciences, Wash- ington, D. C., and President, Rockefeller Institute for Medical Research, New York, N. Y. GERTY T. Coar, Professor of Biological Chemistry, School of Medicine, Washington University, St. Louis, MO. CHARLES DOLLARD, President, Carnegie Corp. of New York, New York, N. Y. ROBERT F. LOEB,~ Bard Professor of Medicine, College of Physicians and Surgeons, Columbia University, New York, N. Y. ANDREY A. POTTER, Dean Emeritus of Engineering, Purdue University, Lafayette, Ind. Terms Expire May 10, 1960 RWER ADAMS, Department of Chemistry and Chemical Engineering, Uni- versity of Illinois, Urbana, Ill. 60 FOURTE ANNUAL REPORT 61 THEODORE M.
    [Show full text]
  • 2009 Medals & Awards Mary C. Rabbitt History of Geology
    2009 MEDALS & AWARDS MARY C. RABBITT emeritus since 2004. During his time at But there is more. As he is credited Calvin he was for a year a Fellow at the to be in several web sites, he is a noted HISTORY OF Calvin Center for Christian Scholarship. conservative evangelical Christian who is GEOLOGY AWARD He is a member of GSA, the Mineralogical also a geologist—and is a fine example of Society of America, the American Scientific both. As such, he has access to venues that Presented to Davis A. Young Affiliation, the Affiliation of Christian few of us can address, and is a spokesman Geologists, of which he has been president, for our science with a unique authority. His and the International Commission on the reviews of important books in the history of History of the Geological Sciences. geology speak to a wider audience than many In his long teaching career, I’m sure of us can reach. Dave will tell us more of his Dave has steered many a young person to journey. The Rabbitt Award is most fitting geology, and his department has just instituted recognition of Davis Young. a student Summer Research Fellowship in his name. He co-led a course on Hawaiian geology in the best of places, Hawaii itself. Response by Davis A. Young Reading the program for that, I envy the My profoundest gratitude to the History students who were able to take part in it. With of Geology Division for bestowing this student help, he has also assisted with the honor on me.
    [Show full text]
  • History of Geology
    FEBRUARY 2007 PRIMEFACT 563 (REPLACES MINFACT 60) History of geology Mineral Resources Early humans needed a knowledge of simple geology to enable them to select the most suitable rock types both for axe-heads and knives and for the ornamental stones they used in worship. In the Neolithic and Bronze Ages, about 5000 to 2500 BC, flint was mined in the areas which are now Belgium, Sweden, France, Portugal and Britain. While Stone Age cultures persisted in Britain until after 2000 BC, in the Middle East people began to mine useful minerals such as iron ore, tin, clay, gold and copper as early as 4000 BC. Smelting techniques were developed to make the manufacture of metal tools possible. Copper was probably the earliest metal to be smelted, that is, extracted from its ore by melting. Copper is obtained easily by reducing the green copper carbonate mineral malachite, itself regarded as a precious stone. From 4000 BC on, the use of clay for brick-making became widespread. The Reverend William Branwhite Clarke (1798-1878), smelting of iron ore for making of tools and the ‘father’ of geology in New South Wales weapons began in Asia Minor at about 1300 BC but did not become common in Western Europe until Aristotle believed volcanic eruptions and nearly 500 BC. earthquakes were caused by violent winds escaping from the interior of the earth. Since earlier writers had ascribed these phenomena to The classical period supernatural causes, Aristotle's belief was a By recognising important surface processes at marked step forward. Eratosthenes, a librarian at work, the Greek, Arabic and Roman civilisations Alexandria at about 200 BC, made surprisingly contributed to the growth of knowledge about the accurate measurements of the circumference of earth.
    [Show full text]
  • PDF— Granite-Greenstone Belts Separated by Porcupine-Destor
    C G E S NT N A ER S e B EC w o TIO ok N Vol. 8, No. 10 October 1998 es st t or INSIDE Rel e • 1999 Section Meetings ea GSA TODAY Rocky Mountain, p. 25 ses North-Central, p. 27 A Publication of the Geological Society of America • Honorary Fellows, p. 8 Lithoprobe Leads to New Perspectives on 70˚ -140˚ 70˚ Continental Evolution -40˚ Ron M. Clowes, Lithoprobe, University -120˚ of British Columbia, 6339 Stores Road, -60˚ -100˚ -80˚ Vancouver, BC V6T 1Z4, Canada, 60˚ Wopmay 60˚ [email protected] Slave SNORCLE Fred A. Cook, Department of Geology & Thelon Rae Geophysics, University of Calgary, Calgary, Nain Province AB T2N 1N4, Canada 50˚ ECSOOT John N. Ludden, Centre de Recherches Hearne Pétrographiques et Géochimiques, Taltson Vandoeuvre-les-Nancy, Cedex, France AB Trans-Hudson Orogen SC THOT LE WS Superior Province ABSTRACT Cordillera AG Lithoprobe, Canada’s national earth KSZ o MRS 40 40 science research project, was established o Grenville Province in 1984 to develop a comprehensive Wyoming Penokean GL -60˚ understanding of the evolution of the -120˚ Yavapai Province Orogen Appalachians northern North American continent. With rocks representing 4 b.y. of Earth -100˚ -80˚ history, the Canadian landmass and off- Phanerozoic Proterozoic Archean shore margins provide an exceptional 200 Ma - present 1100 Ma 3200 - 2650 Ma opportunity to gain new perspectives on continental evolution. Lithoprobe’s 470 - 275 Ma 1300 - 1000 Ma 3400 - 2600 Ma 10 study areas span the country and 1800 - 1600 Ma 3800 - 2800 Ma geological time. A pan-Lithoprobe syn- 1900 - 1800 Ma 4000 - 2500 Ma thesis will bring the project to a formal conclusion in 2003.
    [Show full text]
  • SIO Biographical Files
    http://oac.cdlib.org/findaid/ark:/13030/c8rn3dbg No online items SIO Biographical Files Special Collections & Archives, UC San Diego Special Collections & Archives, UC San Diego Copyright 2015 9500 Gilman Drive La Jolla 92093-0175 [email protected] URL: http://libraries.ucsd.edu/collections/sca/index.html SIO Biographical Files SAC 0005 1 Descriptive Summary Languages: English Contributing Institution: Special Collections & Archives, UC San Diego 9500 Gilman Drive La Jolla 92093-0175 Title: SIO Biographical Files Identifier/Call Number: SAC 0005 Physical Description: 31 Linear feet(78 archives boxes) Date (inclusive): 1850-2013 (bulk 1910-2011) Abstract: The collection contains biographical information about Scripps Institution of Oceanography (SIO) students, faculty, staff, and other individuals associated with SIO or with the history of oceanography. Scope and Content of Collection The collection contains biographical information about Scripps Institution of Oceanography (SIO) faculty, staff, students, and other individuals associated with SIO or with the history of oceanography, collected by SIO Archives staff. The files include biographies, obituaries, bibliographies, correspondence, photographs, memoirs, oral histories, newspaper clippings, press releases, articles, and other sources of information. The collection is arranged in two separate series: materials collected before 1981, and materials collected from 1981 to 2013. The Library no longer adds to the biographical information files. MATERIALS COLLECTED PRE-1981: This section of the collection contains biographical materials, including personal papers and correspondence, gathered by Elizabeth Shor, the acting SIO archivist, from the 1970s to 1981. Shor arranged materials alphabetically by the surname of the subject. The bulk of the files contain correspondence and the personal and professional papers of individual SIO faculty and staff who transferred their materials to the Archives.
    [Show full text]
  • Geological Survey
    imiF.NT OF Tim BULLETIN UN ITKI) STATKS GEOLOGICAL SURVEY No. 115 A (lECKJKAPHIC DKTIOXARY OF KHODK ISLAM; WASHINGTON GOVKRNMKNT PRINTING OFF1OK 181)4 LIBRARY CATALOGUE SLIPS. i United States. Department of the interior. (U. S. geological survey). Department of the interior | | Bulletin | of the | United States | geological survey | no. 115 | [Seal of the department] | Washington | government printing office | 1894 Second title: United States geological survey | J. W. Powell, director | | A | geographic dictionary | of | Rhode Island | by | Henry Gannett | [Vignette] | Washington | government printing office 11894 8°. 31 pp. Gannett (Henry). United States geological survey | J. W. Powell, director | | A | geographic dictionary | of | Khode Island | hy | Henry Gannett | [Vignette] Washington | government printing office | 1894 8°. 31 pp. [UNITED STATES. Department of the interior. (U. S. geological survey). Bulletin 115]. 8 United States geological survey | J. W. Powell, director | | * A | geographic dictionary | of | Ehode Island | by | Henry -| Gannett | [Vignette] | . g Washington | government printing office | 1894 JS 8°. 31pp. a* [UNITED STATES. Department of the interior. (Z7. S. geological survey). ~ . Bulletin 115]. ADVERTISEMENT. [Bulletin No. 115.] The publications of the United States Geological Survey are issued in accordance with the statute approved March 3, 1879, which declares that "The publications of the Geological Survey shall consist of the annual report of operations, geological and economic maps illustrating the resources and classification of the lands, and reports upon general and economic geology and paleontology. The annual report of operations of the Geological Survey shall accompany the annual report of the Secretary of the Interior. All special memoirs and reports of said Survey shall be issued in uniform quarto series if deemed necessary by tlie Director, but other­ wise in ordinary octavos.
    [Show full text]
  • Petrology, Mineralogy, and Geochemistry Northern California
    Petrology, Mineralogy, and Geochemistry of the Lower Coon Mountain Pluton, Northern California, with Respect to the Di.stribution of Platinum-Group Elements Petrology, Mineralogy, and Geochemistry of the Lower Coon Mountain Pluton, Northern California, with Respect to the Distribution of Platinum-Group Elements By NORMAN J PAGE, FLOYD GRAY, and ANDREW GRISCOM U.S. GEOLOGICAL SURVEY BULLETIN 2014 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Text edited by George Havach Illustrations edited by Carol L. Ostergren UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25286 Denver, CO 80225 Library of Congress Cataloging in Publication Data Page, Norman J Petrology, mineralogy, and geochemistry of the Lower Coon Mountain pluton, northern California, with respect to the distribution of platinum-group elements I by Norman J Page, Floyd Gray, and Andrew Griscom. p. em.- (U.S. Geological Survey bulletin ; 2014) Includes bibliographical references. 1. Rocks, Igneous-California-Del Norte County. 2. Geochemistry­ California-Del Norte County. I. Gray, Floyd. II. Griscom, Andrew. Ill. Title. IV. Series. QE75.89 no. 2014 [QE461] 557.3 s-dc20 92-27975 [552'.3'0979411] CIP CONTENTS Abstract 1 Introduction 2 Regional geologic setting 2 Geology 2 Shape, size,
    [Show full text]
  • Environmental Science Challenge for the Seventies
    Environmental Science Challenge for the Seventies NATIONAL SCIENCE BOARD 1971 IVAltIliJiTit4iU1J REPORT OF THE NATIONAL SCIENCE BOARD NATIONAL SCIENCE BOARD NATIONAL SCIENCE FOUNDATION 1971 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402- Price 40 cents LETTER OF TRANSMITTAL January 31, 1971 My Dear Mr. President: It is an honor to transmit to you this Report, prepared in re­ sponse to Section 4(g) of the National Science Foundation Act, as amended by Public Law 90-407, which requires the National Sci­ ence Board to submit annually an appraisal of the status and health of science, as well as that of the related matters of manpower and other resources, in reports to be forwarded to the Congress. This is the third report of this series. In choosing environmental science as the topic of this Report, the National Science Board hopes to focus attention on a critical aspect of environmental concern, one that is frequently taken for granted, whose status is popularly considered to be equivalent to that of science generally, and yet one whose contribution to human welfare will assume rapidly growing importance during the decades immediately ahead. The National Science Board strongly supports the many recent efforts of the Executive Branch, the Congress, and other public and private organizations to deal with the bewildering array of environmental problems that confront us all. Many of these prob­ lems can be reduced in severity through the use of today's science and technology by an enlightened citizenry. This is especially true of many forms of pollution and environmental degradation result­ ing from overt acts of man.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE a New
    UNIVERSITY OF CALIFORNIA RIVERSIDE A New Species of an Enigmatic Fossil Taxon: Ischadites n. sp., a Middle Ordovician Receptaculitid From the Great Basin, Western USA A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Geological Sciences by Sara E Henry June 2014 Thesis Committee: Dr. Mary L. Droser, Chairperson Dr. Nigel C. Hughes Dr. Richard Minnich Copyright by Sara E Henry 2014 The Thesis of Sara E Henry is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Mary L. Droser, for her continuous support throughout my graduate studies, field work, and research. I’d additionally like to thank the rest of my committee: Dr. Nigel C. Hughes and Dr. Richard Minnich for their encouragement, insight, and guidance. Dr. Ganqing Jiang of the University of Nevada, Las Vegas, assisted with stratigraphic measurements and provided valuable consultation on sedimentological interpretation in the field. Illustrations of Ischadites n. sp. were produced by my very talented brother, Mr. Keith R. Henry. Several field assistants allowed for large bulk sampling of fossils over multiple field work excursions: T. Beck, M. Nonu, R. Theroux, and J. Minor. Special thanks to L. Graham and T. Beck for lab work assistance. Field work required for this project was funded by the Geological Society of America, the Society for Sedimentary Geology, and the Gulf Coast Section of the Society for Sedimentary Geology. Lastly, I have to thank my parents, Kim and Susan Henry, for their unwavering support, patience, and encouragement.
    [Show full text]
  • The EERI Oral History Series
    CONNECTIONS The EERI Oral History Series Robert E. Wallace CONNECTIONS The EERI Oral History Series Robert E. Wallace Stanley Scott, Interviewer Earthquake Engineering Research Institute Editor: Gail Hynes Shea, Albany, CA ([email protected]) Cover and book design: Laura H. Moger, Moorpark, CA Copyright ©1999 by the Earthquake Engineering Research Institute and the Regents of the University of California. All rights reserved. All literary rights in the manuscript, including the right to publish, are reserved to the Earthquake Engineering Research Institute and the Bancroft Library of the University of California at Berkeley. No part may be reproduced, quoted, or transmitted in any form without the written permission of the executive director of the Earthquake Engi- neering Research Institute or the Director of the Bancroft Library of the University of California at Berkeley. Requests for permission to quote for publication should include identification of the specific passages to be quoted, anticipated use of the passages, and identification of the user. The opinions expressed in this publication are those of the oral history subject and do not necessarily reflect the opinions or policies of the Earthquake Engineering Research Institute or the University of California. Published by the Earthquake Engineering Research Institute 499 14th Street, Suite 320 Oakland, CA 94612-1934 Tel: (510) 451-0905 Fax: (510) 451-5411 E-Mail: [email protected] Web site: http://www.eeri.org EERI Publication No.: OHS-6 ISBN 0-943198-99-2 Library of Congress Cataloging-in-Publication Data Wallace, R. E. (Robert Earl), 1916- Robert E. Wallace / Stanley Scott, interviewer. p. cm – (Connections: the EERI oral history series ; 7) (EERI publication ; no.
    [Show full text]
  • Syllabus: Petrology of Igneous and Metmorphic
    Course Syllabus GEOL 333 PETROLOGY OF IGNEOUS AND METAMORPHIC ROCKS Course Description: Study of the properties and genesis of two major rock groups. Megascopic and microscopic techniques in rock classification. Environments of formation. Case studies from the Maryland Piedmont. Field trips required. Six contact hours (three lecture hours and three laboratory hours), four credits. Prerequisite: GEOL 331. Schedule of lecture and laboratory topics: subject to change with notice: WEEK MONDAY: Laboratory Topic WEDNESDAY: Lecture/Lab Topic TEXT Types of Intrusions; Composition, Introduction to Course; Igneous 1/30-2/1 Textures & Structures of Igneous 1–3 Rocks in Hand Sample Rocks; Classification Volcanism; Formation of Magma; 2/6-8 Igneous Textures in Thin Section 4–6 Crystallization of Magma Igneous Rocks of the Oceanic 2/13-15 Felsic Extrusive Rocks 8 Lithosphere Intermediate and Mafic Extrusive Igneous Rocks of Convergent 2/20-22 9,10 Rocks Margins; Layered Mafic Intrusions 2/27-29 Felsic Intrusive Rocks Mafic Intrusive Rocks 3/5-7 Work on Igneous Case Study Ellicott City Field Trip 3/12-14 Work on Igneous Case Study Igneous Case Study due 3/19-21 SPRING BREAK Metamorphic Isograds, Facies, P-T 3/26-28 Quartz Microstructures Evolution; Metamorphic Textures and 17,18 Classification Metamorphic Assemblages, 4/2-4 Metamorphic Index Minerals 19-20 Reactions, and Equilibrium Metamorphism of Mafic & 4/9-11 Foliated Metamorphic Rocks 21 Ultramafic Rocks Metamorphism of Aluminous Clastic 4/16-18 Non-foliated Metamorphic Rocks 22 Rocks 4/23-26 Determining P-T-t Histories Maryland Piedmont: Lang articles 4/30-5/2 Work on Piedmont Project Hunt Valley Field Trip 5/7-9 Work on Piedmont Project Work on Piedmont Project 5/14 Present Piedmont Project Piedmont Project due Friday, May 18th, 8:00 – 10:00 a.m.
    [Show full text]
  • Geothermometry of Selected Montana Hot Spring Waters by Michael
    Geothermometry of selected Montana hot spring waters by Michael Bernard Kaczmarek A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE with concentration in Geology Montana State University © Copyright by Michael Bernard Kaczmarek (1974) Abstract: The base temperature of hot-water dominated hydro-thermal systems can be quantitatively estimated using two different methods. One method uses the concentration of dissolved silica in the discharge wasters in equilibrium with respect to quarts. The other method is based on the ha, K, and Ca concentrations in the discharge waters in equilibrium with solid mineral phases in the wall rocks. Experimental studies and practical applications of these two hydrogeothermometers have been largely limited to the temperature range of 200 to 360°C. This paper presents some results of application of both methods in the temperature range 15 to 150°C. Dissolved silica calculated base temperatures are reliable for undiluced thermal waters in the temperature range studied. Sources of error are cold water dilution of thermal waters and assimilation of silica from amorphous silica in wall rocks. Base temperatures calculated from Na, K, and Ca concentrations in discharge waters are generally inaccurate. Errors in the calculated temperatures result from the fact that net water/rock reactions in the temperature range 15 to 150°C may be significantly different from those in the range 200 to 360°C, Net water/ rock reactions for the temperature range 15 to 150°C are presented here and the importance of E-mica versus kaolinite mineral phase stability is discussed.
    [Show full text]