RESEARCH ARTICLE Kinesin motility is driven by subdomain dynamics Wonmuk Hwang1,2,3*, Matthew J Lang4,5*, Martin Karplus6,7* 1Department of Biomedical Engineering, Texas A&M University, College Station, United States; 2Department of Materials Science & Engineering, Texas A&M University, College Station, United States; 3School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea; 4Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States; 5Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States; 6Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States; 7Laboratoire de Chimie Biophysique, ISIS, Universite´ de Strasbourg, Strasbourg, France Abstract The microtubule (MT)-associated motor protein kinesin utilizes its conserved ATPase head to achieve diverse motility characteristics. Despite considerable knowledge about how its ATPase activity and MT binding are coupled to the motility cycle, the atomic mechanism of the core events remain to be found. To obtain insights into the mechanism, we performed 38.5 microseconds of all-atom molecular dynamics simulations of kinesin-MT complexes in different nucleotide states. Local subdomain dynamics were found to be essential for nucleotide processing. Catalytic water molecules are dynamically organized by the switch domains of the nucleotide binding pocket while ATP is torsionally strained. Hydrolysis products are ’pulled’ by switch-I, and a new ATP is ’captured’ by a concerted motion of the a0/L5/switch-I trio. The dynamic and wet kinesin-MT interface is tuned for rapid interactions while maintaining specificity. The proposed *For correspondence: mechanism provides the flexibility necessary for walking in the crowded cellular environment.
[email protected] (WH); DOI: https://doi.org/10.7554/eLife.28948.001
[email protected] (MJL);
[email protected] (MK) Competing interests: The authors declare that no Introduction competing interests exist.