Remarks on the Milnor Conjecture for Schemes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Slices of Hermitian K-Theory and Milnor's Conjecture on Quadratic Forms
Slices of hermitian K-theory and Milnor’s conjecture on quadratic forms Oliver R¨ondigs Paul Arne Østvær October 15, 2018 Abstract We advance the understanding of K-theory of quadratic forms by computing the slices of the motivic spectra representing hermitian K-groups and Witt-groups. By an explicit computation of the slice spectral sequence for higher Witt-theory, we prove Milnor’s conjecture relating Galois cohomology to quadratic forms via the filtration of the Witt ring by its fundamental ideal. In a related computation we express hermitian K-groups in terms of motivic cohomology. Contents 1 Introduction 2 2 Slices and the slice spectral sequence 4 3 Algebraic and hermitian K-theory 8 4 Slices 11 4.1 Algebraic K-theory..................................... 11 4.2 Homotopy orbit K-theory ................................. 11 4.3 Hermitian K-theory .................................... 14 4.4 Themysterioussummandistrivial . ......... 17 4.5 HigherWitt-theory............................... ...... 21 5 Differentials 21 5.1 Mod-2 algebraic K-theory................................. 21 arXiv:1311.5833v2 [math.KT] 30 May 2017 5.2 Hermitian K-theory,I ................................... 23 5.3 HigherWitt-theory............................... ...... 25 5.4 Hermitian K-theory,II................................... 27 6 Milnor’s conjecture on quadratic forms 28 7 Hermitian K-groups 36 A Maps between motivic Eilenberg-MacLane spectra 40 1 1 Introduction Suppose that F is a field of characteristic char(F ) = 2. In [33] the Milnor K-theory of F is defined 6 in terms of generators and relations by KM (F )= T ∗F ×/(a (1 a)); a = 0, 1. ∗ ⊗ − 6 Here T ∗F × is the tensor algebra of the multiplicative group of units F ×. -
A1-Algebraic Topology
A1-algebraic topology Fabien Morel Abstract. We present some recent results in A1-algebraic topology, which means both in A1-homotopy theory of schemes and its relationship with algebraic geometry. This refers to the classical relationship between homotopy theory and (differential) topology. We explain several examples of “motivic” versions of classical results: the theory of the Brouwer degree, the classification of A1-coverings through the A1-fundamental group, the Hurewicz Theorem and the A1-homotopy of algebraic spheres, and the A1-homotopy classification of vector bundles. We also give some applications and perspectives. Mathematics Subject Classification (2000). 14F05, 19E15, 55P. Keywords. A1-homotopy theory, Milnor K-theory, Witt groups. 1. The Brouwer degree Let n ≥ 1 be an integer and let X be a pointed topological space. We shall denote by πn(X) the n-th homotopy group of X. A basic fact in homotopy theory is: Theorem 1.1. Let n ≥ 1, d ≥ 1 be integers and denote by Sn the n-dimensional sphere. n 1) If d<nthen πd (S ) = 0; n 2) If d = n then πn(S ) = Z. A classical proof uses the Hurewicz Theorem and the computation of the integral singular homology of the sphere. Half of this paper is devoted to explain the analogue of these results in A1-homotopy theory [54], [38]. For our purpose we also recall a more geometric proof of 2) inspired by the definition of Brouwer’s degree. Any continuous map Sn → Sn is homotopic to a C∞-differentiable map f : Sn → Sn. By Sard’s theorem, f has at least one regular value x ∈ Sn, so that f −1(x) is a finite set of points in Sn and for each y ∈ f −1(x), the n n differential dfy : Ty(S ) → Tx(S ) of f at y is an isomorphism. -
Cohomological Invariants of Quadratic Forms
COHOMOLOGICAL INVARIANTS FOR QUADRATIC FORMS OVER LOCAL RINGS JEREMY ALLEN JACOBSON Abstract. Let A be local ring in which 2 is invertible and let n be a non- negative integer. We show that the nth cohomological invariant of quadratic forms is a well-defined homomorphism from the nth power of the fundamental ideal in the Witt ring of A to the degree n ´etalecohomology of A with mod 2 coefficients, which is surjective and has kernel the (n+1)th power of the fundamental ideal. This is obtained by proving the Gersten conjecture for Witt groups in an important mixed-characteristic case. Introduction Let A be a local ring with 2 invertible and let W (A) denote the Witt ring of symmetric bilinear forms over A. Let I(A) denote the fundamental ideal in the n Witt ring of A, and let I (A) denote its powers. Recall that a form h1; −a1i ⊗ × h1; −a2i⊗· · ·⊗h1; −ani, where the ai 2 A for all i, is called an n-fold Pfister form and is denoted by hha1; a2; ··· ; anii. When A is a field, a long standing problem in quadratic form theory had been to show that the assignment hha1; a2; ··· ; anii 7! (a1)[(a2)[···[(an) induces a well-defined homomorphism of groups, the so-called nth cohomological invariant n n en(A): I (A) ! Het´ (A; Z=2) and furthermore, to show it induces a bijection n n+1 n en(A): I (A)=I (A) ! Het´ (A; Z=2) of groups. When A is a field, the solution to this problem follows from the af- firmation of Milnor's conjectures on the mod 2 Galois cohomology of fields and on quadratic forms. -
THE ARASON INVARIANT and MOD 2 ALGEBRAIC CYCLES Contents
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 11, Number 1, January 1998, Pages 73{118 S 0894-0347(98)00248-3 THE ARASON INVARIANT AND MOD 2 ALGEBRAIC CYCLES HEL´ ENE` ESNAULT, BRUNO KAHN, MARC LEVINE, AND ECKART VIEHWEG Contents Introduction 73 1. Review of the Arason invariant 75 2. The special Clifford group 76 3. -cohomology of split reductive algebraic groups 78 4. K-cohomology of BG 86 5. KGL(N) and Cliff(n, n)92 6. Two invariants for Clifford bundles 95 7. Snaking a Bloch-Ogus differential 100 8. Proof of Theorem 1 101 9. Application to quadratic forms 102 Appendix A. Toral descent 104 Appendix B. The Rost invariant 108 Appendix C. An amusing example 113 Acknowledgements 116 References 116 Introduction In topology, one associates to a complex quadratic vector bundle E over a topo- logical space X its Stiefel-Whitney classes i wi(E) H (X, Z/2). ∈ These classes are essentially the only characteristic classes attached to qua- dratic bundles: any such bundle is classified by the homotopy class of a map X BO(n, C)wherenis the rank of E. The classifying space BO(n, C)has → a tautological quadratic bundle of rank n,andH∗(BO(n, C), Z/2) is a polyno- mial algebra on the Stiefel-WhitneyE classes of . The same holds in algebraic geometry, whereE to any quadratic vector bundle E over a Z[1/2]-scheme X (a vector bundle provided with a unimodular symmetric bilinear form) one can attach Stiefel-Whitney classes, living in mod 2 ´etale coho- mology [17] i wi(E) H´et(X, Z/2). -
MILNOR K-THEORY and MOTIVIC COHOMOLOGY 1. Introduction A
MILNOR K-THEORY AND MOTIVIC COHOMOLOGY MORITZ KERZ Abstract. These are the notes of a talk given at the Oberwolfach Workshop K-Theory 2006. We sketch a proof of Beilinson’s conjecture relating Milnor K-theory and motivic cohomology. For detailed proofs see [4]. 1. Introduction A — semi-local commutative ring with infinite residue fields k — field Z(n) — Voevodsky’s motivic complex [8] Definition 1.1. M M × ⊗n × K∗ (A) = (A ) /(a ⊗ (1 − a)) a, 1 − a ∈ A n Beilinson conjectured [1]: Theorem 1.2. A/k essentially smooth, |k| = ∞. Then: M n η : Kn (A) −→ Hzar(A, Z(n)) is an isomorphism for n > 0. The formerly known cases are: Remark 1.3. — A=k a field (Nesterenko-Suslin [6], Totaro [10]) — surjectivity of η (Gabber [3], Elbaz-Vincent/M¨uller-Stach [2], Kerz/M¨uller-Stach [5]) — η ⊗ Q is isomorphic (Suslin) — injectivity for A a DVR, n = 3 (Suslin-Yarosh [9]) 2. General idea of proof X = Spec A We have a morphism of Gersten complexes which we know to be exact except possibly M at Kn (A): Date: 7/20/06. The author is supported by Studienstiftung des deutschen Volkes. 1 2 MORITZ KERZ (1) M M M 0 / Kn (A) / ⊕x∈X(0) Kn (x) / ⊕x∈X(1) Kn−1(x) n n n−1 0 / Hzar(A), Z(n)) / ⊕x∈X(0) Hzar(x, Z(n)) / ⊕x∈X(1) Hzar (x, Z(n − 1)) So it suffices to prove: Theorem 2.1 (Main Result). A/k regular, connected, infinite residue fields, F = Q(A). -
The Arason Invariant of Orthogonal Involutions of Degree 12 and 8, and Quaternionic Subgroups of the Brauer Group
Documenta Math. 529 The Arason Invariant of Orthogonal Involutions of Degree 12 and 8, and Quaternionic Subgroups of the Brauer Group To Sasha Merkurjev on his 60th birthday Anne Queguiner-Mathieu´ 1 and Jean-Pierre Tignol2 Received: June 30, 2014 Abstract. Using the Rost invariant for torsors under Spin groups one may define an analogue of the Arason invariant for certain her- mitian forms and orthogonal involutions. We calculate this invari- ant explicitly in various cases, and use it to associate to every or- thogonal involution σ with trivial discriminant and trivial Clifford invariant over a central simple algebra A of even co-index an ele- ment f (σ) in the subgroup F × [A] of H3(F, Q/Z(2)). This invari- 3 · ant f3(σ) is the double of any representative of the Arason invariant 3 × e3(σ) H (F, Q/Z(2))/F [A]; it vanishes when deg A 10 and also when∈ there is a quadratic extension· of F that simultaneously≤ splits A and makes σ hyperbolic. The paper provides a detailed study of both invariants, with particular attention to the degree 12 case, and to the relation with the existence of a quadratic splitting field. As a main tool we establish, when deg(A) = 12, an additive decom- position of (A, σ) into three summands that are central simple alge- bras of degree 4 with orthogonal involutions with trivial discriminant, extending a well-known result of Pfister on quadratic forms of dimen- sion 12 in I3F . The Clifford components of the summands generate a subgroup U of the Brauer group of F , in which every element is rep- resented by a quaternion algebra, except possibly the class of A. -
Theoretic Timeline Converging on Motivic Cohomology, Then Briefly Discuss Algebraic 퐾-Theory and Its More Concrete Cousin Milnor 퐾-Theory
AN OVERVIEW OF MOTIVIC COHOMOLOGY PETER J. HAINE Abstract. In this talk we give an overview of some of the motivations behind and applica- tions of motivic cohomology. We first present a 퐾-theoretic timeline converging on motivic cohomology, then briefly discuss algebraic 퐾-theory and its more concrete cousin Milnor 퐾-theory. We then present a geometric definition of motivic cohomology via Bloch’s higher Chow groups and outline the main features of motivic cohomology, namely, its relation to Milnor 퐾-theory. In the last part of the talk we discuss the role of motivic cohomology in Voevodsky’s proof of the Bloch–Kato conjecture. The statement of the Bloch–Kato conjec- ture is elementary and predates motivic cohomolgy, but its proof heavily relies on motivic cohomology and motivic homotopy theory. Contents 1. A Timeline Converging to Motivic Cohomology 1 2. A Taste of Algebraic 퐾-Theory 3 3. Milnor 퐾-theory 4 4. Bloch’s Higher Chow Groups 4 5. Properties of Motivic Cohomology 6 6. The Bloch–Kato Conjecture 7 6.1. The Kummer Sequence 7 References 10 1. A Timeline Converging to Motivic Cohomology In this section we give a timeline of events converging on motivic cohomology. We first say a few words about what motivic cohomology is. 푝 op • Motivic cohomology is a bigraded cohomology theory H (−; 퐙(푞))∶ Sm/푘 → Ab. • Voevodsky won the fields medal because “he defined and developed motivic coho- mology and the 퐀1-homotopy theory of algebraic varieties; he proved the Milnor conjectures on the 퐾-theory of fields.” Moreover, Voevodsky’s proof of the Milnor conjecture makes extensive use of motivic cohomology. -