Genetics Underlying the Interactions Between Neural Crest Cells and Eye Development

Total Page:16

File Type:pdf, Size:1020Kb

Genetics Underlying the Interactions Between Neural Crest Cells and Eye Development Journal of Developmental Biology Review Genetics Underlying the Interactions between Neural Crest Cells and Eye Development Jochen Weigele 1,2 and Brenda L. Bohnsack 1,2,* 1 Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA; [email protected] 2 Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA * Correspondence: [email protected]; Tel.: +1-312-227-6180; Fax: +1-312-227-9411 Received: 16 October 2020; Accepted: 7 November 2020; Published: 10 November 2020 Abstract: The neural crest is a unique, transient stem cell population that is critical for craniofacial and ocular development. Understanding the genetics underlying the steps of neural crest development is essential for gaining insight into the pathogenesis of congenital eye diseases. The neural crest cells play an under-appreciated key role in patterning the neural epithelial-derived optic cup. These interactions between neural crest cells within the periocular mesenchyme and the optic cup, while not well-studied, are critical for optic cup morphogenesis and ocular fissure closure. As a result, microphthalmia and coloboma are common phenotypes in human disease and animal models in which neural crest cell specification and early migration are disrupted. In addition, neural crest cells directly contribute to numerous ocular structures including the cornea, iris, sclera, ciliary body, trabecular meshwork, and aqueous outflow tracts. Defects in later neural crest cell migration and differentiation cause a constellation of well-recognized ocular anterior segment anomalies such as Axenfeld–Rieger Syndrome and Peters Anomaly. This review will focus on the genetics of the neural crest cells within the context of how these complex processes specifically affect overall ocular development and can lead to congenital eye diseases. Keywords: neural crest; optic cup; coloboma; microphthalmia; Axenfeld-Rieger Syndrome; Peters Anomaly 1. Introduction The neural crest is a migratory stem cell population which contributes to numerous structures in the anterior segment of the eye, including the cornea, iris, sclera, ciliary body, trabecular meshwork, and aqueous outflow tracts [1–6]. The importance of this cell population in anterior segment development is highlighted by examples of potentially blinding diseases such as Axenfeld–Rieger syndrome and Peters anomaly (Figure1A,B) that are due to genetic defects in neural crest cell migration and differentiation [7–11]. In addition, animal models have demonstrated that neural crest cells have critical cell non-autonomous effects. Disruption of signaling in neural crest cells can lead to alterations in neural epithelial-derived optic cup formation resulting in microphthalmia, anophthalmia, and coloboma (Figure1C,D) [ 6,12–14]. However, specific interactions between neural crest cells and the neural epithelial-derived optic cup remain undefined. J. Dev. Biol. 2020, 8, 26; doi:10.3390/jdb8040026 www.mdpi.com/journal/jdb J. Dev. Biol. 2020, 8, 26 2 of 24 J. Dev. Biol. 2020, 8, x 2 of 24 Figure 1.1. ClinicalClinical images images of congenitalcongenital ocularocular anomalies.anomalies. ( (AA)) Axenfeld–Rieger Axenfeld–Rieger syndrome is characterized by by Rieger Rieger Anomaly Anomaly (iris (iris hypoplasia hypoplasia resulting resulting in pseudopolycoria in pseudopolycoria and corectopia and corectopia (white (whitearrowheads)) arrowheads)) and Axenfeld and Axenfeld Anomaly Anomaly (anteriorization (anteriorization of Schwalbe’s of Schwalbe’s line line of ofthe the cornea cornea (posterior (posterior embryotoxon, black arrows) with iris adhesions). These defects ar aree due to abnormal migration and differentiationdifferentiation of of neural neural crest crest cells cells into into the the anterior anterior segment segment of the ofthe eye. eye. Over Over 50% 50%of individuals of individuals with withAxenfeld–Rieger Axenfeld–Rieger syndrome syndrome develop develop glaucoma glaucoma which which often oftenrequires requires surgery surgery such suchas placement as placement of a glaucomaof a glaucoma drainage drainage device device (asterisk). (asterisk). (B) In Peters (B) In anomaly, Peters anomaly, there is there a circumscribed is a circumscribed central corneal central opacificationcorneal opacification (outlined (outlined by dotted by white dotted line) white with line) iris-corneal with iris-corneal adhesions adhesions (black arrowhead). (black arrowhead). These Theseanomalies anomalies are due are to due abnormal to abnormal separation separation of the of le thens lensvesicle vesicle from from the thesurfac surfacee ectoderm ectoderm resulting resulting in absencein absence of ofDescemet’s Descemet’s membrane membrane and and disruption disruption of of neural neural crest crest cell cell migration migration into into the anterior segment. ( (CC), Dand) Colobomas (D) Colobomas are due are todue incomplete to incomplete closure closure of the of ocular the ocular fissure fissure and and can acanffect affect the iris,the iris,zonules, zonules, retina, retina, choroid, choroid, and opticand optic nerve. nerve. Chorioretinal Chorioretinal colobomas colobomas are inferiorare inferior to the to opticthe optic nerve nerve and andare characterizedare characterized by anby areaan area that that isdevoid is devoid of of retina retina and and choroid choroid (C (,C white, white arrows). arrows). InIn thesethese types of coloboma, the macula ((+)+) which accounts for central vision, is typically not aaffected.ffected. Optic nerve colobomas (D, white arrows) can cause severe vision loss especially if the entire optic nerve (outlined by black dotted line) is involved. Although the maculamacula ((+)+) may may not not be be affected, affected, the loss of the ganglion cell axons that comprise the optic nerve limits vision.vision. Neural crest development is a complex process, which is characterized by several landmark events [15–17]. [15–17]. Immediately Immediately after gastrulation, the ectodermal germ layer is subdivided and specified specified through didifferentfferent extracellular signaling systemssystems intointo twotwo territories: the non-neural ectoderm which gives rise to the epidermis and the neural ectoderm, which forms forms the the central central nervous nervous system system [17–20]. [17–20]. These territories are separated by the neural plate border, from which neural crest cells are specifiedspecified during neural tube closure (Figure(Figure2 2))[ [17,20,21].17,20,21]. Unique among stem cell populations, neural crest cells then undergo epithelial-to-mesenchymal transition (EMT), delaminate from the neural tube (Figure3 3),), andand migratemigrate toto didifferentfferent regions of the embryoembryo to give rise to a broad range of tissues and cells (Figures 44 and and5 )[5) [2,22,23].2,22,23]. Each of these su successiveccessive processes, neural plate border induction, neural crest specification,specification, neural crest mi migration,gration, and neural crest differentiation differentiation is controlled by overlapping gene regulatory networks [[15,17,24].15,17,24]. J. Dev. Biol. 2020, 8, 26 3 of 24 J. Dev. Biol. 2020, 8, x 3 of 24 J. Dev. Biol. 2020, 8, x 3 of 24 Figure 2. Neural plate border induction. In neural plate border induction, FGF followed by Notch and FigureFigure 2. Neural 2. Neural plate plate border border induction. induction. In In neural neural plate plate border border induction, FGF FGF followed followed by byNotch Notch and and BMP signaling are expressed in the neural ectoderm while Wnt is expressed in the non-neural BMP signalingBMP signaling are expressed are expressed in the neuralin the ectodermneural ectode whilerm Wntwhile is Wnt expressed is expressed in the non-neuralin the non-neural ectoderm. ectoderm. In the next phases of neurulation and optic groove formation, these signals then induce In the nextectoderm. phases In ofthe neurulation next phases andof neurulation optic groove and formation, optic groove these formation, signals th thenese signals induce then expression induce of expressionexpression of of the the neural neural plate plate border border specifiers, specifiers, Msx1/2, Msx1/2, Zic2, Zic2, and and Tfap2. Tfap2. These These transcription transcription factors, factors, the neural plate border specifiers, Msx1/2, Zic2, and Tfap2. These transcription factors, expressed within expressedexpressed withinwithin thethe neuralneural plateplate border,border, triggetrigger r signalingsignaling cascadescascades thatthat maintainmaintain stemstem cellcell the neural plate border, trigger signaling cascades that maintain stem cell pluripotency and prepare the pluripotencypluripotency and and prepare prepare the the prem premigratoryigratory neural neural crest crest cells cells for for epithelial-mesenchymal epithelial-mesenchymal transition transition premigratory(EMT).(EMT). neural crest cells for epithelial-mesenchymal transition (EMT). Figure 3. Neural crest cell specification. As the neural tube closes, genes including Sox10, Foxd3, Alx1, FigureFigure 3. 3. Neural Neural crest crest cell cell specification. specification. As As the the neural neural tube tube closes, closes, genes genes including including Sox10, Sox10, Foxd3, Foxd3, Alx1, Alx1, Tfap2a,Tfap2a,Tfap2a,Tcof, Tcof,Nlz1 Tcof, Nlz1// 2Nlz1/, and2,2, and Snai1and Snai1/2 Snai1/2/2 induce induce induce neural neural neural crest crest crest cellcell cell identity identity identity
Recommended publications
  • Loss of Mafb and Maf Distorts Myeloid Cell Ratios and Disrupts Fetal Mouse Testis Vascularization and Organogenesisǂ
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441488; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Loss of Mafb and Maf distorts myeloid cell ratios and disrupts fetal mouse testis vascularization and organogenesisǂ 5 Shu-Yun Li1,5, Xiaowei Gu1,5, Anna Heinrich1, Emily G. Hurley1,2,3, Blanche Capel4, and Tony DeFalco1,2* 1Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, 10 OH 45229, USA 2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA 3Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA 15 4Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA 5These authors contributed equally to this work. ǂThis work was supported by the National Institutes of Health (R37HD039963 to BC, R35GM119458 to TD, R01HD094698 to TD, F32HD058433 to TD); March of Dimes (1-FY10- 355 to BC, Basil O’Connor Starter Scholar Award 5-FY14-32 to TD); Lalor Foundation 20 (postdoctoral fellowship to SL); and Cincinnati Children’s Hospital Medical Center (Research Innovation and Pilot funding, Trustee Award, and developmental funds to TD). *Corresponding Author: Tony DeFalco E-mail: [email protected] 25 Address: Division of Reproductive Sciences Cincinnati Children’s Hospital Medical Center 3333 Burnet Avenue, MLC 7045 Cincinnati, OH 45229 USA Phone: +1-513-803-3988 30 Fax: +1-513-803-1160 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441488; this version posted April 26, 2021.
    [Show full text]
  • RBP-J Signaling − Cells Through Notch Novel IRF8-Controlled
    Sca-1+Lin−CD117− Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch −RBP-J Signaling This information is current as of September 25, 2021. Xingxia Liu, Shaoda Ren, Chaozhuo Ge, Kai Cheng, Martin Zenke, Armand Keating and Robert C. H. Zhao J Immunol 2015; 194:4298-4308; Prepublished online 30 March 2015; doi: 10.4049/jimmunol.1402641 Downloaded from http://www.jimmunol.org/content/194/9/4298 Supplementary http://www.jimmunol.org/content/suppl/2015/03/28/jimmunol.140264 http://www.jimmunol.org/ Material 1.DCSupplemental References This article cites 59 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/194/9/4298.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Sca-1+Lin2CD1172 Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch–RBP-J Signaling Xingxia Liu,*,1 Shaoda Ren,*,1 Chaozhuo Ge,* Kai Cheng,* Martin Zenke,† Armand Keating,‡,x and Robert C.
    [Show full text]
  • Expression of Oncogenes ELK1 and ELK3 in Cancer
    Review Article Annals of Colorectal Cancer Research Published: 11 Nov, 2019 Expression of Oncogenes ELK1 and ELK3 in Cancer Akhlaq Ahmad and Asif Hayat* College of Chemistry, Fuzhou University, China Abstract Cancer is the uncontrolled growth of abnormal cells anywhere in a body, ELK1 and ELK3 is a member of the Ets-domain transcription factor family and the TCF (Ternary Complex Factor) subfamily. Proteins in this subfamily regulate transcription when recruited by SRF (Serum Response Factor) to bind to serum response elements. ELK1 and ELK3 transcription factors are known as oncogenes. Both transcription factors are proliferated in a different of type of cancer. Herein, we summarized the expression of transcription factor ELK1 and ELK3 in cancer cells. Keywords: ETS; ELK1; ELK3; Transcription factor; Cancer Introduction The ETS, a transcription factor of E twenty-six family based on a dominant ETS amino acids that integrated with a ~10-basepair element arrange in highly mid core sequence 5′-GGA(A/T)-3′ [1-2]. The secular family alter enormous 28/29 members which has been assigned in human and mouse and similarly the family description are further sub-divided into nine sub-families according to their homology and domain factor [3]. More importantly, one of the subfamily members such as ELK (ETS-like) adequate an N-terminal ETS DNA-binding domain along with a B-box domain that transmit the response of serum factor upon the formation of ternary complex and therefore manifested as ternary complex factors [4]. Further the ELK sub-divided into Elk1, Elk3 (Net, Erp or Sap2) and Elk4 (Sap1) proteins [3,4], which simulated varied proportional of potential protein- protein interactions [4,5].
    [Show full text]
  • National Study of Microphthalmia, Anophthalmia, and Coloboma (MAC
    16 ORIGINAL ARTICLE J Med Genet: first published as 10.1136/jmg.39.1.16 on 1 January 2002. Downloaded from National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology D Morrison, D FitzPatrick, I Hanson, K Williamson, V van Heyningen, B Fleck, I Jones, J Chalmers, H Campbell ............................................................................................................................. J Med Genet 2002;39:16–22 We report an epidemiological and genetic study attempting complete ascertainment of subjects with microphthalmia, anophthalmia, and coloboma (MAC) born in Scotland during a 16 year period beginning on 1 January 1981. A total of 198 cases were confirmed giving a minimum live birth preva- lence of 19 per 100 000. One hundred and twenty-two MAC cases (61.6%) from 115 different fami- See end of article for lies were clinically examined and detailed pregnancy, medical, and family histories obtained. A authors’ affiliations simple, rational, and apparently robust classification of the eye phenotype was developed based on ....................... the presence or absence of a defect in closure of the optic (choroidal) fissure. A total of 85/122 Correspondence to: (69.7%) of cases had optic fissure closure defects (OFCD), 12/122 (9.8%) had non-OFCD, and Dr D FitzPatrick, MRC 25/122 (20.5%) had defects that were unclassifiable owing to the severity of the corneal or anterior Human Genetics Unit, chamber abnormality. Segregation analysis assuming single and multiple incomplete ascertainment, Western General Hospital, respectively, returned a sib recurrence risk of 6% and 10% in the whole group and 8.1% and 13.3% Edinburgh EH4 2XU, UK; in the OFCD subgroup.
    [Show full text]
  • A Retrospective Study on Recognizable Syndromes Associated with Craniofacial Clefts
    Innovative Journal of Medical and Health Science 5:3 May - June (2015) 85 – 91. Contents lists available at www.innovativejournal.in INNOVATIVE JOURNAL OF MEDICAL AND HEALTH SCIENCE Journal homepage:http://innovativejournal.in/ijmhs/index.php/ijmhs A RETROSPECTIVE STUDY ON RECOGNIZABLE SYNDROMES ASSOCIATED WITH CRANIOFACIAL CLEFTS Betty Anna Jose*1, Subramani S A2, Varsha Mokhasi3, Shashirekha M3 *1Anatomy department, 2 Plastic surgery, 3Anatomy department, Vydehi Institute of Medical Sciences & Research Centre, Bangalore, Karnataka. ARTICLE INFO ABSTRACT Corresponding Author: Objective: There are about 300 to 600 syndromes associated with clefts in Betty Anna Jose the craniofacial region. The cleft lip, cleft palate and cleft lip palate are the Anatomy department, most common clefts seen in the craniofacial region. Sometimes these clefts Vydehi Institute of Medical Sciences are associated with other anomalies which are known as syndromic clefts. & Research Centre, Bangalore, The objective of this study is to identify the syndromes associated with the Karnataka. clefts in the craniofacial region. Materials & methods: This retrospective [email protected] study consists of 270 cases of clefts in the craniofacial region. The detailed case history including the maternal history, antenatal, natal, perinatal Key words: Syndrome, Clefts, history and family history were taken from the patients and their parents. Anomalies, Craniofacial Region, Based on the clinical examination, radiological findings and genetic analysis Malformation the different syndromes were identified. Results: 18 syndromic clefts were identified which belong to 10 different syndromes. It shows 6.67% of clefts are syndromic and remaining are nonsyndromic clefts. Conclusion: Median cleft face syndrome, Van der woude syndrome and Pierre Robin sequence are the common syndromes associated with the clefts in the craniofacial DOI:http://dx.doi.org/10.15520/ijm region.
    [Show full text]
  • Rare Facial Clefts 77 Srinivas Gosla Reddy and Avni Pandey Acharya
    Rare Facial Clefts 77 Srinivas Gosla Reddy and Avni Pandey Acharya 77.1 Introduction logic lines. These clefts can be either complete or incomplete and can seem alone or in relationship with other facial clefts. Since ages, congenital deformities were considered evil and Seriousness of craniofacial clefts fuctuates extensively, run- wizard, and infants were abandoned to die in isolation. Jean ning from a scarcely distinguishable indent on the lip or on Yperman (1295–1351) valued the congenital origin of the the nose or a scar-like structure on the cheek to an extensive clefts. He additionally characterized the different types of partition of all layers of facial structures. Notwithstanding the condition and set out the standards for their treatment. one parted sort can show on one side of the face, while an Fabricius ab Aquapendente (1537–1619) and William His of alternate kind is available on the other side [2, 3]. college of Leipzig independently researched and published Craniofacial clefts need comprehensive rehabilitation. embryological premise of clefts [1]. Past the physical consequences for the patient, they have Laroche was the frst to separate between common cleft monstrous mental and fnancial impacts on both patient and lip or harelip and clefts of the cheek. Further qualifcation family, prompting disturbance of psychosocial working and was made in 1864 by Pelvet, who isolated oblique clefts diminished nature of life [4, 5]. including the nose from the other cheek clefts, and drawing Cleft repair is a necessary part of the modern on Ahlfeld’s work, in 1887 Morian gathered 29 cases from craniomaxillo- facial surgical spectrum and remains a chal- the writing, contributing 7 instances of his own.
    [Show full text]
  • Pancreatic Beta Cells Express a Diverse Set Ofhomeobox Genes
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 12203-12207, December 1994 Biochemistry Pancreatic beta cells express a diverse set of homeobox genes (Lim motif/Lmx gene/Nkx gene/Alx gene/Vdx homeobox) ABRAHAM RUDNICK*t, THAI YEN LING*, HIROKI ODAGIRI*, WILLIAM J. RUTTER*t, AND MICHAEL S. GERMAN*t§ *Hormone Research Institute and Departments of tMedicine and tBiochemistry and Biophysics, University of California, San Francisco, CA 94143-0534 Contributed by William J. Rutter, August 22, 1994 ABSTRACT Homeobox genes, which are found in all RIPE3B element (16) and the P1 element (8) [also called CT1 eukaryotic organisms, encode transcriptional regulators in- (9)] lie on either side of the IEB1 element. The A/T elements volved in cell-type differentiation and development. Several and the E boxes function synergistically: none of the ele- homeobox genes encoding homeodomain proteins that bind and ments can function in isolation, but combination of an E box activate the insulin gene promoter have been described. In an and an A/T element results in dramatic activation of tran- attempt to identify additional beta-cell homeodomain proteins, scription (11, 16, 19). A number of complexes from beta-cell we designed primers based on the sequences of beta-cell nuclei bind to the A/T elements (6, 8-11, 16, 19). Some homeobox genes cdx3 and lmxl and the Drosophia homeodo- proteins in these complexes have been cloned, and they all main protein Antennapedia and used these primers to amplffy contain homeodomains. The A/T-binding proteins that have inserts by PCR from an insulinoma cDNA library.
    [Show full text]
  • Leveraging Mouse Chromatin Data for Heritability Enrichment Informs Common Disease Architecture and Reveals Cortical Layer Contributions to Schizophrenia
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Research Leveraging mouse chromatin data for heritability enrichment informs common disease architecture and reveals cortical layer contributions to schizophrenia Paul W. Hook1 and Andrew S. McCallion1,2,3 1McKusick-Nathans Department of Genetic Medicine, 2Department of Comparative and Molecular Pathobiology, 3Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA Genome-wide association studies have implicated thousands of noncoding variants across common human phenotypes. However, they cannot directly inform the cellular context in which disease-associated variants act. Here, we use open chro- matin profiles from discrete mouse cell populations to address this challenge. We applied stratified linkage disequilibrium score regression and evaluated heritability enrichment in 64 genome-wide association studies, emphasizing schizophrenia. We provide evidence that mouse-derived human open chromatin profiles can serve as powerful proxies for difficult to ob- tain human cell populations, facilitating the illumination of common disease heritability enrichment across an array of hu- man phenotypes. We demonstrate that signatures from discrete subpopulations of cortical excitatory and inhibitory neurons are significantly enriched for schizophrenia heritability with maximal enrichment in cortical layer V excitatory neu- rons. We also show that differences between schizophrenia and bipolar disorder are concentrated in excitatory neurons in cortical layers II-III, IV, and V, as well as the dentate gyrus. Finally, we leverage these data to fine-map variants in 177 schiz- ophrenia loci nominating variants in 104/177. We integrate these data with transcription factor binding site, chromatin in- teraction, and validated enhancer data, placing variants in the cellular context where they may modulate risk.
    [Show full text]
  • A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2007-12-28 A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs: a Dissertation Frederick Albert Schroeder University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Amino Acids, Peptides, and Proteins Commons, Cells Commons, Enzymes and Coenzymes Commons, Genetic Phenomena Commons, Mental Disorders Commons, Nervous System Commons, and the Therapeutics Commons Repository Citation Schroeder FA. (2007). A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs: a Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/7bk0-a687. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/370 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. A Dissertation Presented by Frederick Albert Schroeder Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences Worcester, Massachusetts, USA in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 28, 2007 Program in Neuroscience A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs A Dissertation Presented By Frederick Albert Schroeder Approved as to style and content by: _____________________________________ Alonzo Ross, Ph.D., Chair of Committee _____________________________________ Pradeep Bhide, Ph.D., Member of Committee _____________________________________ Craig L.
    [Show full text]
  • Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in A
    Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in a novel member of the chromodomain gene family cause CHARGE syndrome. L.E.L.M. Vissers1, C.M.A. van Ravenswaaij1, R. Admiraal2, J.A. Hurst3, B.B.A. de Vries1, I.M. Janssen1, W.A. van der Vliet1, E.H.L.P.G. Huys1, P.J. de Jong4, B.C.J. Hamel1, E.F.P.M. Schoenmakers1, H.G. Brunner1, A. Geurts van Kessel1, J.A. Veltman1. 1) Dept Human Genetics, UMC Nijmegen, Nijmegen, Netherlands; 2) Dept Otorhinolaryngology, UMC Nijmegen, Nijmegen, Netherlands; 3) Dept Clinical Genetics, The Churchill Hospital, Oxford, United Kingdom; 4) Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, CA. CHARGE association denotes the non-random occurrence of ocular coloboma, heart defects, choanal atresia, retarded growth and development, genital hypoplasia, ear anomalies and deafness (OMIM #214800). Almost all patients with CHARGE association are sporadic and its cause was unknown. We and others hypothesized that CHARGE association is due to a genomic microdeletion or to a mutation in a gene affecting early embryonic development. In this study array- based comparative genomic hybridization (array CGH) was used to screen patients with CHARGE association for submicroscopic DNA copy number alterations. De novo overlapping microdeletions in 8q12 were identified in two patients on a genome-wide 1 Mb resolution BAC array. A 2.3 Mb region of deletion overlap was defined using a tiling resolution chromosome 8 microarray. Sequence analysis of genes residing within this critical region revealed mutations in the CHD7 gene in 10 of the 17 CHARGE patients without microdeletions, including 7 heterozygous stop-codon mutations.
    [Show full text]
  • The Drosophila Eye
    Downloaded from genesdev.cshlp.org on October 10, 2021 - Published by Cold Spring Harbor Laboratory Press mirror encodes a novel PBX-class homeoprotein that functions in the definition of the dorsal-ventral border in the Drosophila eye Helen McNeill, 1 Chung-Hui Yang, 1 Michael Brodsky, 2 Josette Ungos, ~ and Michael A. Simon ~'3 1Department of Biological Sciences, Stanford University, Stanford, California 94305 USA; ZDepartment of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA The Drosophila eye is composed of dorsal and ventral mirror-image fields of opposite chiral forms of ommatidia. The boundary between these fields is known as the equator. We describe a novel gene, mirror (mrr), which is expressed in the dorsal half of the eye and plays a key role in forming the equator. Ectopic equators can be generated by juxtaposing mrr expressing and nonexpressing cells, and the path of the normal equator can be altered by changing the domain of mrr expression. These observations suggest that mrr is a key component in defining the dorsal-ventral boundary of tissue polarity in the eye. In addition, loss of mrr function leads to embryonic lethality and segmental defects, and its expression pattern suggests that it may also act to define segmental borders. Mirror is a member of the class of homeoproteins defined by the human proto-oncogene PBX1. mrr is similar to the Iroquois genes ara and caup and is located adjacent to them in this recently described homeotic cluster. [Key Words: Drosophila; eye development; polarity; compartment; border] Received January 14, 1997; revised version accepted March 4, 1997.
    [Show full text]
  • The Genetic Basis of Mammalian Neurulation
    REVIEWS THE GENETIC BASIS OF MAMMALIAN NEURULATION Andrew J. Copp*, Nicholas D. E. Greene* and Jennifer N. Murdoch‡ More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects. 6 ECTODERM Neurulation is a fundamental event of embryogenesis distinct locations in the brain and spinal cord .By The outer of the three that culminates in the formation of the neural tube, contrast, the mechanisms that underlie the forma- embryonic (germ) layers that which is the precursor of the brain and spinal cord. A tion, elevation and fusion of the neural folds have gives rise to the entire central region of specialized dorsal ECTODERM, the neural plate, remained elusive. nervous system, plus other organs and embryonic develops bilateral neural folds at its junction with sur- An opportunity has now arisen for an incisive analy- structures. face (non-neural) ectoderm. These folds elevate, come sis of neurulation mechanisms using the growing battery into contact (appose) in the midline and fuse to create of genetically targeted and other mutant mouse strains NEURAL CREST the neural tube, which, thereafter, becomes covered by in which NTDs form part of the mutant phenotype7.At A migratory cell population that future epidermal ectoderm.
    [Show full text]