«i2¥ 3 n

NEDOBIS T98060 H * me 11 •

m D^ b (STEP

:b ^(Dfz&b(DmmZ, ISO-10303 (STEP: STanda^imw-tofetrange of Product model data) 6 ^TC ^ 6 #,

0^11 £ Integrated Application Activity Model (I-AAM) t. LX%.t.&)fzo ^ tz, J£C0$aM'& mvt(Dim±(DMmt lxmmlx iso /tci84/sc4 £mxm% Ltz0 I-AAM 0EHI2: B*0BS--X£#il LX, lM$tX&mi~~£MxmxmW&T't

^(Dmklt 3 @0 TC184/SC4 N tWt- V^t'sVk. LX^MZtl fZc nwi mm* b*iLxm^mm^mm TZ>MWX&Z>o

SEES (B*H§) lp nnfT;iT-^, STEP, WWfeEXD-tiX^X^A, m&Wr, I-AAM, T4z>yV^ 5r>, '?S/->yXV-tXr-&^EzrM TC184/SC4, NfNWI

SUMMARY ISO-10303 (STEP) has begun to develop International Standardization as standard for the exchange of product model data . But we cannot say that the functions for design change and preparation for production are fully developed. For the purpose of extracting its problems, we start to research the mechanical manufacturing process, and we have arrived Integrated Application Activity Model (I-AAM) by functional analysis for mechanical manufacturing product system from design to manufacturing process. We got the above ideas as ISO/SC4/N-numbered document and reported at ISOZSC4 meeting. Especially by considering the results of I-AAM and Japanese industry needs, we have started to develop the Assembly Model for Design and Product process, and Machining Process Data Model for manufacturing process. We reported those results at three times TC184/SC4 meeting in this year, and those documents have registered as SC4 N-Numbered document.

l We will plan more detail investigations and create precise data model, and we will set our projects results as New Work Item proposal by next year.

KEYWORDS Product Model Data, STEP, Mechanical Manufacturing Process System, functional analysis, I-AAM, Assembly Model, Machining Process Data Model for Manufacturing process, TC184/SC4, N-numbered document, New Work Item

n 1. i 1. 1 1 2 2 . 3 3. mvtmmm 4 3. 1 4 s. 2#matm(omB 5 3. 3 nmmr$ 5 3. a mmmum. 6 4. 7 5 . 5. 1 B% 5. 2 8 5. 3 wmmeys# 9 5.3.1 9 5.3.2 TF^v^em 1 2 1 5 6. 1 5 6 . 1 . 1 I - AAM 1 6 6. 1. 2 JDI/n-txf-^^rJU 2 9 6. 1. 3 ai7°D^^^f% 3 9 6 . 1 . 4 JNC Assembly Model 7 1 6 . 2 EXPRESS-E2 (OEjMEt 9 2 6. 2. 1 T-$m 9 4 6.2.2 9 5 6.2.3 7^3'VXA 9 6 6. 3 Modularized AP^COffi^jA^gt 1 0 2 6. 4 1 0 5 7 . laHm 1 0 7 7. 1 0 7 7. 2 4###WW 1 1 0 7. 3SII^##fty\(D7yi]-?' 1 1 0 8 1 1 2 9 ##:%## 1 1 3 10##: 1 1 5 d)fm:i 1 1 6

m (2) 1 4 7 1 7 3 (4) I SO TC 1 8 4/SC 4#m#e 1 8 1 1 ) V W'>;UL#m 1 8 1 2) V 1 9 6 3) 2 1 6 (5) I SO TCI 8 4/SC4j@^jt# 2 2 8 1 ) ISO TC184/SC4/WG12 N513: JNC Proposal of STEP Assembly Model for Mechanical Products 2 2 8 2 ) ISO TC184/SC4/WG3 N830: Proposal of Integrated AAM for Mechanical Design Manufacturing (2) 2 6 6 3 ) Proposal of Integrated AAM for Mechanical Design Manufacturing (2) 2 8 1 4 ) ISO TC184/SC4/WG3/N831: Proposal of Machining Process Model 2 8 9 5 ) ISO TC184/SC4/WG3/N870: Need of Machining Process Data Model 3 2 0

IV (0#V%H in 6.1.1 mmm Ltz%mv>mim...... 16 0 6.1.2 I-AAM##0...... 17 06.1.3 ...... 20 0 6.1.4 ...... 21 0 6.1.5 finx^ ...... 22 0 6.1.6 xfeommm ...... 23 0 6.1.7 mommat ...... 24 0 6.1.8 s; V >^/(DTzisb(D NC 7°d ^7 ...... 25 0 6.1.9 Workingstep %M(D EM...... 26 0 6.1. 10 it...... 28 0 6.1.11 #DXy D X % XfVl/(D^f±#...... 32 0 6.1. 12 ...... 33 0 6.1.13 JLW&MOtzVXDiJDXXx;i/^!l...... 36 0 6.1. 14 1}\\X.^)]/motzfo(b^WM ;r—$...... 37 0 6.1.15 ^...... 38 0 6.1.16 A0%4#W2#!I...... 40 0 6.1.17 *XX><7)^£...... 41 0 6.1.18 (X—7W) Activity ...... 43 0 6.1. 19 Macro Tool Activity ...... 43 0 6.1. 20 Swept Macro Tool Activity ...... 44 0 6.1. 21 jbPX[gj:£$ Activity ...... 44 0 6.1.22 ...... 45 0 6.1. 23 j; ^ A0Xf$#O#%...... 45 0 6.i. 24 aam .47 0 6.1. 25 Single Point Tool ...... 51 0 6.1. 26 Multi Point Tool ...... 51 0 6.1. 27 A Single blade Tool ...... 52 0 6.1. 28 Multi-Blade Tool ...... 52 0 6.1. 29 Single-helical Tool ...... 53 0 6.1. 30 Multi-Helical Blade Tool ...... 54 0 6.1. 31 Taper Blade Tool ...... 54 0 6.1. 32 Square end cutting edge ...... 55 0 6.1.33 Drill end cutting edge ...... 55 0 6.1. 34 Ball end cutting edge ...... 56 0 6.1.35 Corner radius end cutting edge ...... 56 0 6.1. 36 Cylindrical Tool ...... 57 0 6.1. 37 Spherical Tool ...... 57 HI 6.1. 38 ...... 58 HI 6.1. 39 ...... 60 m 6.1. 40 ^7-XA® Express-G dr 7%...... 61 HI 6.1. 41 ...... 62 HI 6.1. 42 ...... 63 HI 6.1. 43 L fz workingstep 0)/^ 7 ^ CD#tb...... 65 HI 6.1. 44 U/'c Machining feature model (D/^77—^CDSttfc...... 66 HI 6.1. 45 ...... 67 HI 6.1. 46 AD%##(D#I...... 69 HI 6.1.47 Assembly Model 1: b H'ESI a EicF tlfz 2 SCCD1!1#...... 77 HI 6.1.48 Assembly Model ffl 2 : §Hj$6Dzn>i/>...... 78 HI 6.1.49 $1 2 CD Assembly Model CD####...... 79 HI 6.1.50 Assembly Model ...... 80 HI 6.1.51 Assembly Model CD EXPRESS-G ...... 83 HI 6.1.52 ASPEN ACD3##B...... 86 HI 6.1.53 Wl^))/(JM...... 87 HI 6.1.54 wjpjis- ...... 88 HI 6.1.55 ^7 < m^mmt^i/CDm#...... 89 HI 6.1.56 7 ci & 7 02...... 90 HI 6.1.57 imfcMcD7n-tex£mfj&$cD?-^— b...... 90 HI 6.1.58 jm#cD#m^ - m# - mBUT-cnz;^ 77...... 91 HI 6.2.1 ^-yn/f-^^cDm^as ...... 97 HI 6.2.2 J- < 7 7^Et->CD EXPRESS-G ##f!l...... 98 HI 6.2.3 ± < y7^>CD^Sa>Hf7^3 XDfflg 101 HI 6.3.1 STEP#mcDM^...... 102

(EV7b)

6.1. 1 ^L^PX7° D-fe7x—...... 19 6.1.2 xi)...... 34 6.1.3 X2)...... 35 6.1.4 M-wma^mtcomM ...... 64 6.1.5 STEP tfll/C0F%...... 76

6.2.1 7y-X '>3 >^f)0±^^M^(l/2) 92

6.2.2 7 7—X b^'d '>3 >^f)©i^^M^(2/2) 93 6.2.3 ...... 94 6.2.4 ^ ^ > b...... 98

vi i. ttctotc 1. i mmtoMMtm (l) • ##©tA©#f «, ISO-10303, STEP(STandard for the Exchange of Product model data) k L'CH^Ste^bAstSIf4,"C$>4o u^ue*^, zcojmtiztr'f'yi' (#%) ttM&xy-'jumm&s&sstLri'Zc t frt>s EI+ES^SSniST-figffl-C $Zf'fi-l.'yi' (ttto) &C k#-f S&tv 4-0, «T0 3 'DOf'd-iy^ya-kxiftmzs step u ®s-r-3„

h)Eg|E%-"AA- 6 c) Et&toim -fexmWSS cne-osmcs-dg, ^^rn-bx**at--6/ito© step 1"-E>o

(2) SSfiiimlSiplblc

a* sH«®*©ft«*spiiHitwcM'ro, stepttcne>SB*tc*< ck© ,4i*tn • ##©6©©«#T&^. m##&&8%T&ckl±, x*^5Bffl|g%m©ffi«, 65K©|6|±, $S • Wa • ilfflnx t- ©fiMtfBti^ <6)©-e*. 0, a* sBSieil©HM*t!Jt*tc*g

(3) *fSSE©H^Siplb©att STEP tt CAD T-'-j'icilOHIWSk LXIB%Sn-CSfc®SA^, 1994 £SB£;¥ft&# *ateii$nS©xj't"4 -y 47 cm) ftttffit©*#®, #®6aat--5kvxds*Bacx-3o fcMl&k&o-O'-So • iSS, —7: k U T SSIS'J © itSIR#l#t(AP: Application Protocol)SS%A siiiK) 6 n-O'Stf, ED- • 3BSlc* ‘lt^iSlf-$S, EI+^Et-VU*e.4S:E^>^©$5^kr^d' i- Ss'^T-D-bXSSg't-B STEP *®81&IS48tt*7fc&!&yE-60, ©ttscfe^o

(4) M#RE©BI###lb0^#©#0 step tsEktEit • %m • affl • ■ usicfcfcsKs©^ y*M • +»-*- h 6SHU"a>5o ##%E:t$M, 6tgtf h//\©##, B5l9totc$lb1"-5aiB • (SWiS-S-

1 1. 2 *#%0*aB#a#M06&0#&C-oUT

ra*xmsipMesBmss *j t c 5x* $>&bK step

CD¥l$ 10 If-S : @#T—70%a • l8ti-$5^x©Mt66 qJlg k r 5N3+X791/& 6 $65iax7"n t%©#%##&*#c@($©#aia#a • step mwm©#* • STEPX@at6© EXPRESS (SIX®) tCj;^|Bx£ •¥fi£l 0X:©C, #R©mm©m*, e$WS8«3KS$to u^= •#Hrt, fitiRk LT I S O/T C 1 8 4/S C 4 (98/10) , y>7?>'>7, 3=l*(99/l) Cmm&mT'DtX y^r A©Sttfflfitg©®d\!E& S kibfc Integrated AAM(Application Activity Model) 681$ UT^XD h ©81 b bfco

? ~j~—V No: A— 5 2. (mm) rmm7Dtx^x^A©##tb (sTEPssm©ia%)j ASSESS : (M) B*tSI8Mg@%®6 i. $mi%©Bto 5. #gER%©m@ EmiE7L>7L‘-j'©xK • it*-fb©£:©©EW IS010303 k A5. EgME-^engT-.&Sk £ (1) JIJS** nsxjxs -j-^&siaxTtd/tti s-(bsn&m®®E-eii$si4t?$»v'„ ?;t> (DBtt-$B^©*t 1) Integrated AAM ©IfHHtb tSSnJggkt-BSS^E^Vo ©BltX^OV* 64i$ttVU'n ©$$7"D-bx,, ®#aAn%7D-k%©#*)#a. &##IC#*#itL • Integrated AAM 14Hl*li|jia*= —XBaj3j;UeS6af^APk©lie®6IMEtCt"-E>tcto0#BB XJ AS. y?rn-tz&mmt2>fclt)

2. 5mi%BS 2) BSt$ MM* 4 ult£ k t BKS=t =f A * it*1 5 fe to l: Ag» V v-xtA;i/©#W -a) @a©#R • : (i) *%*#m%©##©i#m{bkKmfb • k% h X/t?/ t V yf XAXAkXtXXV—©Mi#&###C#:tf B. «M»$Srn-t:X'>7.7LA©Kti*e.$a$-e©iK-&T^^-f HXJ AXll/ (Integrated-AAM) &A0#*(C#*Ux Bit -b) ttSSactslt-BiSEMBEB^rottiS : (it?s©$g, aspaB©*B. wg©#A*^©%M) ©gm&mmxa c^g»msm%©##&%#i:#mf 3 k k * c, • m#ty)—ErJl (Part44) T-tltl— h SftTU&Vi rgna^^^tStotoffUlCDS a, axt* > x v-©mhsj $xmmfBtto©#w&XB. ( 2 ) te^SffiStS© EXPRESS-E2 ©iaa#W sa ISO TC184/SC4 -C-^ltLTV'5. EXPRESS-E2 lt#4b Vfctl$X®SteSExET5o EXPRESS-E2 ©E@lC slBtHe-XM1 e>$iEXT>^®6EXn -bx*$©Atot;:ii:-g& u v—xtA;p©#@t o UTBu ISO 6a©iiT-H@t8j8U • BittXA/©###ak&#AnxtAA©##&gaux, BIHp&Ijiiisx>•—a i/X$* ( 3 ) Modularized AP ^©ffliAiVEIt B xAib&#ito XESBfct ISO TC184/SC4 WG10 T-MtUTO-B Modularized AP k©P4®* si*V'*^ Modularized AP ©H48ttoB6 7 * • BJHex'tk 4S^ti£fiK$ (4) ISO tl$^x©j±|6|S$#- $&#«« • Integrated AAM 0#m#itiK% : ISO TC184/SC4AVG3 N830 k UXtSS 6 11 BTyt |J*S 2 MA-X 17 UTX© ISO #ll;*7Diii? t©fiS*S?gj|-rB k k&lx 6H©X • JNC T4z>XU: ISOTC184/SC4/WG3N448 k LX## ttSJfoAfc'fckSIG (Special Interest Group) &ff*A *M,S5», 3 >-fe>i4XO < 0 Cgftl>„ • ?^i77ttt v yrcmt&tMm ■■ iso tci84/sc4A¥G3 nsso k LTffi© 3. (3) 4-%©ftEtoH@ •JNC y-fe>XV-XX;K xzn? yXAx ') >XCMf B LXE#m#k©BAk#m6f X"') > X©#W^^gX&2. o (4) 4-^©H^®iPIb^©l$@ : (mmm • ') XXICMf BXAA&##tf BAX, SC4 tcttX& < SC1.TC29 #M*AB kCBkfflilibDSt-SS„ (H**> 5>©*%X SC4 l*lX-a*6#5>fifeo ) £.M7‘U77'>X:rl\WM1h

STEP 711—7 6. HESip(b^©HM STEP 7)1-7’')—¥ 7“D^X^7 h V —7 (1) mmm%©m@k#m* •@B : «#M4SXn-fex;yX'rA©®roifmMbo • Eg : BttEB^AjSWlxgX S T EPtrltaiC^ife* V 7-7Et)K5«S. 4. • : ISO TC184/SC4 TbKl 1$ %%1 (2) BPI«SWyx©TXn-A I l i i 4 5 6 7 8 9 1 0 1 1 1 2 1 2 3 • x—tf--xm$, m##K© e#g*X 6 B Integrated AAM 6 ISO ©JSTiliiiK • TC184/SC4/WG3 T19(Mechanical Product:AP2 13,AP2I4,AP224) XtV—X k fflg&itiX £«-3 0 (i) (V ( 2 ) EXPRESS —E2 • Pro STEP. PDES Incs.#©RA©STEP M**mk*% U I S O0i8Xtl3g£ff-5fc»©H|Sglfi&B ( 3 ) Modularized AP s\(DM (4) ^###{% • @%X#0fta&Rl\ TC184/SC4 ^\© NWI tlX&fld, <’2000NWI S$) ISO TC184/SC4 AW AZi-PM" A»W")\y

3 3. mmmmm 3. i (i) *9f^Pa%©S«kito StfAr-M)® • TC184/SC4 f ISO 10303 t LTBU^PP-fb ^ittofen-o^o STEP 6m#©A? -I'X'tM'X ^©EFrErVl/T—j' 6&&©#§?&0, f©f—62 0 0*Sffl77iJ'r-y3>7Dl3IK SMSizEt-^fcto ©^') >y!ffi£SIg EXPRESS,ftgffii: LT© STEP 3£$X r-f IK SDAI

stevycT-'-j'ic^ • *#!b&#mfacia, jtttts*, xn-bx-e© 5s—• ^WlbSfidfctotoT-" —37 4TXU3r—Ka>XD bnil/SALTffOo

If9*XT-^A

STEP V-V-XS1#

®oTSTEPLT t^-j'&SEit • ffiT5&»l:ttMtt3i8®aat577'J>r —>a>Xn h^iK TXO3r—>a XXD b3iv6#sKf ^fcto©U V—X#E, to©^7->SrEai-^fcto© EXPRESS #g©»#- b *70^1? hMbto'-fciEXn-b X X X X K x Ml & e x X X x—X £ S* t ^ fcto©ttiE ##R© STE P#&k UT3&9 -9 -*- b 6nTU3*&BJHgC LT,E@jS&B«K UIc±"e, SffccmA^-S^SfS&HEHSLTV' < 6©T-6-6, •e©ip-e#K HE©$S7-D-t:X->X^A©aiE6ffd±T*e$T-$)-E.As, j@K©STEPS v x l:#* e> tvt u &ig& $Asofcx-'-X ©Sit. tia©lto®xn 4rX^x-X^g§f+SBtxft3?$ft3*Mt;:#x;txOb©3l®;&S31©fc«>fflX'XX 5 xX%t ^bmm©ea. l-cusstepaimsi:urs$ l/TV'.S fc©T-fe£o

4 Change Request

'Change Request

stro

STEP (AP) AP233 AP201/202 AP213 AP203 AP224

(2)

C, fl^E$T!©J5WC Integrated Application Activity Model (I-AAM) & t k K ISO © 6, rtgfflSWfc**® fco Srtcy.T©lW^6®d9-t)fB£$A1?>©Ft8@jS©teBhfl-Sf64'-t>t:^toVfco 1) 14> «#%©EI+®@fl'S'e STEP fctotc AP201/AP202/AP203/AP213/AP214/AP224 f®77W—>3>7D h 3 A

a) APSa-e©tSiPto7'D'bX^3L —>©£.$($ : WiMS*©^ 7-tH 69dB ilf a i'&u„ b) &@%AP©^% c) APimTmT E ap nre©T e u^^-^ttsnTv^v^ d) AP MT >©■& t) : AP f ^LTl <6.

3. 2 SKtoteeSBi

(i) l) g$$E#fe©$E©i*tb kPWb

5 -fe X Afflissi-*' 6 i'f-ftr^ tf'A (Integrated-AAM) 6 4 0 SWCWI-IU ('h£©5$E, @iS©$Sx a#©ma^6©$@)

2) tessasms© express -e2 ©isi#® as ISO TC184/SC4 T-toMLTIr'5 EXPRESS-E2 £<$oTx |$Wb U&# express -e2 ©biec^i&, iso6#©@-cia@ t@BU IPz*CH*f5<, 3) Modularized AP 'x©ffiA«!*$®t *®S&i ISO TC184/SC4 WG10 -etEtLTUS Modularized AP kfflMitA5 i^l 'fcSx Modularized AP ©#*#%&7O—f 6 ^ k t foomim&mstZc, 4) isot@%^©#m**#, 6n;wi-, n flyy u*, 2 h 7 vr-e© iso SET-*7"n y C, SH©«tt6#e-oAfe*.k SIC (Special Interest Group) ##<&#, 3 >-b >+!X"D < 0 tc(gto5>„ (2) E%«m

t1 3 5-8 0 7 3 $Si5ff$KWS2-4 5 * -f A 2 4 tOl/1 0® Ifel (0 3) 5 5 0 0-05 2 1 Fax (0 3) 5 5 0 0-0 5 2 0

3. 3 Hsram 1#4M 1 0ip(,?ll 2%3B3 10$-e

3 . 4 SO®ItHBS

#©%m(ba#mA

3) Modularized AP

ISO TC184/SC4

6 4. (i)

STEP 7>- 7°

STEP7>-7°V-^ (&) AMi&fcd mm** t>mmn^.

^E 7°D -fe 7 '> A A A#$fb:

T°Di/i7 h V —<7

(2)

ff i a i 1 A wmazm (£ew?w) i) u%gmsm>mm(r)wm{btimih 2 A 5E* 2 ) tl$e«StSc9 EXPRESS-E2 © 2 A $6 (£EiJ$SM) ±m ie# (#*#%#) 3 ) Modularized AP 1 A *M to* (±E®f?W)

4) ISOS$^ffl*|S|$S#s 2 A %g 3£* (*Ett%*) mm fm (sesh )

(3) a mm m# # &1E (mmmmmmap step rw-rr^-r v-r-) TEL.(03)5500-3600 (ft#)

7 5. 5. i m

####^ (#;##^) ISO ^(D tBSiSilallE^Siili^ 'sJ^—<5 $& § % ^2 ^ 'bo

S^SW^HSt^o 5. 2 (###^#) #w#& ft ^

tM ms ftM WS B*^--->x#s;6tt i&c -atass #b 'mm S* SIE ¥1® 3A£ $* f% 37^x>^7'J>^ (#) 'j'S (to immmtmmiwm-t > * - /J\$K —tii %# *>47x>y-7V>y (*) M*#mBL Hf ** $m 5S* haxsw (to i-wmmmmm. a

/j\# ## *ise*«xsttsm«tt»E%p/f W #%gG E$W$ (to tf«->X¥A»#3r IE* ffi asessxse#iimMtt*%Miat*iB9s #m Sir d'« #M 5JHA#@*x* (#) fiffl ITS B*IBM (to ajf mu B*IBM (to 7kS« 7 #) ft 7 tf—) ^— stoj mt mmmmmMmmmmm-mm ftft\f—)\— Elll Att Sr^*;^- • a*to6S6H««#S@®rrE%S ft 7'ft—) ^— m# mm (W) BWi^WS ft ft ft— AH «t mmm % «IE (M) B*t*$WIMMSi? mmm m ir££ 13 W) B*t*WaM%B6 $## ft® $0^ (w) B*mwmma# mmm §66 %* W) B*«l8iMM«S mmm (W) B**#oam*m6 mmm Sir to (M) B*t*WSM%B6 mmm #m ts (W) B*t*IBtoaE%tSd

8 5. 3 5. 3. 1 ### £ (1) il© * 1) 1999^4 0 27 0 OX) 13:55-16:00 2) I - 0u@ai

- %ll^A05

- ^©?^ 3) M^pnn : ##-A05-05-01 ^ 4 04I7D-fe7y A©if^ ^#-A05-05-02 io (m#) ^#A05 05-03 ^#-A05-05-04 io ^surnmim m&mwm mm ^#-A05-05-05 (%% n ^#-A05-05-06 % 11 ^#### (A05##^) ^#-A05-05-07 A05-03^#^/ ^#-A05-05-08 % 11r^E7"D-tX'>X^ASWb J (Dm&frlzmix $$#-A05-05-09 A05-oi ##^Hio4#mm& - nn

(2) 20 m 1) 1999 if 6 R 18 0 (A) 14:00-17:00 2) ■ HIJ0I m - A05S !:z£j m - Lillehammer - aSst^kiv r>j'77Ki Ip

- p v vmf - mm$LiL^)UDmm - ^0% 3) E^?W^4: ^#-A05-06-01 ^#-A05-06-02 % ii step wg #a #E#-A05-06-03

^#-A05-06-04 ISO/TC 184/SC4&WGs/Iillehammer ^ Ip j^#-A05-06-05 mMW.T P4x'y^^-T->f Ip

9 ##-A05-06-06 (l)ESE ^s-ao 5-o 6-o 7 wmm&mm itz cad /cam comA &S-A05-06-08 MTF L/c^##^0tf;i/

O) ms® 1) ^#0^ : 1999 ^ 10 0 6 0 (*) 10:30-12:30

- luHJESSBE.

- T■£>?'')—^E9'MzmtZ>m }9%&fotX /Ti/3--MzmLT (####) - >G77 b V y5f^)Wzmt%>M'0UfotX }rzs3-—MzmLT

- &®ra 3) j^#-A05-07-01 #2 ^#-A05-07-02 I-AAM##40^® ^#-A05-07-03 WG 12/Par ametrics Workshop(7/28- 7/30) ^#-A05-07-04 ISO/TC184/SC4/WG12 N295 ^#-A05-07-05 ISO/TC184/SC4/WG12 N339 ^#-A05-07-06 t7^k0lMI38 (S) ^#-A05-07-07 4i7D-t^T-^FT>®pii[im i] ##-A05-07-08 JECALS/JSTEP Assembly WG 0^0f5lb^ol>T ^#-A05-07-09 ISO/TC184/SC4/WG12 N Date:99-ll-9

(4) #4® 1) ^#0^ : 1999 ^ 10 0 26 0 (ik) 15:00-17:00

- mj®#$##E -1-AAM 0j£31i-7>^T - > 7" V tfVWCoi - 7'>—>7' 7 4—7-V— - ISO New Orleans ^\0 A7l

- #®%

3) ^#-A05-08-01 m 3 j$#-A05-08-02 ^l/D-fe^T-^Fr^ (S) j^#-A05-08-03 Integrated AAM on Engineering

10 ##-A05-08-04 Aosm ti^-A05-08-05 Process Planning Activity Model &S-A05-08-06 ISO TC184/SC4

(5)^5® 1) : 1999 ^ 12 0 2 0 (*) 15:00-17:00

- luOUliSSEI” - New Orleans :7 >7 7°D TttDV - New Orleans > 7" V -PtOV

- 3) ##-A05-09-01 m 4 j^#-A05-09-02 ISO TC 184/SC4/WG3 N830 Proposal of Integrated AAM for Mechanical Design Manufacturing^) ^#-A05-09-03 ISO TC 184/SC4AVG3 N831 Proposal of Machining Process Model ##-A05-09-04 ISO TC 184/SC4&WGs New Orleans ^#-A05-09-05 Summary AP214/AP224ZISO14649 CNC Meeting ^#-A05-09-06 Feature Models of Machining Operation and Machined Shapes for Single Cutting Edge Machinig ^#-A05-09-07 Feature Models of Machining Operation and Machined Shapes for End-Mill Machinig ^#-A05-09-08 WG12 Parametrics ^#-A05-09-09 ISO TC 184/SC4/WG3 N448 JNC Proposal for STEP Assembly Model of Products

(6) mom i) :2000^ 1^70 (A) 15.00-17:00

- lulUgiSESIB - 7;i/^;i • V'>n>7,7°DdrX^7:-> • 7t>7U:ETA - 7'>—>7' 7 ^MZ-DUX

11 3) ##-A05-io.oi %i (^) j^#-A05-10-02 Assembly Feature 3^ 1 j$#-A05-10-03 AP \zm%T^yy'')(DmM (AP214, 203, 221, 227)

(?) mim m 1) ^#B# : 2000 ^2 B 9 B (zK) 14:30-16:00

- - Melbourne - Machining Process Data Model - JNC Assembly Model - Parametric Assembly Model

- 3) j^#-A05-11-01 m D^#-A05-!-A05-ll-0211-02 Need of New Machining Process Data Model ##-A05-n-03 % ii i/Xf A©!PPfbj j^#-A05-11-04 Process Data Model For Machining V2.0 j^H-AOS-11-05 Integrated AAM on Engineering Dt#-A05-11-07 WG12/N513 JNC Proposal of STEP Assembly Model for Mechanical Products Dc#-A05-ll-08 WG12/N511 Parametric Representation and Exchange ^#-A05-ll-09 m± EXPRESS-G

(8) msm 1) : 2000 ^ 3 D 2 B (*) 15:00-17:00

-

iMM mi

- i2^S4S7-D-texe,ip-(bS*d?SttilcMUT

-

3) : SS-A05-12-m vm i 7 ®a;e7D-fexAtswbsisasE (*)

12 ti$-A0512-02 tfrtOl'sgWfflg SS-A05-12-03 ## SS-A05-12-04 yiV#lV>SS iS S8-A05- 12-05 % 12 IpSfiKP i@»a* S8-A05- 12-os ¥■& 12 iS«B* ttg-A05- 12-06 ¥fi8l2lp6^S7D-kXtSWb: ISSto (S) f$$-A05-12-07 4S7"D-feXfflfSip-fb (STEP3 SS-A05- 12-08 amtsstMt" -5I81SI j$g-A05-12-09 J N CT-k 0 -^>#6*51

5.3.2 TP7hy^S§8 (1) iSI+SB^tST 7 1) IBfflBKf: 1999#6 B 1 E (*) 13:00-16:00

• *i?ai©Sg«lg • ei«etcHf3iaito • tiawiKMur 3) ian;a»: #441 AOS Es+ZKTxj'T* —x?g|))(yiLT #442 AP203 #443 IHI SWB *!r-3fcIE iito tt)#»3 tcMu-Tii,

(2) TjSaSII+r HT y 7 M7-7y3 y 7") 1) gg

• C N CT-^T>CM LX ■ 4b±t^P©%44 • ProcessDataModel ©IM • S-CAM ©BftBft • tUK1?—»-> a v 7"©S@©$ ktoo • lHSil_h©——x©4&!4 M-mxw **41 ISO14649 Partll draft Version 12.0 for DIS **42 ^ET'D-bX©?—4'^ETlPgg^ ($) #*4 3 iK-nWT'D-feTT'—T rs-CAMj ©H4g **44 H± (0*) **45 Vtz CAD/CAM ©K-B (f° ')fW^-mi7k)

13 eft 6 : A05##fb##^#ft (1999/10/6) eft 7 : Model of Machining Process based on Form-shaping Function efts : r*nx 7>r-^7W/jax^stllg/jjnx^s^Jj # eft 9 : 1 ] mi o : tr/aagi m) m 1 1 :

(3) (+L#9-^S/3 772) 1) mm#: 2000 ^ 2 D 2 B (*) 11:00-18 :00

• 7 ;v7p> y^s^SPo^SS

(4) TC29, TC184/SCl/SC4g#m#0# 1) ^#B# : 1999 ^ 12 PI 2 B (7k) 17:00-19:00

S C 4—rL—ThU yX^stW? —U • LT 3) @E##ft ^#-A05-09-02 N830 Proposal of Integrated AAM for Mechanical Design Manufacturing^) K#-A05-09-03 N831 Proposal of Machining Process Model &#-A05-09-04 ISO/TCl84/SC4&Wgs New Orleans ^#-A05-09-05 Summary AP214/AP224/ISO14649/CNC Meeting CALS/STEP (U:6#]##(D7=^7L/'ynt%^ EXPRESS-G diagram of the reference hierarchy SC4 Participating Members

14 6

6.1 t mmt, cent, ISO TC184/SC4 ©##& Lillehammer (6 B), New Orleans (11 M). Melbourne (2 f]) ®3Eiffton, ^ne»®safOT®=i;»»@«SET,

Lillehamer## • T-b >7 Vbr> AsAP224E2•$>AP210-T68$$tlTj3D- Ztli>0Z3—7&W (>frlzT%fctblZt), I-AAM( Integrated Application Activity Model )C

New Orleans## • tolT'D-fe^CMlg'f -5 AP ?frMD^3-7*4. I-AAM®i:'CtcMtB1" tSffiatfco • Manufacturing Feature ®tlSC:}3V>Tx AP214, AP224 liXplggll® A^7& 2>©CMbT, CNC Data Modelti::Og^tWDtti* (CNC^.®X*) 5 j:®HJSS51LX2o B*iaAniR#®t79Wb&f?o AnxXD-bXfflA*/ • L> Manufacturing Feature ©$#6jE!ilt" k4i38Lfeo • Manufacturing Feature k Form Feature ®K3!UCOV^S$ L-fco • 7b >7 V b7lb©%%C#l/T\ shape_aspecri Assembly Feature CM f 3l&WSSAsai $ tlfeo

Melbourne## • CAM —£ %eBiiEt"?)te®®SrLl'7r—j,-t5;2l/ffli0Sl$6SSUs Manufacturing Feature CM UT AP224 k ©#&&&#% bfe„ StiSWe© SC4, SCI • New Orleans #6*7 tti $ nfctStMSlM 6E# L fc 7b > 7 V b7 A©fg*£lT<< \ *E1 ® nwi

cn e, ©##7*fps b *»> e> $s§g tfcSfeiiiofc o , ai. icmf.

O.TCcne>®t6$mCovr. BflfSlS^LZzl-AAM©&^7&6 I-AAM(2X CAM® ta^—^0SMt btcijpxrD-bx^-^^xiK (mxm#®a#xXA/k ureinxm b7b7ik $SM®SiESS$1"^ x-b >yj bT^v&uvt^ y h <) •y^r-b>X'J®lBCi5i

15 I-AAKK2)

ss+tjipx©fBi$38cxigiftst- Sp Dqg8%&LFxigS8ltrSlip 0n|§a:^3£S-f^ (t-$) ^ T^umrafcii **

XixJ’n-trx -T—f^ETJls ) f r-tz^'j^Tjis g;gt^o-kxi:«kV#yti.6B###^A]x^a-tzx-C fiJffl'C#i>«k?lC^CAM(D{±5*7:-5i(7)^ffl"ET;iz0 1 l

jdoJiy ’airx^E-rJU z ^Xh'Jy^T-tz^J^TJls MXAPA0)gBA^Ea^/<5ZMv^#M%m^m -eastfS^Uo

0 6.1.1 *#£&& vrzffl&cmwfttt

6.1.1 I-AAM (1) I-AAM ©{fcBttt* I-AAM (j\ San Francisco ixSill'tllS Lfc. (filZ'tiJ'S—

/7* 5=-*w_^7 ^^1#.ht"-?> EngineeringAAM £. ^ ##t' %### ' iso^omm

iso 10303x ISO 14649 (Dti^-t zmmmfeu r-mm• '$&mmo-c^/:o

16 06.1.2 I-AAMtoSH

(2) I-AAM(2)©$6SB ±gB©#AXP6. ^SliWlX C© Engineer rng-AAM 6>-:tftOLT, 4S¥fiXl (X @#g+kf#*#a#+) Ko©T, aM© tK © X X>X'—/ i:iDXXggggt^ffl A©X7->t—6 ©iSv UtXrJl^. I-AAM(2)i: LX New Orleans zsMIXj/ISR L Xi [3L a%LtAnX7c?XZf-^Xf;i/K, ISO 10303 STEP AP224 t ISO 14649 CNC (Computerized Numerical Controller) Data Model Partll 6o4e <• £>©X<6> 50 i@€r ;wcc©x, AP224 sxsssgi • u cxc x-/xx©6 X8I9H- • ffSi§S-©tti*#«SI6k$$1-5ZS©IST-©. GB-3tm!r8L *m$BB^© toR&ae.i. ucxf.

$7c I-AAM(2)ffl IDEE 0X65111© I-AAM 666.110X2/— K k LX. AO (£&), A2 (iUX x@#;t) 6. SfSBbnVXc/-h*k VX A22, A22& A225. A2& A233 60 6.1.3-6.1.9 (C/Xt-o IXflCZ® AAM lZfflt%±ttmiSte*to

17 • C CD AAM f#^

• New Orleans Tia£to£:B*#£>cDWtl£l1\ QB^iMOXa-tXiDM&MtLXs B*# ff&O t LTl^7 1/-A7-C hTtlSLfco • A22 Gtox^ >g£tfLinxxsElto^) > h n-jut LTAnxm-bx^'-^x 7=->£il*PL7co iPXrn-tXT-'—APX##^-^X^l/(D(^\ X###f A22, A23 (NC 7°D^ ACD£$) CDX7 t^ b5r>f £ mmu A223 (x#D##mtx A225 (x#0#m##t) co^x^mcm^L fZo • A221 am#mcD^;i/-yfb) Xti, WVMSo A2234 (mm^>-7"CDM6 L) X^n& Refine f^)o • f (Assembly Feature Data Model) ## (New) k LX%D#oX fifcLCtl&D V—XfT;i/ti:0T\ [APXXXlMiMb^o • x^cDWti, -mx^mgcty h Lx77>y%$tz_t^mmx&z>0

(vi) r Workingstep j tobt rWorkingstepj ^^CD^PXf##LLx XILTl^Q Workingstep CD###NC ^PXCDf^###t $lxti7 ^ XjfjPX© Workingstep CD##(1. 3@# (J&BbPXs $iJffiPXs JMTOPX) X 2WM (^JPXN f±±tipx) cDGjffib L#&iv ctii; xmomm^xmom^cDg# ##Kgf^a#X.6o 2.5 ^7cX'CD*PX$:|utlL LfcfiPX ## (Machining feature) #> Workingstep LX#"OC && Workingstep id: SC4 £:(£& < >. CNC L#^t^##X&6o

18 *6.1. i

/ \ tv \ A S> / \z C

ISO 10303 STEP ISO 14649 CNC Data (Maohytiagitoeasa, W&X&# AP224 Model Parti 1 > BataModel^c v: CAM^CO^Kjj^r—% ^T=fU w ^•T> 7 'f.v/!:«VAv.Ny.>v.yANV.v/..v^y/Ay.(/ /( .Z\Z\Z\%. ‘ \ * ‘ V \ Z >\/> ' \>s<>/'%>s‘>s<‘ V,.S Z < Z \ Z Xgfi|+«fc»

jbqx#m $P X##{ Manufacturing (Manufacturing (Form Feature) ,» Pittite). / ;; Featured Feature) \.-.. ' «■ \/\ ../•»' x „»/..' ;.y ;. x' X-'.« V». y ; >v.y<.y z .•. (Featured) tb_B:frBSt£ (FeatureCOtt _h

ictoam) ,'' x: - ■\Sf Z^x Z Z Z \ \Z\Z\ZS / \ \ Z \ / ^\ZXZ Z\ St*<7)giJW WorkpiecetCxti~5^^. Workpiece(Z2#-f6^# ,v.v/.:.v.\v,\y,\v.y,'A:,'.'x'.'.>v.:o/.\ ,<.NV.sv.sv.y/.'vV (iSv.sv,Nv.y/.;«v. Feature^ 69 Geometry Fe»tu«||8^$S v, &L m### ,\ Z\Z \Z\ \Z\ Z\Z\^. Z \ Z \ Z Workpiece £ Feature Geometry Geometry Feature Geometry (B rep Model) &£(D^(D-Tj-WJk^i >s z z z\z z\z\z\zj[ z\z\z\/\z\/\z\ z z\ (Geometry (D#%) - ##):'„.:

XBEI+ >Miydw

X \ z z \ fESES+tDfc ^ :r'o isb(D &L •WA'mftm Workingstep ' /\ \ / W Z , z\z z z z\z Z\z\ ':,: T • Data Models (ISO I404$X ,/x :x -X

#^72'—^ -Cutting Tod MoiM (ISO • Cutting Tool Model (ISO &L t'f/lx 13399), ' x 13399) ' » X X _ \ z X NZNx xxx'x •Machine Tool Model (MIST

Model) ''" '' '' >

A tf*t> B ^x(DE=1"T—# k. Workingstep 7s—^ §IKJ&'T:#6o

&&STEPAP213 (NC 7"n-trX^|i) ttN x>^-7 U < ±lC7^s;^ > b %tz&>, Z(D\t&mz\£^isbt>ft&V^

19 Data Model for Geometry and Configuration Product [AP203.AP214] Requirements l

Preceding Product Model Data

Design Ideas

Preliminary Designed Components, Standard Parts

Model Data of Existing Machining Line

Casting Data Model 8 [AP229] Forging Data Model [AP223] Data Model for Rapid Prototyping [APXXX]

+: ZfDAAMlZjBg&f-ffT

(*) T A tTx-f A8 I* x TOt-a ¥ta A1-A7.Zp6«JSBS*i5

Node: AO Title: Develop and Manufacture Mechanical Product Number:

H 6.1.3 Form Feature Inspection Data Model Data Model [AP224.AP214. +] Manufacturing Technology for Machining

Pr >duct Model Data Manufacturing -► Tool Requirements Resource Data Model Model Data of for Machining Machining Line

Form Feature Based Model Data CAD/CAM Process and Operation System Planning Data for Machinig

Model Data of Existing Machining Line i8XI*SS*tCD»

CAM System Manufacturing Feature Based Model Data

-► NC Program ♦: c CDAAM iZ'JbWteT- 9

CAM System Node: Design Machining Process Number:

HI 6.1.4 inxxEIBH' Strategy of tox.-?n Manufacturing Technology Process Planning Database

Manufacturing Resource Database Requirements to Process Plan for Tolerance Manufacturing Technology Database

Manufacturing Engineer Requirements

Machine Tool Model Data of Form Feature Based Existing Model Data of Model Data Machining Line Machining Line A224 Category of Form Feature Manufacturing Form Feature Based Feature Model Data Group rements Feature Tool to Conversion w Software ▼ ▼ ▼ Requirements

Requirements to Process Plan

Process and Software Operation Planning Data Process and Operation CAM Planning Data System for Machining A226

Manufacturing Engineer

Node: A22 Title: Design Machining Line and Create Process Plan for Machining Number:

0 6.1.5 >ISIti:iaxx8l9l+o4fiE Strategy of Requirements to Process Planning Process Plan for Tolerance

Process Planning Data

A2231 Sxgrottmu Process Planning Data A2232

Form -► Tool Requirements Feature «IS® Group Planning Data A2233

<7)^.6 u Process Planning Data for Machining A2234 Form Feature Group Manufacturing Feature Based Model Data

A2235 Form Feature Based Model Data

Manufacturing Engineer A2236

Feature Conversion Software

Node: A223 Create the Outline of Process Plan Number

6.1. 6 Model Data of Machining Line 1

Tool Requirements SXfltZ) Manufacturing Process Planning Data Technology Database for Machining “► Tool Requirements A2251 for Machining

Process Planning Data for Machining imttErofci&ro WorkingstepT —£(*) Manufacturing Feature Based

A2253 Process and Operation Planning Data for Machining

CAM System- #x@© Process and Worki ngstepT" — ^ Opearion ©Ml Planning Data (*)Workmgstep ir—A233 for Machining A2254

Manufacturing Engineer

A225 Title Create the Datail of Process Plan

0 6.1. 7 NO Program [Geometry Data File]

to Ui

NC Program [Main Program File]

Node: A23 Title Generate NC Program for Milling Numbe

0 6.1. 8 5 vy^efcii)© NOT'D OsK>

Node: A233 Title Describe Workingstep Definition Numbe

El 6.1. 9 Workingstep ^M(D aBM (3) ocDTru — ixrf<) x##0 tES^ff-o/io

[#A]

1) CNC 7^—*X^>0ZPX^U\ AP224,AP214 0^DX##^6

2) cnc 7s-*g -3 &©t?&

[ Lfzmmm ]

1) yv-tzx 7s—* xt -> CAMCffi^T1—*0I3 MT?x Hffl±©^t^X7">T^^>o JWftftNC^Xli^ CNC6o xeiM&J;

New Orleans U/z^c0 1AAM(2)(Z^^^ AOXj^##0 6 0^# #&##Yb L//z4^0&^ Melbourne ^tES U/zo

2) 4W^0&OX7Dt X X tOI/ ybnxm^sirax^vxx x##mm#m#c&oo zcz-u mmxxtu xf^w^Hi67^^xmzmz .u ^##^#0^ &## ato New Orleans igSi"ClES V/zo

cn^0iss

27 AP224(SC4)

A-Volume (it) SHUT'S (i£) A-Volume : 1)017 4 —3"Y b Workingstep A-1 M 1 mam. rnttbrnsham.

06.1.10 -0©$fStl5g©tiBttlt

28 6.1.2 CCT# Melbourne ^MX\ j%#:###DX#0]l#^ 60^^^^ UXzAOX^Dt X r-^fT/' l (Machining Process Data Model) [4]tCOlx*£\ 60

(1) • TO STEP £B04»T\ ##%#yDx% c&v j; 0 # 6^ ir5£ #>0XX>kt)»iv fxt, ^(Feature Model) b^MX)tzH>05XX2 -trX^—9 XfrVKProcess Data Model)$rfT D > 7° D X A 0 ^^(Manufacturing) 1C M f M&, ^&#:A[]X0^A0#|^##&^#L^t)0a LX IS010303/AP224. NCX^jK0> A Affix'-*XX>h LTIS014649CCNCDataModel)#&aZA AXX>& XO0X-^XX>P^0XD-feXAx->£L'rf£l!!£Jirr Z 0 D X A 0##f& X 0^^8%a&X RT#^C % ■a) O

(2) nmm ISO10303 CDtp'tr^l+^tl/r^qn^^iEt' %> Machining Feature b Process Plan(X##f@j)

fcmto • ffM^XXOKFeature ModeOJCfULT - 774 X5S (Milling machineX fi£§8 (Turning machine)X)j[|X't'4>fz&(D]&$$$fflL (Machining Feature) £/£#) 6 o - CAM 0£tiA b LT0HM^#^[(Machining Feature)&^666o • /D-fe^r—^ XXOlXProcess Data Model) LT\ X^|§|t(Process Plan DataX SiSH*(Operation Plan Data) dH A £ A— ^ #mmmx^l/l:m LT, WJXM(CuttingTooD ^Xf$#M(Machme Xt->£/&6£0

(3) El 6.1.11 C#i£MM&o • STEPAP2240Feature XX>(±CAM^££tfzl\ m^nxu v—;%xf0i/#%&Wo • -15, CMC XX>^X#*XX>^te^^VXo CAM\z£%X^ISff(DsiMfr6. Cfl6(DT&%:Mib3%rU^HX7DXA®f~

(4) AOX#%0#^^ U 6.1.12 Cbuxim?-? s<-7 iz J; 3*ax#a0{£/8&£7S1"o

29 ftRXffi&Llt feture <0 9 4 7"i(Zf 0tuTEcft. 4:flb\«-iot Workingstep 4>->—4 '/Zfr'ikiZo -5" tX-5Xl4> Workingstep iit'biltfX—-760 feature 4ftl.DLTit <), $ 6 6 -o Wfiplfg* 5- 4 -f4?imx Jk JpX#i£ 1iraXtiafiroEA-S-b-ti: t 6o CtoEAA-b-fftOXv Hif$#4'-f*4 LP«iJt: ID Z Workingstep '>“4 t LTff#l£ft4--9 ifi%b tlZo

(5) imSahflPlSStOiit' . *6.1.2 8.0-*6.1.3 K STEP AP224 4>1M«f»fcSpiro®!* 4t,4>Mg|SXflPl#© l:#6#*&4xf. *6.1.2 ti CNC r-9X7frTi> »/<- LTV'^t)5; feature (0'/>* l: fi] M AX 4 i OX, l.Feature <0 9 4 ~f<0%Jz 2.ilft Feature it . 5fiflXT5ci7f{lifHf c- iXT V14fXCX t . 3.Feature »S4>ttX AXil« 4$|t% -6c -#, * 6.1.3 It CNC t*~ j'^Ef'iVT-tiA/t- LTtub-f, SfffiCiitiP+^^'SW*^

(e) iiMixtt • \mm\46DXt4i|,X4f?lJiZ1 <), xnrnr- 9 m 6.1.14 i: . '5-WpW^HiecOftillxftf-'- 4 411 6.1.15 tcstfo ZLiXEt'JKT) AP224 &mk##l± 27 WSt -5-tt4116.1.14 TSttxt Z 7 Z *) IS014649 oSpX#at:$^Lrv>6„ Pco&iPXieStcttSLT Workingstep X#J <) j^X btl-4 /XXfitbtlZx,

(7) X AXrorfi'C.gxx f -) —-7 Afjux 7X xx x- ax x% 4 XAa tx i i, SE6D-=Et';vt% 9, 7404-43 >XT7t-X&3*XTH/4#6McmirX#, #*67ltliSPX#e<7)/ti6 roipXE#}#'-4^-Xd|*i@46to£jS+5iT!gtt48»Tv>.5><, -44i|*)S4ti.Tt:xXo 1) JPX#®4JPIXZ>tzt0Ai64){4#-4— 4*4)M04X^KX£o

(8) tt^(7)±@ 1) i: tlPX^aroaV > tifT Ac Melbourne ^#4) PPG SC4 Manufacturing Strategy X4)z5i#4)cp4\ AP224 <0 Editor X9>4> L.Slovensky 4 4 fiX4> 3 9 > h XilAX £> ftfz0 A lx A 4) 7 7 > 1- (Iff f Tl±m*jp##Ltz&, 4-EroEESttPSIK40otv>(f^J.

(a) B^Af>4>!&B^4>41P\AP224 4) Feature 4 Form Feature f f-ifj if TV-4 4)|f. c- 4t'o (Feature (Zltlj L T 10 If# ifl'S' L T. Manufacturing Feature f t'7 %#47)if4:o)

30 (b) AP224

^ tz^ Manufacturing Feature

2) ^n%yatxf-^f7';l/(j:SC4^/:(±SCl zb^wlJ:! f;i/ t:#f 3 ###$ (± C 6 SC4 Technical Forum £> *£ “C (i JilT X 1 o fc0

• fManufacturing Related StandardsJ by J-J Michel Manufacturing tr(i>SC4 cb|*lS£> X [/SCI t & Category "C Harmonisation C. t £tlfz0

• [AP224 Direction] by L.Slovensky AP224 E.2 CAM bO&Xj f'~- 9 AP213 t. LTV^o

• TDigital Plant and Process Plan Data using AP214] by M. Johansson AP214 (Automotive) X $ fltz0

• [Model Driven Intelhgent Control of Manufacturing] by M.Hardwick AP224, AP213, IS014649(CNC Data ModeM t'Zim L^EIt • i^W-H'>X t "Super Model"^#m

• TTC 184/SC 1AVG7 Perspective J by F.Glantschnig (SC1AVG7 (OZiy kf—f-) ISO14649 t LXffl%*

31 0:

inxu v-^tf CADC Feature 17"

(STEP AP203) STEP AP224

CAM^CDATUt-1 — 3?

U) w

CNC -t — 51E fVl/ CNC^x COA^F— 1> (IS014649) Parti 1

[M] : [*2] : A0X##X^Vt/ CNCXft^MlZ JrSjbPX [* 3] : Feature t V ft ^# 9 A0X##f ^Vt/ [M]: #H3T a : £ SimiS #6 L & i x

STEP AP213(NC X^Ktt) B±C7^‘/7> X >*>*- 7^ lJ

6.1. 11 SfjbnX7°n -tr x T -? XyMl/O^vftS tfES^'-*5q [6nx^#<7Dfil36) Id xs anxm inxaa Feature $ Feature^fF

[««1 Contour_parallel Flnlshlng_ ** Cutspeed feature allowance_ Side 1 62.8 m/min jfc^(Tapered) side = 0.5 TiPX SR 01 rough Endmlll XL5C(Stralght) h Feedrate milling Radlal_cuttlng_ [ASroikfl) 0.3 mm/rev | seetrnt depth = 3.0

me Drilling 1 Cutspeed SMSilES >*■ 30mm Dwell_tlme_ 1 =40.0 m/min Counter Counter It bottom CS 10 *77% sinking sink *7777-, = 0.5sec lv Feedrate l I 0.65 mm/rev [Workingstep V — *T

Seq Id Targe tfeature Oats Table Boring w 1st Hole_Rough 1*^ feature SR_01 I t Cutspeed w Boring_ 100.0 m/min Splndle_stop_ 2nd Hole_CS A7^(Tapered) CS_10 BR 05 Boring '/A/?///. at_bottom tool Feedrate 3rd Hole_Finish A^(Stralght) BR_05 0.1 mm/rev [Oriented_splndle_stop] tfHUjr-ry] HE 12.5*7=7 7 -f HE (ABS)Mllling_type_operatio (ABS)Drilling_type_open

< (ABS)Two5D_milling_operalic (ABS)Drilling_operation f

L< Plane_finish_milllng

Side_rough_milling (ABS)Boring_operation (ABS)Slde_miM % Side fini9h mi,lin9 (A BS) BoUom_and_side.nl illingHr

0 6.1.12 6.1.2 [ Feature]

*PX^(C4b'l (STEP AP224[E2])

(ABS) Pocket 1 .A0X#i#(7)$:AA' 6 (i Pocket CDj&^fr'open A' [CNC Data Model Parti 1] 1 .Feature 3* c I osedCT) ^ *''^J ti liS v' 0 -C Recta ngular open pocket ‘fnJSSt'Sc 6 ti Closed_pocket ti 7 17 ■f tC (ABS) Pocket -C Rectangular closed pocket Plunge Drilling 5i5 ti U il & Vx A* B X -C Openpocket & -5 o General pocket L-c Closedpocket Recess 2.Cutout ti^^fiiJt*-tiftfetf) Pockets t U Workingsteps Cutout tiPocketCOBottom ■-C (ABS)Cutout 4-c Circular cutout Conditions <7)—O t X -5 0 Lc (Through_bottom_condition) General cutout

ffil X ti‘countersunk_hole ti Tape red_ho let Counterbore hole 2. tS "n Feature Straight_hole<7XZ-^> Countersunk_hole 4^ Counterbore_hole t 4 Workingstep ti CL il B *OV'THESE &IH8U ti U4'V'0 Countersunk_hole ti tij^ — y(7)iltL^ U /= i: 9 (CWorkingsteps Round_ho I es TtSfiE $ ii-5 Compound_features t T-5 o T <7) diSfeatures ti "Countersunk_hole" T & 50

1. —AStCBoss(7)Side_surface t Base_surface ti [CNC Data Model Parti 1] 3. [RlB#tCi[]X <* fl-5 Side_surface ti Base_surface <7)—SBt U T^fS £ ft-5 ^ $ T & Boss ti Feature T ti So Boss <7)Side_surface ti Pocket, Planar face S tz ti 2. Top_surface tiside_surface t (i3^3L IsfctPX v Step<7)Et£tf 5C Boss (7)Top_surfece ti %IJ(7) Feature t U T/ElSST" -50 [ Feature,i*® « ] 6.1.3

*DX1$flSCC43W*»j* (STEP AP224[E2])

[New Process Data Model] A.mttom Part 1 .Part (i ^ 0)Shape £. Base_shape Brep_shape_representaion £#OA>\ ^-Feature <7)HIJ U ft £ 1+31T $<7)lt 1 (^-Features & physical_form tr B-rep_form mmv&*o Volumetric feature Shape Non_volumetric feature r-C Explicit_base_shape_ (Feature 1 base_shape_definition representation 2.iPX!t$fil[l<_$+"3” 2»Workingsteps li» ^+^(7) 6 Feature

Stock removal Cylindrical_base_shape Pocket Planar face u> Ngon_base_shape w Slot Step

C Round_hole Profile feature

Groove C Revolved_feature

[New Process Data Model] Feature Feature iaj<7>Mf*liiPX!fc*lCtf-r 3 5.Feature ^ (Feature^(7)KI# £Feature(7)###)K Workingsteps £5 7c A6 -So (7)Feature t+:#(7) Feature

Planar face Round_hole -5>Workingstep££ J$T 3 7c ££> 1C PI ana r_face(7)f#$B A'r'J&Ig 7 & -5 0 1 .Round_hole -2rPlanar_face<7) PIane_angIe_measure 2.Round_hole <7)6QXflij(Zx PI anar_facelijbPX £ tl tc Ux 5tl4'A^7cU1-50

Round hole xmmwz^comx^r^m

i3

. 1 . 6

36 VMC: J'> = > $ nmmir-z H M C: +UM "V v ~ > 'f -b > tS? ------#M'I ------Gr AP224CDfl3tt$$fli 18 Gr IS014649CDiPX!t$# MM 1 Head 2 1 Planar face 1 St B Head 1 4 Planar face All Workingsteps VMC 2 Pocket 1 1 Rectangular_open_pocket 2nd A Hole 107 2 Compound feature All Workingsteps VMC Bottomplane 3 Boss 1 1 General boss Head 2 1 Planar face All Workingsteps and 4 Pocket 2 1 General cutout Pocket 101 1 Open pocket(with Boss) All Workingsteps Side planes 5 Slot 1 1 Slot Pocket 102 1 Closed pocket All Workingsteps 6 Slot 2 1 Slot Slot 1 1 Slot All Workingsteps 7 Tee-slot 1 1 Slot Slot 2 1 Slot All Workingsteps Upper_plane 8 Hole 1 1 Countersunk hole Tee-slot 1 1 Slot All Workingsteps and 9 Hole 2 1 Compound feature Hole 101 1 Compoundfeature All Workingsteps Sideplanes A 10 Hole 3 1 Compoundfeature A Hole 102 1 Compound feature All Workingsteps HMC 1 1 Hole 4 2 Countersunk hole 3rd Hole 103 1 Compound feature All Workingsteps with Index 12 Hole 5 2 Countersunk hole Hole 104 2 Compoundfeature All Workingsteps Table Hole_107 13 Thread 1 2 Thread Hole 105 2 Compoundfeature All Workingsteps and 14 Hole 7 2 Counterbore hole Hole 106 2 Compoundfeature All Workingsteps Sideplanes 15 Step 1 1 Step Side 101 1 General_outside_profile Side rough milling (Y_axis) w 16 Hole 6 2 Countersunk hole Side 103 1 General outside profile Side rough milling 17 Side 1 1 General outside profile Hole 108 2 Compoundfeature All Workingsteps 18 Hole 8 2 Countersunk hole Head 3 1 Planar face All Workingsteps C Hole_107 19 B Head 1 4 Planar face Hole 109 2 Compoundfeature All Workingsteps and 20 Head 3 1 Planarface Side 104 1 Planarface All Workingsteps Sideplanes C 21 Hole 9 2 Countersunk hole Slot 4 1 (X_axis) D Slot All Workingsteps HMC 22 Slot 4 1 Slot Hole 111 2 Compound feature All Workingsteps with 4th 23 D Hole 11 2 Countersunk hole Side 102 1 Planar face All Workingsteps Index 24 Threads 2 Thread E Slot 3 1 Slot All Workingsteps Table Hole_107 and 25 Slot 3 1 Slot Hole 110 2 Compoundfeature All Workingsteps Sideplanes 26 E Hole 10 2 Countersunk hole Side 101 1 General outside profile Side finish milling 5th A VMC (Y_axis) 27 Thread 2 2 Thread Slde_103 1 General_outside_profile Side_finish_milling 6A0%##/\(7)Feature^#] Pocket 1 1 Rectangular open pocket | Pocket 101 | 1 | Open pocket(with Boss) | A ' | Side 1 | 1 | General outside profile | Boss 1 1 Rectangular boss (Top_surface of Boss_ t is included in Head_2) Pocket_2 1 General_cutout | Pocket 102 |1 | Closedpocket | A Side 101 1 Generaloutsideprofile | Countersunk_hole | ------► Compound feature | E Side 102 1 Planar face [Round_hole(Tapered) + Round_hole(Straight)] | Counterbore hole > Compoiind feature | A Side 103 1 General outside profile D Sido_104 1 Planar_faco [Round_hole(Straight) + Round_hole(Straight)]

Thread > [An attribute of Round_hole]

m 6.1. 14 Snl^rJMHWfcifJCDIifllJftT*- 9

Seq Workingstep ID Target Feature Operation type, ID of Data Table Seq Workingstep ID Target Feature Operation type, ID of Data Table 1 Head 2 Rough Head 2 Plane rough milling PR 01 Table is Idexed 2 Slep 1 Plane Rough Step 1 Plane rough milling PR 02 28 Head3 Rough Head 3 Plane rough milling PR 02 3 Side 101 Rough Side 101 Side rough milling SR 01 29 Hole 109 Drilling Hole 109 Drilling DR 08 C 4 Side 103 Rough Side 103 Side rough milling SR 01 30 Hole 109 Counter sinking Hole 109 Countersinking CS 07 5 Step 1 Side Rough Step 1 Side rough milling SR 01 31 Head3 Finish Head 3 Plane finish milling PF 01 6 Pocket 102 Plunge D rilling Pocket 102 Drilling DR 02 Table is Idexed o oc

7 Slot 2 Plunge Drilling Slot 2 Drilling l 32 Hole 108 Center drilling Hole 1 08 Center drilling C D 01 8 Pocket 101 Rough Pocket 101 Bottom_and_side_rough_milling BSR 01 33 Hole 108 Drilling Hole 108 Drilling DR 01 to o 00

9 Pocket 102 Rough Pocket 102 Bottom_and_side_rough_milling BSR 02 34 Hole 108 Counter sinking Hole 108 Countersinking I 10 Slot 2 Rough Slot 2 Bottom and side rough milling BSR 03 35 Pocket 101 Finish Pocket 101 Bottom_and_side_finish_milling BSF 01 11 Slot 1 Rough Slot 1 Bottom_and_side_rough_milling BSR 04 36 Pocket 102 Finish Pocket 102 Bonom_and_side_finish_milling BSF 02 12 Tee-slot 1 Slot Rough Tee-slot 1 Bottom and side rough milling BSR 05 37 Step 1 Side Finish Step 1 Bottom_and_side_finish_milling BSF 03 13 Teezslot 1 Tee-slot Rough Tee-slot 1 Bottom_and_side_rough_milling BSR 06 38 Slot 1 Finish Slot 1 Bottom_and_side_finish_milling BSF04 Q t£ o

14 Hole 102 Drilling Hole 102 A Drilling I 39 Slot 2 Finish Slot 2 A Bottom_and_side_finish_milling BSF 05 15 Hole 103 Drilling Hole 103 Drilling DR 04 40 Tee-slot 1 Slot Finish T ee-slot 1 Bottom_and_side_finish_milling BSF 06 16 Hole 104 Drilling Hole 104 Drilling DR 05 41 Tee-slot 1 Tee-slot Finish Tee-slot 1 Bottom_and_side_finish_milling BSF 07 17 Hole 105 Drilling Hole 105 Drilling DR 06 42 Hole 105 Tapping Hole 105 Tapping TA 01 Q. Li. o

18 Hole 106 Drilling Hole 106 Drilling DR 07 43 Head2 Finish Head 2 Plane finish milling I Pi 19 Hole 101 Rough Boring Hole 101 Boring BR 01 44 Step 1 Plane Finish Step 1 Plane finish milling 20 Hole 102 Boring Hole 102 Boring BR 02 45 Hole 101 Finish Boring Hole 101 Boring BF 01 21 Hole 103 Boring Hole 103 Boring BR 02 46 Hole 106 Reaming Hole 106 Reaming RE 01 22 Hole 101 Counter sinking Hole 101 Countersinking CS 01 23 Hole 102 Counter sinking Hole 102 Countersinking CS 02 24 Hoie 103 Counter sinking Hole 103 Countersinking CS 03 fESiSIt-F-* 1C Z Z TliSBS Z 25 Hole_104_Counter_sinking Hole 104 Countersinking CS 04

[ft*I£I+<7>j£«]

1. WorkingstepsCT) A: — Z> Z. t.0

2. XfitC 43 It 5Work i ngsteps<7) v - >r > * £ 5 CL £ 0

E 6.1.15 Jiral^r'^MCiSEIfKoftSElff1'- ? 6.1.3 £nX7°n-t^XXX C New Orleans isIftTN Discussion paper t LT$IS LZX[]X7°D-trX XtX (Machining Process Model) [5],[6]iIov^T^ fUliSi&EB11 i) -2>0

(1) W# • BM srE?/Aps^^o%#

7^f ^ krT4"C, I-AAM^r#^L

##"&o - ^ x T x ^ -e(/)#$:#%##& 99W4:i-&o ^ c (7) T - ^ xf x^,4$#B#<7)f - ^ x -f )]/t LTflJffi'C^ b C t ^xXo

(2) #a#m AnZC{^#i##(Machining Operation Information or List of Workingsteps) fcAjj t L, ## fp (Dl)\\X$Wi (machining feature) XjS 5 X'COjpXXfiX X- X (Machining Process Model) £ ##.hf6o

[Mama] 1) #PXX#Xf X (Machining Process Model) 2) XMlD^fX (Cutting Tool Model) 3) Xfp##(D##b X T X (F unctional Model of Machine Tools) 4) ##89#^X T X h XX (Functional constraints Model and Working tool) 5) #PX##X t*X (Machining feature model)

] 1) XfMlxlt (Process Plan) 2) NC 7*' 7 X)?£7)(Geometric Processing for generating NC data)

(3) jfJDXynXXXrX^ov^T H6.1. 16CXfIl£lt (Process planning) ^ Z: (ifEHlxEt (Operation planning) h X~}J • Machining feature UlDX##) f-fUjilX6

39 IS014649 CNC Data Model

XEIxIf^XM jni^ta, j

(^ox#m) xetsft IW, ------► CNC amm, AP224 or AP214 miMM.

=Iworkingstep

m 6.1.16

1) AP224, AP214 T^#2KXV'&nm#m(±X#mt' ?

2) ISO 14649CISO/TC 184/SC 1/WG7 CNC Data Model) tmilxlt • fESlxltOX % a t # CNC (om 6 ^ A<%#& ^ ^«

AP224,AP214, ISO14649 L> £rWt&lZ$ohf 2> machining Feature B8t)

1) XHlxlf * fpHI xp I^OXX &2> ISO14649 hZ&lf 2> machining feature ti> X-X GKXXfm#^XW Z mnx%#(: Z c TXm ^ 6 (O^ttfUf

2) XfllxEt • fpHlxHt^AXT — 9X'&>2> AP224, AP214 (D machining feature (i> Xfl Ixft • ftllfxft<7)XX£ LTO ISO14649 & &XfUf ^ V \ ZUSXU^ AP224,AP214 CO machining feature (X XX

^ zx(±xmwM Lx. x#^im, (x#xmm Machining Process Model >1 CO Machining Prtjcess Model KJ: I) t, XU-SKlt: J: *) oil* Machining feature XnX## • )JDX@##^"a X) X^XiliEXX t k £0

40 (4) mimm'b, i#, mm a.^mm&) t Ncr-w&m* ^*i-<7)SEK*-3'v>Tjb-1) , amKcei: a *='-?'§ &v>0 -e c xn, tta&t nc r-? ^ m o-es arnim (Mrv-f—T-v) me. -£/-•», TEKif&Cj: 0, ot % 3.

(a) toryn-bx * sttiito®sicso'v»Ttr-Mfcl, fk(:£ ^ I*. SalSkNCr* — 9 * mi®#; (b) ^SEItyn-fcxi-, mi7°D-bX£D'J^-xyn-bxi: LTtlS-t-Bo

(a) »tt«i*asii;#^

H 6.1.17

mmmamu. min#ecamL a. uaximz^^t ini

£ o r*as ns 0l ennm '>>? mffizft^xtt L-cee$U ffl^TGm (o : s, i:ISl 2:e) >jut ixmmt&o ^tibzmn-B-t’-ttzio^ ®#tltoMSC (FormShapingFunction :FSF) tZi>o -€"<0®969^Sl!$lix &SXf$## C is It S IIW»3 OFTil^Pflr-* £ o

FSF : Arr = r(g„? 2,...... ,?t+m)

;;ta ttxi{?m#.n°imtcm))Ziit%jm:Tm, rr hk qiimm-^nxims.z^.i-0

41 (5) 367 y ^ Xinl7°n-trXCO^T'MI; LT, HIIIMC K^ M: <£SflMaXXn -t:7 iDEFo rmmt 60

1) j$IW^ (Functional Constraint) ^Xf$##Oi^ 0 (t — 7'X) iSStXQxX C

X6xf$##om % mmxm

2) Macro Tool Xj& ZACZ^##(7)±mmejDni^ C ^ C Z 0 , Macro Tool ^X^X6 (El 6.1. 19) 0 IX jy £*i, * 6 ^ 6 Xl«] C##X 6 C h # 6 X ##% *9, TMacro ToolJ tit. X CO Activity (±, X#^(D%#lJ^XA^^ Macro Tool ^O^fb&#iX0

3) Swept Macro Tool X^5c Macro Tool (Z 1)0 Activity CJo OTXJ^C *9 iSUX Z 0 , Swept Macro Tool XlSX 6 Activity "CXC (El 6.1. 20) 0 I"Swept Macro ToolJ t It. £XnX/yi*)iIlX «£ 0 Macro Tool 0#^^$#L/:X##X"e^6o CO Activity It. XM-^O^JOfxSJ^' Macro Tool X 6 Swept Macro Tool ^O^yfb&#:Xo

4) Jnxffix^ Swept Macro Tool C C IZ X , Envelope of Swept Macro Tool £:X $fz&t>CD$)M (&l&#n£) XTXj&^ft^XJXO J}X'& . tlPXM^r#%X&o CO Activity It. XIXU3)OfxS'JX Swept Macro Tool X b> Envelope of Swept Macro Tool ^O^X^r^X 0

5) {mwjjtkfc MM) £#XX <6 C C CZ X Envelope of Swept Macro Tool 5rXjj£X £ Activity (El 6.1. 22) o fi/EMW3J] t It. Envelope of Swept Macro Tool XU&&X M-i293U"C% 0 , JjPXMO^WfXK£*^#X6o CO Activity ti, XX^J^JOjx##^ Envelope of Swept Macro Tool X b fEffi-^O^O^XSr^EXo

COZi X#, Macro Tool, Swept Macro Tool, Envelope of Swept Macro Tool, ^ *9, JjDXfES L T O & (El 6.1. 23) o

42 IDEFO 1B@

Functional Constraint

#±13

Functional Constraint x = x(r) < y = y(0 z = z(0

HI 6.1.18 Activity

IDEFO EES& 1

PX# T^PXft ------W

z$6 (±16) @$e

A

HI 6.1. 19 Macro Tool Activity

43 CZT' BE®® Z ◄—

IDEFO IB&ti l 7^nil Swept Swept Macro Tool macro luui ...... “

El 6.1. 20 Swept Macro Tool Activity

CZZ BE*#

IDEFO ms#* i envelope of swept envelope of swept Swept macro tool macro tool macro tool

mit®

H 6.1. 21 MEM Activity

44 IDEFO IHiS

Envelope of swept macro tool ►

mi&m

H 6.1. 22 imwxxjfc

dt : amam ◄— / dr ■. nnsaii cz^

til 39 (7) T^nxH ftmtiia X,BtiJ33 Envelope of (Macro Tool) Swept Macro Tool Swept Macro Tool (Working Edge)

St ^T^RrT CZT ) rESMT (X ’Z>Zt) rWE CZT ) ®TrM (&iZT ) V0 = rSMT

i

i i

*£0

rams StiJfiijaib 2i yam avam

St A(0) A(x,z) A(x,z) V dx dz ) 80

m 6.1.23 xMrVjyjv&m

45 &±

• Workingstep ! tPXff # (7) ##m £* L X X t X • Working Tool ! XHXJXTDf'^ LTV^&^fjl/0 Workingstep X b —'Ml(- sm^xi^o • Machining feature '. Xlk$J3J £16 XX utilio "T$£X $ X6##\ X)S $ ti-2>®

tipxxaxxa. x#i:ei# xmm, mom#) ^ tin x. X XMX>X 7 *7 'i ~/X'

i/X077^ X£nXXTX^^#J&Ife^it£(6XlM6X9)^XXo

46 ------s ------•> ------N ------s NC yp-tr^x-^ iaxyp-tzx mmm V s______, <______, >______

workingstep Working Tool StiJfliJilB 1 iasiiis] I A(qi) A(9i) § •W*' Abstract /-1 Machining A(9 i i • • • ,9/-i) A(9i i • ■ ■ >9/-i) feature

Functional inyiisb Constraint Afeed(9l ...... 9 /-1-Lf) /-1-Lf f 11 • • ■»^Li

Swept Macro Tool Le ^0—**(9li • ■ • >9f-Lf+m) 9l«"-i9ue (m+1)+ (/-1-Lf)

(m+1)+ Envelop of Swept Macro ** t(9 i >• • • <9m+l) (/-1-Lf) Envelop of -Le Tool rl(9l i • • •' 9m) '►j Swept Macro **0™ *"(9li • ■ ■ i9/-Lf+m-Le) Tool^^R tern®*} (m+1)+(/-1-Lf) *jT[> Po- r(9l.- • ■ 'Am+1-Le) -Le-(/-1-Lf)._

in 6.i. 24 aam ro = A'(xU2(y)A3(z)A6(0)rT (6.1.1)

V_ I—

r0 : Working tool 5 ± lE

Ax {x):XMWm a A2(y): Y-### A3(z): Z-### z ,46(0):Z-66 (±16) 065 6:

(m(9) mmeim f(x ,y,z)=o: Tooipathh^6o

x = *(/) y = y(t)...... (6.1.2) z = z(t)

±66#g#$lJ#: 0(/): ±661065 co/15/. : ±661065#it (6.1.3)

JtoXyn-trxcDSii

r0 =Al(x)A2(y)A3(z)A6(9)rT

------±66mmeu# ------± - r)v%mmn (mtus) ------

48 1 0 0 x

0 10 0 (6.1.4) X- :Al (x) = 0 0 10 0 0 0 1

10 0 0

0 10 y Y-tt^Uj \A2(y) = (6.1.5) 0 0 10 0 0 0 1

10 0 0

0 10 0 (6.1.6) Z- (z) = 0 0 1 z 0 0 0 1

1 0 0

0 cos (p — sin

0 0 0

COS 0 sin 0

0 1 0 0 A5 () = (6.1.8 ) -sin 0 COS (j> 0

0 0 0 1

cos # -sin# 0 sin # cos# 0 Z-m^:A6{0) = (6.1.9) 0 0 1

0 0 0

49 (6)

&t'bm:tm-=£rn'ikztiZv xmmimmi&& t, ayrai*, « groi*. #a. wi/^ (XAffiS*75 'b%tzXfLtm

rT = ATe4 ...... (6.1.10) e4=[0 0 0 if

Ar (const.): A §] ij IM- A, • At(u) :

rr : HI/ At : fflDBtmSc / : m : 9J50-ik7n

m — < l-.mXJJXB;

MTCAWli: LT, ZtUb y 9 A ZXMmrxBtWHMK-xi’ MHrfct,

1) MX* • Single Point Tool

rT=Ax (RY =[R 0 0 if...... (6.1.11)

(#1)

50 HI 6.1. 25 Single Point Tool

• Multi Point Tool

R COS a, R sin a. rT =A6(ai)Al(R)e4 (6.1.12) 0 1

— z

•••1 R

x______y

[H 6.1. 26 Multi Point Tool

2) • Peripheral cutting edge * single blade tool

rT = rT(zT)= A2(zr)Ai (R)e4 =[R 0 zr l]7 ...... (6.1.13)

51 r

V

H 6.1. 27 A Single blade Tool

• multi blade tool ($!l) X b 1/— b > K < 71/^ V — "7

R cos at R sin a{ rr = /> (zr) = A6(ai )A3 (zt )A1 (R)e4 (6.1.14) ZT 1

HI 6.1.28 Multi-Blade Tool

52 Single helical Blade tool (#!)%.>

R cos rT ~ rT (ZT )— ^ A3(zr )Al (R)e4 = /?sin (6.1.15) v y y

HI 6.1. 29 Single-helical Tool

Multi-helical Blade tool

{ R cos at +271 — P

rT = rT(zT)= A(,{ai)A6\2n — U3(z7 )Ax {R)el Rsin a, +2k— • * (6.1.16) P

53 HI 6.1.30 Multi-Helical Blade Tool

taper blade tool

R + zT tan p 0 rT = rT(zT)= Al(zT tanP)A3(zt)A1 (R)e4 = (6.1.17) zr 1

® 6.1. 31 Taper Blade Tool

• End cutting edge • Square end cutting edge

rT = rT(s) = Al(s)e4 = [s 0 0 l]7 ...... (6.1.18)

54 [IJ 6.1. 32 Square end cutting edge

Drill end cutting edge

R - zT tan P rT = rT(zT)= A] (- zT tan p )A2 (- zT )Ax (R]e* = (6.1.19)

1

IE 6.1. 33 Drill end cutting edge

55 Ball end cutting edge

R cos a0 cos 0 R sin a0 cos (f) rT=rT((a<,)Ai{

X______/

El 6.1. 34 Ball end cutting edge

Comer radius end cutting edge

Rs cos (f) + RL 0 rT =rA)=a X (r l U5 (Rs y (6.1.21) - Rs sin 0 1

H 6.1. 35 Comer radius end cutting edge

56 3) EtiTOIM • Cylindrical Tool mwws Rcos Rsinfi rT = rT((/),zT)= A6(

IE 6.1.36 Cylindrical Tool

• Spherical Tool (#i) awma

R cos y/ cos (f) R sin y/ cos 0 rT = rT(,y/)= A6 (y/)A5 ()a ‘(/iy (6.1.17) - /? sin 0 1

IE 6.1. 37 Spherical Tool

57 (?) NC/at^T-^ (ZA, A[]Z&) t (iglj U4x_ h o £ ZrfElllxSt 7°n Z X t: Z i NC 7°dz Xt- ? 6 £ aw:iz zmm^mo (f-y;i/) mm^fmmwtyazxcoA^mmaLT-^x^^^

1) H#7 7^X#(OZT;l/ |g 6.1. 38t:^tZ^ &Z#7 7^x#ozf;wi^T^2fL6o

AMT(x,y,z,d)= A'(x)A2(y)A3(z)A6(d) ...... (6.1.18)

r0 = A1 (x)A2 (y)Ai (z)A6 (G)rT...... (6.1.19)

r0 : #AoZ### tj- T - 77i/(0^#^ jo ^ ##:#/< 7 Hi/

m 6.1. 38 Z#Z{$##

2) H#7 7^J%#0zm& H#mm77^zo , z

58 cos# -sin# 0 0 sin# cos# 0 0 ap (g)= a 6(o)= (6.1.20) 0 0 10 0 0 0 1

3) m#

Acf (x , y,z)= A1 (x)A 2 (y)A3 (z) 1 0 0 X 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 y 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 z 0 0 0 1 0 0 0 1 0 0 0 1

'1 0 0 X 0 1 0 y (6.1.21) 0 0 1 z 0 0 0 1

4) mmtfiMZMx-fzm'o (t-7» mm

1 0 0 JC 0 1 0 /(%) Ac — ...... (6.1.22) 0 0 1 z 0 0 0 1

5) m 6.1. 39tl7Ft l 9 &Z#77 4

Am(x,y,z,a,p,e)=A4(a)A5(p)Al(x)A3(z)A2(y)A6(0)...... (6.1.23)

r0 = A4(a)A5(p)A 1(x)A 3(z)A2(y)A6(&)rT ...... (6.1.24) rT nxMwmm

59 $wsvi**»y

0 6.1.39

6) j

cos # -sin # 0 0 sin# cos# 0 0 Ap(e)=A6(e)= (6.1.25) 0 0 10 0 0 0 1

7) m#

Acf (x, y,z,a,p)= Aa (a) A5 (p )Ax {x)A i (z)A2(y) 1 0 0 0 cos i0 0 sin p 0 0 cos a -sin a 0 0 1 0 0 0 sin a cos a 0 -sin 0 0 COS p 0 0 0 0 1 0 0 0 1 1 0 0 X '1 0 0 O' "1 0 0 O' 0 1 0 0 0 1 0 0 0 1 0 x y 0 0 1 0 0 0 1 z 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

cos P 0 sin P xcos p + zsin p sin a sin p cos a -sin a cos j3 xsinasin p + ycosa-zsinacos P - cos,a sin p sin a cos a cos P - x cos a sin j3 + j; sin a + z cos a cos p 0 0 0 1

(6.1.26)

60 8)

x(«,v)cos p{u,v) cos p{u,v) 0 sin P(u,v) + z(w,v)sin P(u,v) x(u, v)sin a(u, v)sin P (u, v)+ sina(w,v)sin p(u,v) cosa(w,v) - sin a(u, v)cos p (w, v) y(u,v)cosa(u,v) - z(u, v)sin a(w, v)cos P{u,v) -x(w,v)cosa(«,v)sin P(u,v) -cosa(w,v)sin p(u,v) sina(w,v) cosa(w,v)cos p(u,v) + y(u,v)sma(u,v) + zcosa(w,v)cos p(u,v) 0 0 0 1 (6.1.27)

^ Express-G o

ftOXfltJ&S*

o ----- o V------Q—

«*<7 mm

C X|6^|S1@Ie

C YS6^|9@E

6-J-c zto^isiiHie

M 6.1. 40 iJ -XA<7) Express-G ZtZ

61 ( 8 ) Working

' l i f i S f I D S ISO

Machining 14649

IS014649 Tool STEP AP224 feature

Macro Tool) workingstep machining feature cr>

workingstep Removal

Volume^ £

if

A

£„ L t

STEP

Machining Envelop ofSMT* f

Neature

Working AP224 Working Tool

ON Unit to Edge CO

Shaping Element machining J:

9

Removal Swept Macro feature Volume Tool

Machining Machined Envelop of Swept Working Tool Workingstep feature Surface Macro Tool

Unit Shaping Working Edge >■ L/_ Element

U-'O^IZ

Ei 6.1.4i 2) 15^—workingstep, JfSS.'ftU/^SPISSSO1' Working Tool fcTIlcoJ: 9

( Abstract workingstep Abstract Machining Operation v>^# /=41—H Y 1 1 0T/-1-LT a = 1 1 1| m+1 42) Table##*] /-1=3 X 0 1 1 A -Le J mmm Abstract Operation Planning /-1 -Lf= 1 r/-i-Lf 0 1 -iTy m+1 1 -1 1a (3) ^X#ij]lc^f 6%$:(Functional Constraint)###: Lf -Le -1 1 ojx mx@^^(c$0-#-i)#im(Enveloping Constraint)###: Le 1:1 mapping

( Working Tool ) 1:1 ? mapping Swept Macro Tool# s Abstract machining feature &7C#:m+/-Lf=3 # Machined 1:1 mapping Surface: ro= r(x,zT)j Envelope of Swept or =2 Macro Tool Removal Volume : #:*tl# :m+1-Le=1 v 0=i^(x ,Zt, 0) : /-Lf+m-Le=2 r=3

0 6.1.42

63 3) Lt & (7) c

Tf CO CM II II II II *- II II II 0) I +

CO CM

X B

in m- cm II II II II II II II M-

co co c\ Tf CO am III 5*

CO CM O II M- II II II X B 'X 0) I +

II II II II M-

CO CO

X B ^

CM CM CM CO CO t- II II II II II II II V4_ X B »-<

64 4) L tz workingstep <7)/^y 9 — 9 (DmM: workingstep (±.

• ill 0 MW] (Controlled Table Motion) • I A# JJCDlsl $s##(Macro Tool) • du % ^(Enveloping Constraint)

^ ti b & ioiftH$J £TU Co

1-1-Lf: Controlled Table Motion(D/iz ?;1—=>

domain: 0S/-1-LfS2

m+f : Macro TooKD%tc &[ => Macro TooKD^Y^ m+1 1 2 3 %)%%%# mw @9)53 domain: 1Sm+lS3 t JnxttSIffl 041 148 Le : Enveloping Constraints =» Le 0 1 or 2 EBADX frMjmsmx domain: 0SLeS2 Aox##m

[U 6.1.43 ##.{b L Zj workingstep (7)/^y 9 —9 SMM:

65 5) L tz Machining feature model f ^ y ^ — 9 ( Machining feature ti> ^

A : ■5/<7>-»»(0.1.2,37l A 0 /<7/—^

Unit Shaping Element c Surface texture Random Groove Smooth Smooth surface surface surface surface a-.ISnLWi&m-Zi^* —?»(2,3,4,5) |

»»(2,3,4,5) I

r

H£IW]

Volume

IE 6.1. 44 ftilS/ffc L /c Machining feature model ^ *7 ^ — *7 COMffi

6)

• (DMX$m* t ;v ^ CTI±x> K< -e<7> Express-G y^/pto

66 r0=A1(X)A2(Y)A3(Z)A6( 0 )rT xz

MF 1 WT1 xy Process rC -c MF2 WT 2 sweep model Delta volume S[1:?] MF 3 WT 3 drill W Machining Workingstep **D—----- AS[1:?] Operation MF 4 WT 4 > dwell „ «P. Machining MF 5 WT 5 G Tolerance Feature Working Tool Toolpath inclusion ,S[1:?] Q ZEZ £l Controlled Functional 3 Machining p -c -c Working Tool Constraint Feature Table Motion mapping context

Table Motion Swept 3 Removal 'A1(X)A2(Y)A3(Z; Machine c Volume Macro d Tool Tool £l —6 Macro Controlled ^ Spindle Motion c Machined Envelop Machine Tool Spindle | A6(0) function Surface of SMT ------a-L, L—_____ j Spindle Surface 3 c Texture Information

Cutting Edge

K 1 Enveloping Single Form point Blade Surface Feature Constraint h 0 6.1.45 6.i. 5

#@ADXLe=0 (z=Const) #%A0XLe=1 (z^ Const) 1 *

Lf=3 Lf=2 Lf=1 Lf=2 Lf=1 1 '■■■■'■ * s f i y 9-r a izf- ^veiiinx <3- □ M H Lf=3 — — — — n> # SBJiqx dwelliDX I (x,y,z=Const) (x,y,z=Const) 4 Le-0 H! (x,y=Const) ere av Lf=2 — — — — I drilMX drillJbPX (x,y= Const) (x,y=Const) % "4 CM IV Lf=2 — — — — J ~A sweep JPX SW(3ep}IPX m teHtox (z=Const,f(x,y)=0) (z=Co nst,f(x,y)=0) a 9-r Le=1 O' (x.y^ Const) M CO * Lf=1 — — * d M xyJjPX xzJjPX Xyip: E rv (z=Const) (f(x,y)=0) (z==Con St) Oi 7)

/— 1 —Lf=1

Abstract /orkingstei

Le=1

Z-1-Lf=1

m+1=2

Planner face milling Abstract

Primary motion

( CD drilling ) Slot milling Abstract Abstract Abstract Abstract workingstep machining machining workingstep i feature feature Primary Le=0 7 i=3 - - 71=3 Le=0 motion /-1-Lf=1 O O /-1-11=2 m+1=2 m+1=1

dwell cutting^

Abstract Abstract 'Abstract Abstract workingstep machining machining workingstep feature feature Le=0 7i=2 — — 7i=2 Le=0

/-1-Lf=0 o *1=2 — —1 *1=2 O /-1-Lf=0

m+1=2 z A 1=2 m+1=2 /— 1 —Lf=0 ((D sweep milling )

Abstract Abstract Abstract Abstract workingstep machining machining workingstep feature feature l Le=1 r'=3 i r’=3 Le=0 /-1-Lf=1 ° *1-2 ° /-1-Lf=1

m+1=2 , A 1=1 - m+1=2 /—1 —Lf=1

0 6.1.46 t)Dl

69 (9) ihtb

Itffilil-PSSL, f 7)AiTi +%#O 3 7 > 4' h ti[]J.i|f@ (Machining feature) if t- AP224, AP214, IS014649 L/2= s^Di#ai±, I*##gga L-oettstu.^s-e* IW

;v, 4)t?tl-S,jDl#®l±N fplf &T- ^ f T'thh LT#mt6 C t 6 k#x_3o

70 6.1.4 JNC Assembly Model (1) Assembly Model 1) ws «waa.nanztmttzm&^rnt-w-t s^on-ctii), ms, xr^z mit -a r - * tii&me $ tvr v > s,, £*. 14 r- 9 ISitCM LT fit 6 (Of-- 5- #igi:*o' < ililfy^fi ^a2:l8<0iS:lt->ATA(0tl*WktLTV^ o L*U tz'p%<, -eojgBt LTIt, IHTot -5 t#xOtvct>.5>[8]„ • Eit7)>^aLEKv>^-£if«jaa7"n-bxT1 -1 LT##!? s a msx-r^nr- 9 # S^USStiTv^v^ h0 • fS#H=«3:l8lxSt*fi:7 t:»t:i±, f;b(Df- c to STEP Ctiv»T i>,US: 6 ^6«#m&a%ff-;Ht:l:M+&#WU,Part44 Product Structure Configuration tJ t (f Partl05 Kinematics Model X—□ Q ^ lilt1. b I ? ly It T V ‘It)', ttSSitESth®=P0 Part44 1:4: nmiX'^Z i>7v v-^ymu-y (HE# ±mtftAL±¥-m, «a , L-c, $-S$!T-£ : t ^r-S ^Snn-mv^, JNC Assembly Model t LT*&f 3:t tg%t LT. M*li:tilt3I£ftt. ISO TC184/SC4 I: trIt TcoStoS*tff o T § £0 STEP Mf&WtpT* Assembly Model C0##-fWtlt, Parametric Assembly, IQ. if. to t f/ti'HltiJillQI®. ####, i&MMmwmxmM-zmt&i>ox&^ tfij. • mmmf, EitEits k'vmfmm&mmmwt l&w -eo/:*, Assembly Model li$*ft#'l«ti t KW • E:+#Stit %m#ait, mm#Bt L&V'„ Z?z

71 f(7)&;KC\ 7t>7V^^(7)/^ 7 ^ b V "J y 7 hfztb(D Parametric Assembly $ tlTl^&0 Parametric Assembly b V v^^7@#(7)^^#^^mt6t(7)-e2b6o ♦ distance constrain ♦ angle constrain ♦ parallel constrain ♦ perpendiclular constrain ♦ coincident constrain ♦ concentric constrain ♦ tangent constrein Parametric Assembly y b V v ^ #6 3: 9 6 t (7)T, Assembly Model & %#& WT& h0 Assembly Model b Parametric Assembly b h tz^)^ WG12

(2) Assembly Model (DW&: l) Assembly Model (DM^.Mah Assembly Model £ V ^ Thttzfcb L"Cti> J: 1 &Mpcq£#x.TV'>6[9]0 ♦ n y ~ y b (O^K-a"b>-^tX'^Uf^L^ tl h W:ab (Products composed of sets of components)

# ^"assemblies" b Hf^o assemblies U^<)]/(D n >;fi°— ^ y b jco V>Tii”parts”b 4^iiAlx/<7l/(7)3y^i —^y M20WT(j\ "sub assemblies"

b —~'Z> ab h V * (i -?* tlJ^l_L (7)^(7) parts 3: Zcli sub-assemblies 6 $ flh 0 D'b'ZXD assembly ti> sub-assemblies b parts $K&o ♦ ###]! on (7) Sc do W-MMM (Products structure configuration of assembly) M DP SiiSS HoV'Tti , ISO1303-44 Ct, S p°d 0 X b b BOM (bill-of-material) tl o V > TflX\/'ha -^'ZXD assembly

imK mttm^z-btitzassembly mmi±, lZ.b i>&'0'ftho Assembly Model <7)gm, EIt> A# 7n-b7.##t(7)ffLfYu7)^l:joV^"C, 'jZ#^3y^-$y b^(7)#^cM#^^ mt 61 f^, sam#m ^6 ^ 6 ^ ^ r ^ 6 o ♦ ##D^oo (Standard Parts) assemblies (i> ^101/ b *?$: — — 9 t£ b*(D^ # < O^MlSnD^'fUffl $ilTV^ 60 ISOTC184/SC4/WG2 Tlil^ilTV^SMq* ? □ 7\Z^ttlh Mt&Uuh b, x o x^M $ 2 h 0

72 2) Assembly Model ©tEfflStil Assembly Model 14, W.TC/7'4"4 O 9]<>

###13/ 5 3. b-> 3 >14, Assembly Model ©#@lcmS^Rtom#t&5t =tx.6>ft-5o ISO 10303-105 Kinematics 14, b f Parti05 14 3 «tc CAD ->X:rAb###r>X:7A£iK£r't-Z,t::l4, WT-S5. ♦ EMitSOT-y —> 3 > #WI4nBn(D73^->3 >14, f > <7 T >7##©!%%^%^k UT, #St:e$"Cafe-E>o

Assembly Model ttSnSiStikSSipfi t ©to^&tl-tf- b if 3 C fc tfT- S -So to 67-D-b^E|+i:P*7'D-lzXEIfl4, CAD t CAM ti Assembly Model ©#S%(5to#%"C&6o ♦ &m#f ##%:#Wm&55©&@#lrl4, Assembly Model ©*g&J®)B*Wefc£o 3) Assembly Model ©l*lS #t*tt£65l4, $»©SS6W-6-t) £ tvtu 5. M IMK^S©*!*); &3* (Assembly), 6ni7±:9ST- 'gd'igtit66l!55 (Part) W-M9L to *55©SH-454D'3lSfflg|irei4, to*55©-®d4®D)ffiUc615»*)£©#CrT:5toa>Ct 4) % BA5, —S5©S5fl'#B:$:l$b>toi£Du (Sub assembly) *m5ai4#m©@|5Ato]A55454tf6l555^6#a$4t-C, C C©@5:&toji55l4j6gt© #©a:AtoAL55A41761555*^ ItB C kl:» %. UbcAXT, to565, @#$8*5543 4 lb @55514, toAELTSSt"^6©T-14%<, Afa/uC0a44t)c04&PglBKH& 6f SoC i: l> & O o @#$8*6514, «|g$>3 V d4$8*Ji»:6 k'©EiS* 6, to*55©4'©^'S%#m@#&*m^- 6©T-$>-6<, C©6©, K55$mi"-5S®|ig (8Stb-N#r-»£S) T\ to* 55, @6Sto-u.6n, @555©PSlPli^t4, IbiRlEtb 15X Sb(b4 32 4 Eb4U t@6SI§!©—iftfKK^ 4 C% 3E5EX? ci & 0

73 W^BcpMs^rK 6 Assembly Model 0f*]S5:$lfS1"£ b\ J^T^tjn

T. d'. mmsaa### «>. 7t>yv0#mm a) assembliess sub assemblies^ parts (#f §0#) b) ±&l"VUD3

c) {£@^|£i?KD£Ji ji. 3Z/%K—b0mBil a) 3 >#-* > b R8©gratttt b) HcMf 33>#—b0{&@^^#0^## c) #03 >#—$> >#—;&> b0#^0^# d) #K ^#0&# e) 3 ># — *> b0Mp#0^#Ag##&^#T^yc<&lC^^7k$EM:#^ (Assembly feature) ca60##ZMLT(^ STEP (ISO10303) 0 Parts 0fbT^g$tlTl^— 0 V-X^T7"V^-'>E>UV-^^j;DaMf^C^>bsT^^J;o^^oTU^)o STEP ;i/^0HI)io*(t£^fIbT, ^6.1.511^1-0

74 ISO 10303-41, 42, 43, 45, 46, 47, 49 isoi3584 £tiM7r$>;£> 'X x^HL/TJi, ISO 10303-44 Product Structure Configuration model#5, Xa), ^b), XA^^#LTV^6oISO 10303-105Kinematics tt, hcDE^t)-ti-#^m^n^Vy^cD^ytmu-c, Mi

Xh0C Assembly Model (i, Ji-b), J:-b), 3i-d)CDJli &

'jkmzmt&MU'HfoZ Xc), x-d)(i, CCD#&C0#(D Part

6.1.5 STEP ^EX/V® AS

Information STEP Model

7, ^-a), r>-b) ISO 10303: Part41 : Fundamentals of Product Description and Support. 7 ISO 10303: Part42 : Geometric and Topological Representation. ^-b) ISO 10303: Part43 : Representation Structures. >>-a), C? b), 3L-b) ISO 10303: Part44 : Product Structure Configuration. 7 ISO 10303: Part45 : Materials. 7, f>-a), »j7-b) ISO 10303: Part46 : "Visual Presentation. 7 ISO 10303: Part47 : Shape Tolerances. ISO 10303: Part49 : Process Structure and properties. 7, r>-a), r>-W ISO 10303: PartlOl : Draughting. 7 ISO 10303: Partl04 : Finite Element Analysis. X-a), b), c) ISO 10303: Part 105 : Kinematics. 4 ISO 13584: Standard Parts.

75 (3) Assembly Model ©JfcWt 1) (Assembly Feature) mw&iiM&iziittzmMmi., -use, mc ^-e Assembly Model C0## LTV '■&3Si>:£\ (Assembly feature association) fflif-tSSl (Assembly feature) TrlSJit' 6 C k 6R)HLTl-'>-£>[9]0 esHfiicisiuTti;, «T©3#mt:emu-c#*-ct\6. ♦ tffltoSEMfii

55mS©ggAK MtolcSMLTt^MiTC-ifc*o iiteiTSg&Bi:;* h y^(Di. 5 tc, «!Vtv b3M«&aih, L-Ct'g,d: 9c, ' tf- ffl/tfW&fifH, $8\ ifCMLTfo]"b^tg-aCR]®Srafo H 6.1.47 fct CCT-li, 2 %©?## 1 *04111/ b

76 Flange Plate Screw & I Cy Under I I Plane Screw Nut .

Plane & Plane _

plane & Base Plate .Plane ^ Flange Plate

(a) Drawing (b) Connecting association among components

El 6.1.47Assembly Model ffl 1 : 41 it bT'lSl/jic'ttti 2 b7©4^%

3 >7$-*> h®©SSES®liBI 6.i.47©(b)t:s$n?>o (b)t:tt, 0 ADT'D'.yXti:, 6tt-ct\6-m©3 >^-4-7 b CAI76, BKg S6>Tx LTl'-So -h—ll\ X7 '1 a- © "J h kBo Assembly Model C (assembly feature) klFFlittSo ffittixfililiTl >7|t—#.> H@0M%#lf (element entity) Tifc-So 0 6.1.47 a,)T-|i. 7 7 >"X TV- h ktfA- Yomi&tMSL^sfflLk. LX 2 o©-7—X»*f X 6 h-6o 7"-X 1 : ^n-?ti©36 v.©3 >41—* > b*\ 1 77>77l/-10tt4«SU = + Vffl -xhiomixmz = ->u + ¥B

7"—X 2 : 7 7 >->*:/ 1/- h ©Eiz:RS[ 11 = *-;v 7 7 > ->7V- h ©BtilEgt 12 = 5p@ #ibb©ma$m2i = >v>y- ^Dbb©ESm22 =

EitiRSteseiix -e©#m^©#AkAm$ti^#%l:j:6. tifc*soT, 7"-x i fc-7 -X 2 ©*ga#m©#tAKx #1: Assembly Model

H 6.1.48lig$)S^>y>©E3i©01S5t-ro COtr-XCHu 0 6.1.49(CS1"J;7CB^ iSEM&iK 0 6.l.491:w$h6Z7Cx yaO Hi*H a#a©^.7H±©#]tLtMmk LTsasn-5,,xxv >7-@5Bk#e©3 >#-*> m. t i> dastfflc#* tra'^o

77 5. Valve spriag

1. Cam Shaft

2. Gen follower

3. Cylinder head 4. Valve

IE 6.1.48 Assembly Model 2 :

78 1. Cam Shaft 11 Journal 12 Cam

1 Point on surface 3 Revolution

2 Revolution 131 Bearing | | 32 Journal^ 22 Plane

3. Cylinder head 2. Cam follower

33 Plane 34 hole 35 Cone I 23 Sphere

4 Point on Surface

51 Prismatic 6 Fixed 52 Intermittent

7 Fixed 51 Torus 52 Torus 41 Plane 4^Cylinder| | 43 Cone j j 44 Plane 5. Valve spring 4. Valve Elastic Part

^ mechanical part definition^ assembly ------fixed connection feature Pair name (ststandard component definitioni) movable connectior

IE 6.1.49 2 0 Assembly Model 0Wc$cM{%

2) Assembly Model Assembly Model n El 6.1.50^^"t~o b (IS

(1) main_component_usage Z0> entity

(2) auxiliary_component_usage Z0 entity b & ££) J; ?> b(DE'n*

79 assembly

sub-assembly2

M 6.1.50 Assembly Model

m 6.1.47(b)tC^T$M3lon(D^-—O

(a) IfiALpn <- main_component_usage -> 7 7 >v 7°l/—b (b) Ifiipp <- main_component_usage -» ^—77°!/— h (c) fMipp <- auxiliary_component_usage -> :40V b

ei 6.i.50T»e(in>^-^> b?3(Dimm&*^to a 6.i.47(b)M 6.i.49tiu- 3£T©m> =j> >bmcDmmrmommit, mi&m&mi M&tB±L!FMlz&-oT£MgtiZ>z £\ztez>0 (4) ISO TC184/SC4 T'CD^S 1) Lillehammer 1999 6 0 7 B-6 ft 11 gtiebtl/c Lillehammer ^W JNC Assembly Model hZM LT &e-3/:o 0^2^ *si£, ^ai^T'^ofco Cut*> Assembly Model LT\ < C pwi (D$mizmmT l tztvmm^zn, nwi ztizt^tzo 2) New Orleans i^Si 1999^ 11H 7 B~~ll H 12 BIZfjtDtlfz New OrleansXtl£X©Assembly Model b* J- 7 > b t LT 2; £&b OSO TC 184/SC4/WG12 N448 JNC Proposal

80 for STEP Assembly Model of Productsj b LTtHtij 1^ CDtHSCUlT £ ##mJtfrofzo fXT 6o Parametric Model representation_item ^CL 1 ^1" n tM@>WM&i)MMX: ^'h^o CL7cl\> ♦ Assmbly Feature z>o cfif)t:lUs (5) - U >X^ST'CDW@BSiICI# LT, y-b >7* U 9 —^>bLX ^Ej-^frofco 1) shape_aspect Cl# bT Prametric Model Xi^ -rCD^H^TOfMX&%> shape_aspect b&l^ bV' o b b flXParfametric Model (± Assembly Model C|###^t Xz#)^ shape_aspect shape_aspect bTl^f&© Part bOW^ZXW^tztZ bt^X htl%>o # CD M ^ x assembly_feature tt XMMXc*Z> X oiZ'tZtzti), lttn(Dm%%:$kMLtzl^b(DmMft&Z>o 2mmmzfrMtz>zbx±x%mit%z b&x%zWr&tab\ i^n©l#^£Iffi£T"S3J;dCbT:&< b, %)W&i'b^x b ii&o 2 TMM^XA—Xitt^zblzX^), n%(DMM^ttbt%l3\ftX&jEtZ> zbbLfzo 3) Assembly Feature P a b%^ osotc 184/SC4/WG12 N513 JNC Proposal for STEP Assembly for Model Products j b LT^tti b WG12 lZjol^XWiiffl :ttfj~3Xl''%)o (6) Assembly Model ISO TC 184/SC4/WG12 N513 JNC Proposal for STEP Assembly for Model Products T'tiU

81 Assembly Model 4, WE5S03 >#—*> hV V—Xk$#LTV> •So UTOT©lIiSWTV'So ♦ >$-$ > h ♦ t)aWCgcS$tlTV'^:t,'3>^—MUjfflKbt

♦ h tim? >#-* > b *e,«fiKsnsB5a©i3xE*s ♦ 3 >*-* > h mvmmvvmm ♦ fm, 4Bip« c c-c-3 >*-* > h i:i±, a5fl-ias5ajb*J:v'$ nBD©s*6SA-evso SfiKOTCMVTIi,

H 6.1.51IC EXPRESS-G (C#-Jur Assembly Model ffl^-i'fltj££a3tLfc0£Sto

82 a 5 s e at I y mode 1

[/product > / defi ni t I on. comet r y_ \ scheim. pr oduct action scheim. property _ gcomet r i c_ tXdcf init i on act i onmr t hod def i ni t i on r epr esent at i on sche m.s hape

ma chani cal product _ def i ni I i on Sac[0:?) tion_met hod

| [issentl y_ me c ha ni cal a s » enb 1 y_ l ,f e at ur e_s ha pe componcnt . st andird. condonent _ def i ni I i on pr opert y definition

descri ntion asscritl y conponent _ s t a ndar d par t __

assenl>l y _ r el ati ng_ a s s erribl y_ pa r t mode 1 property assent!y _ st a nda r d par t __ suppor t_

identifier as s ent>! y_ -O feat ur e

mechani cal nachani cal assent)! y subassent)! y_ descri ption def i nil ion def i ni t i on definition

def i ni it on as $ oci ation j scheim. product S[0:? ] \ defi ni ti on I at i ons hi p component s _ associa tion s uppor t _ ( ABS) component conponent s associat i on_ r el ations hi p pr oduct _ conyonents

assent)! y_usage_

conponents conponent s _ ass oci at i on associ at i on hi c r ar chy

a uxi I i ar y_ (ABS) connect i o cooponent s _ moti on

auxi Iiar y conponcnt s S[0: ?]

posit i on and_ orientat i on mot i on intermittent fixed connect i on

connection connection

internal tent f i xed connection posit i on an proper ty pr oper t y property orientation property pr operty ki nemat ki nemat i c pai r ki nenrnt i c pa t h

i neoat i c mot i on represent ation_

m 6.1.51 Assembly Model CD EXPRESS-G ^7^7 A

83 W.T. $$%3L>r-f7L'fCHILrWtcEifl-r2.o main_components_usage i © n > 41 - * > b mmt z> o Part 44 © next_assembly_usage_occurrence © subtype "C$>^>0 components_association 1 $ > h connection 1 M©3 >*-*> movable_connection mmzimzhT^Tfr-ommzmmtz 1 *t©3

vm, v >^©mi p©«. fixed_connection intermittent_connection 1: & ^ !^©3>#t—$> ^>0 rerative_motion components_association_relationship 1 M© components_associations ©H^fCO components_association_hierarcy 1 #©components_associations ©#f(P^#6o assembly_feature_association C © entity (j\ Assembly Model 6#A6##©$bo't)#©^# %o assembly_feature_association 14:## 3 >7|t—> h©$bo't)#i#)ti: assemblyJeaturejassociation (±N ©fe^ 2o©3>^> h©iii^©HAt)tt^i$ti^o assembly_feature C © entity (i Assembly Model ©j^M##©#AA^ 3 y > b fs] © shape_aspect & X: geometric_representation_item t^2o©n > b mechanical_product_definition Part41 ©product_definition entity © subtype T $> D^assembbes. sub assemblies^ parts N standard parts % 6 o mechanical_component_definition mechanical_product_definition © subtype Tfe *9 ^ assemblies^ sub assembbes. parts N standard parts 6o

84 (7) Assembly Model ©^iJffldnUtT Assembly ModelCCXtt, 6^OT&#X.6/feF-:7C:fctt6iM0!i: LTttTO 2 o© x-vtCo^T£gtf"r-5o ♦ ttSffMBSmir • M->XxA[lO] ♦ ^mya^rnttom ■ g»i##&^t: v tH • i-xn-ii^x^Aiii] i) mammimw - 6-6 lo©iEjkE55t^tu-Cs S’ < ©Hfi;nj|67j:ttiEffSm)ii#As#S1-6o fflidl*©** *i*ig©3x t'»6OTc^*m^$toc«,>6ti-6chA5-eg6o

XAtcomputer aided sequence planning system) vX^r AC6176$Hv-tlibF© cF $ S’ $ •'PSSainA^W $ h-T *-a '6o *SEidil?StR©6©Ctiu E#»#E©m5JiRlf RK&&2©!: k’©6 6 !:&# 1"^$*, $6 rg-jg^j i:V'6li^r©SiR• ffflSiplilBICt" ltn«4?.4i'. x ©

♦ x*. EicSiqk yy^©wtltSS©$HlalE ♦ S3klt*©3l6ffffSW8g6 ♦ ttjiffai* csti6 -y-^ T-tr > x v ©s^tt ♦ emA##c6i76@a - »7Tt>y v%frM©N*##%»m#@

lt. u-s-'f ^ivsatticX'jv'fcEvzjesrret.ffi^iisstirv' 6, $issnTv\6cn6©giRff«*ipi±, *3X h^©6©©ttS®ic*LTttj3e,f. a-fflX«fl$Xh©!«Bfii©iilt*©Sg©#I b©mt:g* 6A60A^, xg|SShg-A s6Stol:a)Sr- 'i:v Xd a

—*> XSgPrefT&fctVtI'SfflColX, f©fp##IMI^P3X h Sri^il • 5?WT6 Q67X lit, W:© < 0^©?#imm#&A% < $im6ax©6» {tStofttiOklZC Work Factor ?£ MTM(Methods Time Measurement)®©©SS6EDXn6lt@S$jm5xsis»r->X7LA*5SI%6h,TVx6» C©6?wmx@#*i/X^A1±, IH ja WIX©6x$tt)D17. EA >#fi£dx/Etontf, >©xa^a*k-&:+m#A#mx^6*#&R oXV'6»

85 &EAi)ilSfal©^£SEto£MT& c Z LX, zofz&lz ASPEN(Assembly Sequence Planning and EvaluatioN) b #t

f 3DCAD 1 Contact (Unigraphics ) Relationships ASPEN Solid Model Data Against Assembly Against Model Data Toolkit (Pm^tsolid) tilily □ Utility Modules Stability Checker •D.O.F. Analysis ■ ► |> 2 Sequence Generator •Constraint Eqs. r" •Crash Detection MTM Index DFA Evaluator Graphics Lib. Data 4 1 Evaluation ^8^) Optimum Indexes Sequences ^stb ’ ^cpx ’ 1cnt

m 6.1.52ASPEN

m 6.1.52^^^a^ ASPEN It, CAD ^)]/t^±X7'V4©3il\ \ ffifb-rmb^^cDT^ao ^ 6 c c ® 3

ASPEN # g mag ^ c ^ ^ ^ o xit, 3 a, c-oi n:am &fro^o MTM a ^Aibb/zo f b%, mg talftiftH&fTi '*©ISIlfr & tfctEfcfr^ fco Assembly Model £#X ^tl^^L^MZ^X, U 6.1.53(1 ASPEN ©E AL^jioimz^to cct\ (v, (pa,pb» tit, mm v tz screwjit pa, pb (: t%M%t%o $ fcs gtmy^wz&^x, stable t\t^^z.t^m^ U partly_stable bl±$5n(ffly££ ft/T t x&l 'fiK M&Z. t £Sfitf3o unstable ^>o Z.o

86 v3 '■( P2’P3> *23 ’ *31 ’ a9 amst) stable---- f>3 2

stable

against ) screw Jit) 1\—stable

f41, against j f51, against ) I ...Partly- - unstable stable

0 6.1.53

$St^J;-6toVl)e»lfaiW'>X7LAT-$.^ ASPEN £HJ8 Lfeo

SSIRD±(fs cns MTM $ k DFA ?£T7t«£nTV'5^tom:51"3*ipm* e>3»g©S«gt$i: ♦ $Iidl»© Sto^BEiao^lCs ffiifitjg© 3 «7C CAD -M t

♦ toi£)iis©sv x c,t ot$r sftsmaicov . ssj±-> u >y©maa&##K.

-yroc-icr5v^vT-$>^>ckSEsvfco ♦ UT. ASPEN kto©aiC©'>X7"e,* 6tlfc Bjlgfflaii $#. nfcSEfliflSnMoasicoi, '-ctts&ff* o aspen mae#»m'm©6A©K*%^-/H/A%#c*mu-c* y . UTU5B'>X5LAkffiibT$WL;fcaBW4S*A£3yM!gT-ifc-SCk&ieEU *->X^A©*%btt&E^;LA:o 2) • asiwssst?v +f-t ^ju • -i-xh-h-vx^a sev-y-^r ^Aiasffswsi:. em%^*ma©A##8#. aa©mw*. ##-## saismst:^ < sssn-cc©fFes#$cfr7ictt. K55tcsf5»/s • • ssm

c©j:o%i>x^A##©mEt:»6©K, • ##• SSiJT-D-bx© imx7=>)>y^&-c-&z, fflzimmttiftMi:,t 3$Mj«*^iffl©?gx mmzzzmB ^#K©#*. jggijCtksymsukuofc. 'j-y-'fx;!/- y^.-x (:##%##&. **©*a

87 mvfrturmt ■ sw-mewes-ss: t>#$8u*h » A-ili-7Itili'X:rA©^28£Sfti: LZl'6. *1\ ?5 7mmzM-3SfliJ6SVTV4o S6.Cs eiie.©^]/h8PJ6*M L fcfl-IS • ®e • S8'J7D*x®tiT!g8B$mm j3ckU(Dri8S©i±®ff«S6S$1-.6o sec i'XxA&HSU H^©3$»S©8SSCMLTs »IS-«e-ilS!l7-n-bx©Sai-iTflS SQE Lyc$g$CoV'T$s UTV ♦SMCislt-J. ri;-9-^^>. V-i-XtHBISEj (is 0 6.i.54C^-f,fc3 C, =r>\/s »e,ifc@;ac#f (biot • res • «*)j &A*i:u rzvms&zM-t ztmmzasmtjLftm ■ tm• mwmru-bzom&s se.h,5»E3ym eEM#©® 6Sttii"3IB@b l/tu-E>0 Se.Cs iDtXfflffl&t, gE4fi£ftffl[sI ®SftS-erl46S7-D-bxlg-Sib®Vs *»&## - ## - mj7otx&gRT&Rm&s r# ;(/- Vj-—x 8Wj tUTV'^o l0«*tta a-ettaw

me®#. EHKStt^? Gn emstsa *^A, ««if»- 1 Glm GjH.GP G G,C) g3(1)={ }------A, of) ggmmmmj GjW G,<2> K G,<4> I SifliJ T _» aai -[V 7n±x Jr&l A4 "^□irx 11 gram# a»i*

0 6.1.54 V ^.-XM-HFa®k^55f**"E^;l/

V-tN^-iV- DJ-—XtbBi©:&®S(Al-A6)Cj5V'T, M8ti*k&3® aStiiai*^M3

88 ia 6.1.55 y=7

wmwmv?? g ,(4. m 6.1.55GOfflj^ca&s • l Cffl^7 7tt, ###077^^ >lt77W> h#g&g#l@©Nt#$:tad iitujo cc-e r7v^7<>hj ttt, $>D> —A r7^7'7 > MSM$Xj ki±, 77> h A@#— SK^77G2ll 0 6.1.55(b)© J; 7 c. ssrelmsm®. <&U-»3 yv-Xtf&ffSfflAtftok&Sgfo^ 757'7<>h6S1-, cmsates^^vTSsut , mm a%i©6f##c&w-c mi 7ci£(ti--atu v +h 7;v • vj.-7H-e$gv7i7x 7k Cffl'>7fi»li SSStSffik01R®+©A7jtc*-3 §N c© S5BC)SfflBIgg%»Px mm ag'J7Dt7&8#f6Zk^-e#66©T&6. eiik vrtt. #@m©mm#ij wkem mm asu 701 % &±m#c j; 0 #tti$ntz nsmT’vb7 r ku, Essts^esra-bx s^etotcaiRr- s- ■6SSkl/tV'5<, c©%Cj:9, DEiR^ftfflffiSSWCffS*©^-®®* 5* <, rn-bx 2) u&&i\$#a7Dt% 3) 7o-b7#m©^6fx ^a#a@#:©mmtBi#k»^.

89 m 6.1.56 gi&£&&&? g2

0 6.1.57 h

S6IE©#5«8&fl-J$U (gii®^77Gi, Aj;U# ggy 77 Gk k LZZ^MbUS*40 6.i.56(7St"o zcDZ^MzftU i#m SS# lOg y.±©S*aS5B k T"7 y » 7"- h* V ^ IK

90 isassy Disassy

Keep — Shred Keep

S 6.1.58

gmteffifto 5 20 Sj@x^aSS©ctd6tr-XT-!j:, z omacmnf *©#Azms? &Z>b%mtiZo *m%T- 14. SSffi&WftC. • $il# • HSijrn-feX £8Sih 3 tztbs SfeT'D-feX qr«m©±m#e%k. $6cs«s©sis® tti:®W6SVTV'-5o

91 6.2 EXPRESS-E2 ©gB*#W EXPRESS-E2tC|S0l/m, #*gC to$®ICa• jUM^covx-c$a$nrv?)[i]„ f©msic*-j* expres-e2 ©j$ gicHUTfSIft-fSo j;9#l/f'm#lcot\Tl±, OT© URL £#,«,© ck= http://www.eIi.hokkaisu.ac.jp/~kikuchi/ed2/ed2memo.htm EXPRESS-E2 lit, $*R)IC 7 7 -X h xi? 4 '> 3 >©«I6& 1.8 U cFtX?> Manufacturing Feature Assembly Feature ICOliT, EXPRESS ICX 9 HMT-Z) fc&> ©sa^sittisn. s.'owm $ 6.2.1, 3E 6.2.2IC 7 7 -OT -> 3 ©£ S 6.2.31C, otic , ^nen©FisicBBVT, MUcigfi-rs,,

a 6.2.1 77—^ l-aiT:^'>3>*e,ffl£^;^H^(l/2)

s'^i '$W,S NUMBER# <7)J|Elh COMPLEX#

me## SET#(7)Sih(BAG of UNIQUE -C*ti£) BAG#<7)WA— TABLE#

SELECT#(7)K3# Aliased Defined data type<7)#A TYPE MARK'D#A

±.{±m./T

ISO/IEC 10646-1 Rif new line (C ¥n dr—^-KAMU-T-I^ItlSO/IEC 10646-l(Di/ 7U—Aoo, yy —>00, nf>00CDl?/P20—7e£ fflws. ISO/IEC 10646-1(7)#

92 6.2.2 yy—7, h^V'>3>^e>6D±^^S^(2/2)

T/l/zfi;XA character£9a#A Mcmwi code(7)y|A exact_extentCOa§A exact_typeof(A> #A exact _instance_of(7) #A existsCDaSA exp(7)J^ih extent(D#A floor

CREATE(D#A DESTROY(D#A DROPO#A EXTEND(D#A

Real_part(7)#A Imagenary_part<7) #A String, Logical, Enumeration, Binary Data TypemJtg##f(Dm± Binary Type Indexing OperatorCDJ^ih

#

EXPRESS-G

Annex-e(DBm^3'J##(Dm#-(/cyfLm

93 6.2.3 -fe*> Kx.-r’-f va

1=4 BO 3C ^T< GLOBAL EVENTynyf(D#A ACTION7"nv/^602gA BEHAVIOURAn^/^(D#A REACTION(D#^(D#A

xx—E^yp action.triggerXx —p/ypCD#A executeXX—P/yp(D#A local.signalXx —p^yp(D#A raiseXx—E^ypCD^A signalXx —py y E (D# A synchronizeXx —p^yp(7)#A waitXX"-pyyp(D#A

Expression x— EXPRESSIONx—^g(D#A ^ ^string_to_expression<7) # A ^#Cexpression_to_string(7)#A ^#expression_type(D#A H! ^evaluate

EXPRESS EXPRESS(7)x-^^xA^EXPRESST#mi- (Annex-E) -6

6.2.1 9 —9m (1) -»9JUm 1) Number $©®$lh NumberREAL k©jSVW te't:©a6A^e.EikSn-ax5„ “NUMBER”li^*®-eii* < »66&,mEmtK##E©o.-%#Sk LT NUMBER SS8UT, $ys*e>© NUMBER Skill L9-i9^9-9mo^bt LTSton-B, HE©519 1B&klcffl t'So $t*c©gror-i3, gneric mt?m^t>nxBtci)K generic t>St?fcto, ©A'&##kLX:#&*-e^%L\6©l:, *A£ft;fe„ 4) Aliased 9 —^S©#A aSz£4’T" underlingtype ifeli constructed_type "t"-6 fctotCfii Vi 6il.5 „ jSSOXM Skli«3tlcW5§ “IS” #AoTU3*k*d*-eEm:i$-E><, $«£n£T:-d' ©«*$&, underling_type k A < IHLk%6«

94 5) mmmt&itm X Y=£© X^T© ->>Xll/Si:, -Y >XVX>X-X3>I: Ht-Sim tt£t>1$') TXx-XgtiT-tt IEEE SE&Xtl-6 fcti>C$>RS n-5fy hE^S:BM(:$E1"-E>, $(,l:ex©/WXUa:m $ mv-*'y>fy*-u 0iSS(»i:git2i. SXcBEti, fij|$6sS®S©A.ty!6£$h,fc l»©fiaS!;US?. (2) Hirtts 1) Set @©#m Cfttt equivalence ©IS@;tP6ll!IBi$nfcu b^flTC-So %BAG OF UNIQUE T-©ttffl/!)s7ii[®$trO'3o 2) BAG OF UNIQUE /\©ftA BAG OF UNIQUE lCfT-£S$ftTt'£6©i:|BllMi£Ah,J;d k LfcmMt>/e$&V\ kBflgST-E)o 3) Table g©#A Table Stt Array 3©6£56TN SS©toB©Yl56tC$tie® BBCX* o T—Bfcx X t1 -t f" -i 'OXt'sXZ&mtZo COX-XSlcyiBUTEXPRESS-G (3) &mm 1) nmmotm. i£51?|J*$li, B-x*- vxiaguox *- v-e-fl ;$#£nfc^J¥$C5S6inX5ckx giJ0B#@k LX&#f6*©T&6. C©l# (B*$fflReB6sfft>ftfcX*-v-eti:X %© Wtt*©^ —Xfc&3Ci:* sT*S& (tiSESnsckArei #») extensible zmzztrfioo @3%i-a#a а, uxitip-r-ss*© vx h 6^5 c t-zmwtZo б. 2.2 ±tirS/TtoS©M^a3*E (1) SUBTYPE CONSTRAINT XD »/ X©*A ltle£©rp©X—/i—X-Y XXd v X ©©.X LA\ ~Fti@CM1"-5$to& c nicy lt subtype constraint xd 'y^iiy©xsr-vtp-e fflt'^ci;* sqiser\ X—/1—X -Y X&SS LT V- 3 X * —Y k@l©X jr-YipT S XXX Y X I9©$JiRl&$aT-S-66©kLTV>5„ (2) Cannotational Subtype ©#A Cannotational XXX -Y X(±,*r &&!6£®g Lfc 9fiS81"-5 Ck%LIC WHERE X-X &#IT6C^A:IXe^Yb&fTO.Y>XX>XlcaXt\X:XXXYXYbk#x6CkA^#a. n&n*., @bY>^?>xTfeoTi, is©* a5 (s^icAorm -eoii^nx* 5) $ YbL£*£tci±, gycxxxYX-t©Y >xX>x tLT&fcn-BCi:tc%-6o (3) Tbtal Over Bto Total over Tfe^xXx'f X-M” >XX>XAX I) UJi^nfeX-zt-X-Y X©XX xyx&6>« total over ewcmi^nfcxxx y x©»fi—D*ss$nr7k<-tu* e> ^t'j c hsssn-z.xxx'f x $j«jt-$>5o c©ffl^ttONE 0F©]*ijfttaax¥*

95 Uo 6.2.3 7)l3')Xk (1) KE 1) EXACT_INSTANCE_OF( PartialComplexInstanceype, Instance )• BOOLEAN; EXACT_INSTANCE_OF li, §IE©^>7Vrt 9-1 XZHItLAXbMz.Z ifi “m&ic” -SScUfeiSirirTRUE %'AU ZtlLlAXlZ FALSE ZAto 2) EXTENT(TYPENAME): BAG OF UNIQUE INSTANCE f©g©AT© Instance BAG OF UNIQUE INSTANCE 3) HiBound / LoBound E5to$E{*©596£LXtIndex iftcMSLTi£36$ft3 •2>o 4) INDICES_OF(table) : BAG OF UNIQUE INSTANCE ^©7—7;p©i' a -0^071— TV'-Z>1,>Xj,>7© BAG of unique SiSlh, 5) related_to( s_role, .source, t_role) : BAG OF GENERIC related_to tt, s_role &8oTV>& source © #? t_role 9 AT ©#© BAG OF GENERIC SS1"o Source 11, ##01' >7©@6k BAG *^©@^##7. 6) TRUNCATE(REAL): INTEGER HE£A*kLT, BESEfl-SSTo (2) mm D uke mm LIKE X^SirUSE (fflSEttS) < Tfcto e>f y.T©SII#T-Tt'^= Capital Thorn 7 Lf® < -hiSJSi L/itSa, JE7 Cedira Sffot Latin Capital 7$ C T-tt? F#-C* grep «*«(g* sPltg-Cfe?,K

>7y7>7©a#& (grep©®7ffliilc) J;t)ilSLJPl"Vidt-5tc8t$L*:t'<, 2) unary + WHWJ®mm®7'(77©AL*##— h LXVi*^ofefca>„ -b*> Hxr-r y a >T‘ti ##75 7©##- h i>'lf O o 3) BAG-BAG-> BAG BAG ±?©##©A, WriA3gR9-&Eli;::teT3„ 6.2.4 EXPRESS-G (1) OT^-lS'^liS©##- h EXPRESS-G "Cli, -b*> h'tuxl 7 a >©#T©#*©##- hLTt\» i) ihmfmsi&v'thffi select tmnmmzmm select lt(ex >7# (|g|u*@7(ABs)& 777 h57 hx-yt —j'i,7©fci!)tCiltiTV'5) C=t-a-C#m$W„ iZSIti:^

96 iS*ffi®$K®#ff3t>iBi: VXimtZ t Lfc, 2) V TX (SIS/b5j*{S@@ #T-2o 9, f ) SvW®B®S6®7*-Att, Wb6S1-fctot:Sti)T-fe?.ck7b^S$iu #7=-f VTxciiKy h®8tfg*?nfe. 3) X-/1— and *^v-j'®fcto®$,Sto*->7>;v6(tj)n65JBgi:t--5^ EXPRESSION >h®*:4i)®ai|6t|%$S(iEVv Tbtalover$#kL —SiEk^ EPT-S1"o 4) y±-e®zL^-7#m®#m 7if')f—\>3 >7—?$!*$ (A, B, L, T) (Array, BAG, List, Table : 55163) 1: &<±ftgTZ7L>jz* (a*, b* l*, t*) t>K zcdt?')?—>ayr-zmmmikg. tt~tis 0, mKlcMf 2>»BrtlisaL*V£1 5) —7$ %®^#7—7@®mMk L%, SS»V^LI±$*t—j'Stov'f 7 ±T-T£^&fflV>T7-*>7‘t£i:ft*£ix*o f-®Ir-^ittf-7;i/ &Ro*® (Mtt), 7—7>®g*$, 7—7'A®-f 3 A|6l©M(*A; !i2'$btt&ti, T'$>Z,o Cffl^li, 2c®#m®|g®#A&#c'Z:#;aHAB('T)lcZ6 £ k^-e-ssnfco #L 77^>7"7-7A#m»ft •So

---- o

Contained data

0

V Indexing Data

h 6.2.i 7-7;i/7-7s®a$sa$

97 UTV '3 2 0©S|61©|*1. mAA%L%L\ % AlPlAW y^riri/'ytf-r—j'^Di^kt'-So 6) EVENT ©8^ $®T:3lS1"3o tfrl-'T^Oh^SEAT-Ex, ^>5"-f t-f k©gSISClix t'^OHcZc T, <©^>^4 5^4 TlBto$h,-6 BEHAVIOUR ©Mi£l3L£:'J'$:&S£o(j'-Bo &x>5:- 't-T'ffrZtZ, '('Ob##EPT-#!HU cnii-e©Ji>7"-fT-f ^©'f^o h6lt'#y^> yurjsb, vx#>->7';v-ea6^c:k&s1"o

ies©eai:siti--si3^t'f^> iffl®as^to

m 6.2.4 uvmmtmiztiZ'! so i #a

mm Local Event

mm+* Local and Conditioned Event

*m Global Event

±mxx) External Event (Global Event (D*pT: External

98 m 6.2.2 ^ express -g mm\

(2) Dynamic Model <7)S^ 1) EXPRESS UT©JMg{lH LTff^ftfco ♦ B5fig©BMT-<7)$t?z<> h hiwns

'ovtmtnz o ♦ u ^OtzMZ^ J^yY1$^\ZtzZt*Wmit%tzfojm}ltZ>o C6DCk(±, f# ^4=^TRUEl:^buyc#Cf(7H^>h^^f6k#x.6fi^^m:j;oT^#$ tl^o

hf ^)o

•So

2) -r/<> Hc^j-r^) UT^'>3 >Xti 1/^>Xtis 6o V7^^3>(± B#2frc^ad'/<>K

99 n > yV '> 3 > ¥*>t>tofd±#Z>o 'J7^>3>li #o frox-yv- j7jr-^otztbOTti/ 3uft&ix, y;v=fuX^ y>7& i±mz, T'7y3>fimm£ntz££teM&£nz>ZT'y7p(D, mmt$titz!>m*7£mtz>, CNm(Dy^^3>CD^#, yvf#y^3>w§#wiy ^3>^ut Z>£o V^V&S^STSo

>?vt2"-;^v

......

--- ► ^>5V^VSz3^F;®rt ,^P§(7)Slf

0 6.2.3

(3) igj^yn y y l) Event L&a LT#X.^Ck#T#6o 4^> mU©3:>-y^^ ^C, fe^^©x>r^ff 4* Z$y x±T%tt^.tLX^tz&ob&Zo x, ¥rJrjtf£(Dlo ]) 7 ? '> a > ') >^LT^£& < T&&e>&Uo EXPRESS-GTldu J:>y^y^^VT^S/3>&^L/Th

(4) yy-y^. l) Condition 7?y3>frbLtl'k^7‘')RVX7 bZJ>rJ '>3 >Ji, S$n£$HE

100 tfw tf7

-r^K -*si •J7»'>3 __4K • ► R —*3 JU • >{ -1**7- v-hro^ti 5^ — ■$» L ______X X X X -X M%3® V7»'>a *330

TRUE or UNKNOWN: TRUE or 1**7 -f S zf<) O^TI' UNKNOWNt tfXhh • 3>x3^T 7' 1 -►®7to 'J XA h#7 *K'>3 VfflBHB '>a i^OTSHI* Pj^lT ? > —$ false FALSE: 15- I5C

121 6.2.4 UT^'>3>^T0f©^U • 3>^'>3>h^ h • n>5x vs ><7)®# ##rm&

2) Back Track t&tht(Z)M^ Exception o Xz#CD Back TVack ' k. £ tlfzo CH'x t-v '>3>T»ti> b^ >-y^ 3 >tts#xne>nrtie> t\ i^i^^amt 'OI^/sib] M9cDrto£ 5$>3o h

3) Synchronization

-fe^7> b^T-V '>3 M64«is -HH^iJ-C§Z>m.(DMkbxm ,ms ^Pi^ETs IWmifekfi;:35£Lttuz httZo 2^UL^ny.±6Dx>7 :- #:/□— hZ(Distfi-M^s?

Xli '> ^/i~)UDM^z 1i ' 9 & ©(£#£ b& v ''o

101 6.3 Modularized AP STEPG.s.ii^-ruio wm®& PitTU^ S Application Protocol (AP) liN bTpi^£ftTt>'£:o "E®^ 2 ~Dl^i_tCD AP smm%& fUffllfbZ. b C ftT t ^ o

Comprehensive APs with N Group of STEP initial AlCs Modules CDIMs/ APs

Implementor Agreements^ Isage Guide:

Islands of APs AP Interoperability Plug and Play

1988-1994 1994-2000 1997-2003

m 6.3.1 STEP

STEP Modularization iCMf-Sji&i&iEtt&S b KT0 If & 6 [l]» ♦ APgg%onx hkm6Sffif-6Ck6s-C-S5o

, ^*r —\zyy\.'5z-T*nmmtZ,z.}ii?M®ZtiZ> 0 ♦ mm AP 5,1b) EASe^affi^SBBjzfibyfc h**a.y > h©SS66!B1"-5C k-ytrSSo ♦ AP'l'yj'-^^eVx'f - 1 -3© AP &f&© AP CTfOT =JIBk1-^o ^ElSfStSSSff oTV'-Ei Manufacturing Feature, Assembly Feature CDl8%6ittto'5) KBS CS, j; f) tTZfctbK, STEP Modularization ffl%x A

102 6® b xnxff < c 1 o©#^ > p c&ak#x6fia. EXPRESS 'V-;PJpMft1-«lr7,Ub--^3>&iaigtTV'|>V7 bbx7^>y-KJtsfL X STEP modularization L X14, "J — modularization (C 4 b 51##A%6C kX&6[2]« Modularization I4*g£©lc*f Lt' EXPRESS x>x^ x-f 7-f 6 ct&T-B, Bt#©t^u.-iP&#JMLfcx >r -f x 4 7 d17'©to$iv—;vsaai$1"-E>ck tc J; bB5Fe0£@ift-t3ckAsx-§5J;7C&3o -£©£», BSIi7-7x-x#F8*£tt3qJ#ttfc&-3o modularization ©S'JSlTlFk LXtt, AP ©SlfflJSiQA5#^. Bit-Bo 4"7 4 i^-WI/teS $AP©^m%f6Cki4»t'lc57^, STEP ti7x-A/©«$t 7 P &$im LA47 4 7xiPxia#\AP©mmMj#t:&&. »Cx> pi-+f^©KSS:#X-5[3L #K© AP m-f >7-4^7 fix4 ©L^VPti:, p*x70Hbii$nri36r^ $<©x-%©@6, ^»b$m$#xt\6. $<©A#a, -eeitii©*# sc*m>6-r, git* ifilte, «EgEkV-ote#'<0SjiS$Htc$„cB6«$§VTV-^)= C©t©, f©47»A#XI4, S®0 AP (SSSffiad; AP214, ifi«gfflCI4 AP215/6/7/8, f©#©# «®55ffli:iiAP203) 67-41- PiTS c ktfitiSk SnSo ESx—7$te'>7bLA6|g%1"-5iC^U-t, :H&3777A^>7-©Fh TJ7 77x A£* $fci47X7A©-a5©E#6iisr?>c ktt, @©x^im©ckx&b, c#6©m#4K7 $7txiP67-4l-Pf%X:©i:±#:6#m-mLX&A'$#Sck#^#X&6. fetili, AP203 $fcfct AP214 IcSUX, Si5'<>y-tf PDM kvX7 h b/i-p&W&LXId&C U*U BK© AP Xti:, ^>7'-* s7-41-PqJ#ftai*id-7 r-b'7Hi fflli$iiXl'&t'o $£BR© AP © p-*x7 > Mi, x> px-y###f&l:|4#Lf @6,, $fc, f©P* > p©fi&x> p-x —ytckoxti:, STEP © modularization 14, x> Rxl —-tfCkoX < ©#JAA%6k#4.^)4t&o AM © &»©R6x7 > n4*&b'j'S < uoo^-vitmttmajeupirui^x^n&o^fc, f #xt \ e AM£{gfliLfcAP©p-6x7>PI4, ##XxA6#4%t'. tlfgXxAtt AM © P* 6x 7 yhkLTlMdn-Bo bttfot, AP ©P'=5rx7> Pt4$5>C'J'cf <&b, 0^###, @#m#07yu>yk@-3Z=ACmA&:#, ts LSSr W' AM wmtzc. kX\ AP ©|g*6to5I1"5ck*s, k C©Ckl4, x>PM—IFCkoXtt, r-^S#V7 P7x7©|gfS6lT7!3Pg LX, ■tb'hs < tfcbSlL^f <&3C£6SttLXt'3o

103 STEP CD modularization Dlfl^idU h h%o $rn* AP m^-^7 E U 7^ cd ^M <£ D ,

STEP CD modularization tiu j"-5%- > F-2-—If CD*?: & o f:f \ WmoWb V V 2:1:Z (X

104 6.4 ISOJBg'MDttEMBg#. ISO TC184/SC4 (CJJI'Tn MIh JSS#. «T©?S»Sff^fc. (1) Lillehammer x* 1) Parametric Model ♦ History based parametrics (WG12/N339 • Key Issues of History-based Parametrics and Ideas to Relieve Them, A. Ohtaka)

2) Assembly Model ♦ Assembly Model fclUl'f'& :£!!£: tHiti (WG12/N338 : JNC Proposal for STEP Assembly Model of Products, N. Sugimura)

fZo (2) New Orleans x?Hi 1) I-AAM ♦ WG3T19 t AP214, AP224, CNC Data Model 0'^aT > b ^ — Of ZFfrtfMfLtzo ^0^T\ I-AAM t VT, ijPXrD-fe^HM'T^ AP (J:r—#^EzrJ]/CDXU—X&Mnm't'%> L/co ♦ 2000 ^ 2 H Manufacturing fcUfTf £ 9 —^ v 3 y Zt% ^Mbtzo 2) Parametric Model ♦ Parametric Model (WG12ZN409 : Parametric Representation and Exchange • Assembly constraints in explicit parametric model representation, A. Ohtaka) ♦ Parameterization and constraints^ Parametric Framework LT ^ffzyfco 3) Assembly Model ♦ Assembly Model (WG12/N448 : JNC Proposal for STEP Assembly Model of Products, N. Sugimura) ♦ WG12 jock If Change Management Committee IZ X tE% b ## ^rfx^fzo (3) Melbourne ^0 1) I-AAM ♦ Machining Process Data Model IZ Hip 6 Wifi'S: tiiti (WG3/N870 : Need of Machining Process Data Model, C. Sakamoto) ♦ SC4 rr^7 — i3)\/'7 Jr—9 AiZTX Need of Machining Process Data Model

♦ PPC SC4 Manufacturing Strategy IZX^ Manufacturing L MWlbtZo

105 2) Parametic Model ♦ Parametric Model (WG12/N511) 3) Assembly Model ♦ Assembly Model HHI't'£ ^Cfl!(WG12/N513 : JNC Proposal for STEP Assembly Model for Mechanical Products, N. Sugimura) ♦ WG12 (CjSl>X-'> 3 >Ltzo

106 7. i o n i>XT 6)51' Integrated Application Activity Model (I-AAM) ##;©m#©B@A bm*#©--X©#m Lfeo *#mtC01-AAM 6*tc**to6:5= r-#'"E^>©1ti#k ISO 13*14 Vfc„ (1) I-AAM ©#ttt • {M^^mESCHUT 1) -fexA©i§H-»>6>SiiS©*8XD-bXSoffit'SXiit>© Application Activity Model &fWL 2 ) Application Activity Model (3Wt> & 3# b##@a*#A-Bl3Mb 6 SPAT-SSo 3) SWtlfBCMfc -5 AAM & Engineering I-AAM tSSo 4) AAM 6 Management I-AAM k$#o 5) *S*s-e©tl$«H6ttEtSIBCMfc-5 rSB^T-’Mffgj &4»'b(3#Wf6#b Lfeo 6 ) Engineering I-AAM CM ISO/TC184/SC4 -3.-:* V >X 6ttCT|gSLfco *t-*jra.X> htt ISO/TC184/SC4AVG3/N830 t LTggSh-T V'-5o 7) v>xs«tc*vxr* i-aam *LTs S6*#*n#IC7*S4t^o 8) I-AAM K*W%mXOtXyX^A©#mtf A/k LX TC184/SC4AVG3 C7*»fc.

ib-E,V»s71SSnfco

(2) jnc 7-fe>XV 1) #R#&©R@A#: • #K© Par t 44 V-mktZ B OM(Bill Of Material)J^G-'V VX h (3Mf-5t#@©^ T-ttsWtS4Sx'n-teXiyXTA©®q cB;E7;A/kLn4^%fl'"eife5V6^l#SSm:u5o 2) mmfflmtmttjft® ■ r-fe >xv ::z o # & m,6Ka©aa#*R0©M# @ e@f. • BI|gkt-6= 3) a^ffliSfgeHtcieuT #u'7-tr>x9 y>a>v v-xnt&b i/riB%£fit\ y.T®t* is*a-c § -s t> © & wjg-r ?>o a) T-bDffe>n^ES©@55S*Ra®SEM« b) frct^t\gga@*©wa c) ®55aS^fflMi6

107 d) EI+Snfc$65$*i:tiiFg|Sfi5B*tcJ; bE^irt fenfe^tcMf-SHBa e) @65B$SS©MiilcJ:tiff6»h,5S5S©l§lh #MJn 4) iSfflCMLT a) b V y i'7'fc>yj b) «STZWl:j3lt5x@gta c) mm#* d) &mmfi 5) - ISO 10303-1 - ISO 10303-42 - ISO 10303-43 -ISO 10303-44 - ISO 10303-105 - ISO 10303-214

(3) /teM bv•y'7T-tr>-7v-*7 TMzmi-?>mmm 1) aWt&0R@A#: • l&w • b V -y^T-fcyyu^iribfflUfS 6frdo 2) mm#©mmm§ • b <) "jfT-b >■?>)—*70 3©B*aSA 5^-X®n° t

Tt>yv@na©aaim©@g###i±#4r-^^ru >9"©#A& 6 Tt > y 0 a 7 ##©%*M#A% *-C-S5o • y-b>yvc V V—XSM6£5il©^>o - «&###/i 7/( b V y ^ 1 © - y-b > y V-$iSI9EB7y b V 'y A© y.T©SK5aBS©^7/< b o "jvtmm-tt.m-%> - distance constrain • angle constrain • parallel constrain • perpendicular constrain • coincident constrain • concentric constrain • tangent constrain 4) ftfflCMLT a) d7^ b V yi>7'b>yo b) mLT/ftmcmz>i.msm c) #«## d) &mmir

108 5) - ISO 10303-1 - ISO 10303-42 - ISO 10303-43 - ISO 10303-44

(4) LT 1) mmmv • step d * x & d & #v^ f cT\ 'UiS&ff Stz&XD M^kX:y^)]/(Feature Model)

2) • ##^^#7°DX7CDM)a(Manufacturing)&fT3/z&6(D$toqXE9l/&t##'f So • SEsLtzbOt LT IS010303/AP224, NO XfT#(DE-^ XA> L LT IS014649(CNC Data Model)^feS^XE>«2 o (DE'-^XEVl/^CDTDXTT'ji-^LLT^m&Mf CLA^^S^XfXT&So • 3; D t°d -fe 7 £ X £ ^So

3) #&omm$6BCNLT • CCDpar mi SO 1 0 3 0 3ftfcS!ft&SU§*rS Machining Feature Xlig^of(Process Plan Data) f# UlSSf (Operation Plan Data) ^ 19 T • 7-i77^f"V V >7* V V—7XT0MC|#9LT\ >7%7—X(CuttingTbol)LT 7 '>>'7—^(Machine Tbol) (3 HIT ST*—^X tOI/Ea E^So

4) j^miC^LT a) b) CAM 7X701/ c) ISO 14649 (CMCData Model) CDAAtSIg

109 5) - ISO 10303-213 - ISO 10303-214 - ISO 10303-224 - ISO 14649

?. 2 4#©#mm ASHrM LTOTtcS ttbZo (1) I-AAMCMLT • suet-sat^ msyii'-y'tmii t d i-aam ©am&«©-5o - ISO/TC184/SC4AVG3/T8(AP213,AP214,AP224) 10®S|C yV-^ tOVCIH LX MS-m-y'tmizm Nwim - IS0/TC184AVG12 CStt-SSSH<o - ISO/TC184/SC4AVG3 & Km 6 0tm5I$©MlHi. (AP214/AP224 «) (3) \ v vyt >y;tfiw=NLT wwi m > h©im&f?9. - ISO/TC184WG12 C^I^-SSEEIto - IS0/TC184/SC4AVG3 (4) a) gffiem s»a*i:©7-—^yv©-fs$sff©«»t b) ISO/TC184 c&naammMm c) MawGk©®#

7. 3 «SWb'x©r:7-n-y- • ifeH-fflUfeW, :n*yv- h k©to*M«6iEiL UTSM&IbS

• a*®iiso/rci84/sc41 LT«t&fb©fc©©*«, ass sc4 izauxmmt^

(i) cn$r-©seE 1) Integrated-AAM ©IBS • ISOTC184/SC4 (99/6) • ISOTC184/SC4 -a-^-0>X6* (99/11) • ISO TC184/SC4 ^ 11/401/(00/2)

no 2) JNCy-fe>7'U^> • ISOTC184/SC4 (99/6) • ISOTC184/SC4 (99/11) • ISOTC184/SC4 (00/2) 3) yiyy b v yi'T-feyy'V^ey/v • ISOTC184/SC4 >^=7* (99/7) • ISOTC184/SC4 ') >Xe8 (99/11) • ISO TC184/SC4 ^11/^01/>6# (00/2) 4) -7-y-y^yn-trxy — • ISO TC184/SC4 -ZL-*V>XS» (99/11) • ISO TC184/SC4 (00/2) (2) • Sl^SIHSHIIStVE. ISO TCl84/SC4 6EStti.btcrSK)6fflX iS^6©t$i*SS(*$iJ

55ETO mm sooo/io %mti 80DW mim

WDi/b #>) («) (mm) (I-AAM) ^ SC4

(y-byyutX;!/) NWIH56 NWl > MW WD V-dfajOH«- iga ------►

WD > HW

pwitbss- mu nwi ------^------►

ill 8 . L -fe X i/X-r A 0 Integrated Application Activity (I-AAM)

t&t>%, i © 4 -5 & I-AAM tiSit TC184/SC1, TC184/SC4 TC29 T-gmsfifetlTUitx-^TOl/ (#g) gm s-£n ?tUD M4 >*e.®8@f* s3iT-$) 6, 2-3® SC -CH%d:nTV>67;-4'X:r>fflt!t*&ffl2 0LA. 41:N4&|g@0##& SC4 -n.-*u>xsax y>6E-efTofc k c 3«5i i**PBJ4RSC4 A%0mtt^@±$%#@©-3 k LTISlS^ti^ t:Sot» IS010303 STEPSEIi rKS^'MD^d- 7-9-4' 471/6-tbtf- h 1"5«tSj k Lxmm^tl sntoctti$n-fl-B®4o6nrs km&fre>. 4-0® I-AAM &9t

•So C®tS*6. T»715T»^jfc*®SaicZcfdt)-E.WP1S6#Li9M-»ie.iaxxg$T-l£< «^XS5$H®#iat^> ra=07-Dt%yx^A®#$Ib@*6j 14 ISO ®ttCd3V-.T*E, asn. 4# sc4 ^®#ga% < icg? to C043(Cx **F6©ag&fiMI© —3 k LTtiu ISO oWZ^TaV^^ h kg*#®#* 5 BEtolc^<*ttS-§-x^>SA s-etteSAsW6n-BkV'x.?,o *$:%j«tT*'7"Di7 Ji^ h®fi6*»s ISO ©HOBS* U8E69CI4, h"CUEUfcE^fiKS^HI^St^Nho&Ass 4 3 OK i)jEA,T-l' *fct'k#x3o (1) I-AAM ©5utit: ISO TC184ZSC4 ®H3rf-Bx^xri- h k&» LT. I-AAM ®Sfi£ B&iwe, 4-# sc4 ®#-ea#m&#yDtxi>xxA®#mx^i/hoxam-e# ^iSt:t?>o (2) ?5'->y7Dl:7T-i'tr;i0il} :»(iYZa7774-V V>

(3) BB$16fb^®$e$: 4 3 t:mma4=©#ai&mKT6o

=JSLt

112 9. ##3#

[6.i

[1] ISO TC184/SC4AVG3 N773 : Proposal of Integrated AAM for Mechanical Design and Manufacturing(Jan. 1999): http://www.nist.gov/sc4/wg_qc/wg3/n773/wg3n773.pdf [2] ISO TC184/SC4/WG10 N240 SSDM: STEP/SC4 Data Modeling Framework related Issues and Recommendations Working Draft VO.9, Ishikawa, IHI (Jan. 1999): http://www.nist.gov/sc4/wg_qc/wgl0/current/ [31 ISO TC184/SC4/WG3 N830 : Proposal of Integrated AAM for Mechanical Design and Manufacturing(2)(Nov. 1999): http ://www.nist. gov/sc4/wg_qc/wg3/n830/W G3N830. [4] ISO TC184/SC4/WG3 N870 : Need of Machining Process Data Model(Feb. 2000): http://www.nist.gov/sc4/wg_qc/wg3/n870/WG3N870.pdf [5] ISO TC184/SC4/WG3 N831 : Proposal of Machining Process Model(Nov. 1999) : http://www.nist.gov/sc4/wg_qc/wg3/n83 1/WG3N83 1 .pdf [6] ^#^##^#(1999)

' y 9 4##±##(Feb. 1998) [8] ###&, mmm* itiM ®^ie tstep

Vol.8, No.9, pp. 466 - 473 (1995) [9] ISO TC184/SC4/WG12 N513 : JNC Proposal of STEP Assembly Model for Mechanical Products (Feb. 2000) [10] S. Kanai, H. Takahashi, H.Makino rASPEN: Computer-Aides Assembly Sequence Planning and Evaluation System Based on Predetermined Time Standardj Annals of the CIRP Vo. 45/1/1996

[6.2 EXPRESS-E2 60:3^##]

[1] TEXPRESS -b^VFxT^aX^Wj (1999.12.9) http://www.eli.hokkai-s-u.ac.jp/~kikuchi/ed2/ed2memo.htm

[ 6.3 ModularizedAP

[1] ISO TC184/SC4/WG10 N289 : STEP Modularization Overview - Where are we now? (Nov.

113 1999): http://wglOstep.aticorp.org/Deliverables/PapersAVG3_Overview.pdf [2] ISO TC184/SC4/WG10 Nxxx : The Impact of STEP Modularization on Vendors Draft 0.1 (Nov. 1999): http://wglOstep.aticorp.org/Dehverables/Papers/ImpactVen.htm [3] ISO TC184/SC4/WG10 Nxxx (Nov. 1999) : The Impact of STEP Modularization on End User Draft 0.1 (Oct. 1999): http://wglOstep.aticorp.org/Dehverables/Papers/ImpactEU.html

114 115 io. m ######

(1) TC184/SC4 (99/11) # : ISO/TC184/SC4/WG3/N830 Proposal of Integrated AAM for Mechanical Design Manufacturing^) : ISO/TC184/SC4/WG3/N831 Proposal of Machining Process Model

(2) TC184/SC4 (00/02) - -XmMB : ISO/TC184/SC4/WG12/N 513 JNC Proposal of STEP Assembly Model for Mechanical Products : ISO/TC184/SC4/WG3/870 Need of Machining Process Data Model

116 4W ll #1 @ 4i7ot7->XrA®i¥ft "Za #

IKSEB# : 1999^4 27 0 (*) 13:55~ 16:00 Pgi/-7')>^ *iW @S g*jLn'>x 8S* «© iJStfiWS IE* $ ¥H mm sc Jb##a±# 'j'« ammmmmzmw 4$E 3§S baf@##W /J'S *B8 (to'J'KSffSf # <»iE mmm Ysft s^bb ±g iE# SSJ8 sir *iE mmm itiss

#fi!t7G : JIPDEC JECALS

2. ¥6$ 10 *F®rS«J©®BS66 3. VfiK ll *E® AOS SlSrCMfSHMIil 4. 5. *0%

4 EffiiEyn-fcxiyx^Aeeip-fbSWd, ¥fi£ 10 (##)

fitS-A05-05-07 A05-03 ¥)$ n^S® r^arn-fex^XxA^ip-fbj ©TO^CHLT A05-01 g*i? H10 iESStt^e • Hll IfSffiijIHl

117 1. ms-01 u mmmt Lxmm^ntzo • San Francisco SET*SHI Lfc I-AAM h* * a. ^ > h © SOLIS gS#^ £*@,T 5, (->IS0 TC184/SC4/WG3 N773 X 2 H 16 BlCgSSftXV&o (http://www.nist.gov/sc4/wg_qc/wg3/n773/wg3n773.pdf )) - I-AAM CMf (*S) -»Chris Vaughan £>3^ > h 6s § X V x .g> „ Lillehammer ^^i;|q](7X®-p©^lt'fi I-AAM fflitottWRiSIf^SXn-hxx-ffl^StSiC'oV^XIES'r sxfccfe-So (tpfi)

2. TfiEio^jtStoroeiSWS' SBJi»sMS 02-04 C J; U, !)iF6;$3IS6e©EE£oux$6 Lfc, •*g«i 5 H 25 BCtMU LSUE©)SSIi6lfi»C'oux

3. ¥fi£11 ^SA05$*SICg@1--55IEItB (1) OMSO5 0^m0#mM'im:^i'Xa%lMA%?6o • #4#©l (6i6) A05-03 lflSliSmcf’-C,>XS18E$tt*Ut'©X\ -bX©--3tr*,S)Lfco /jpxft«-?>x»^©(feaMSt Mf 3»ipfb©Eftttt k"6.e.fflTb** y ^X-fifd ®^„ (6rnj) ->C LX##IQ%f-—v6$i/)XV'$/ct'o ($##) vtc-pvxxii&aa^wix ux%*A 7'J;Er/l/MWG, h 0 M WG ©@S#l7A%mx%t\c, (6R) -»mRxi±ma*&%©x. yifHknuffli-a-ttxseai-?,,, (;

(2) $0)#j; b MS 06 ©##©; f Ji t; o v x x ii HU * 5 fe o fc o ##IbeM6^©@M##&(i)*%#A#M6i: fctitx JECALS ©6mA) :ms ?"31^6X$&<,

(3) M^SS*#J;D. fffipS© A05-03 !3a ©flSa-SS^toK^lcotxxMS 07 KJ; 'omm^tzo

4. $*6>SS!)l3MT5ltE (1) aSIt^lCEtfx-j'X^ii/SrEDEtt^-xkf ^E$AsMS 08

118 tci *)tt£tlfzo • part44, AP203 @ % A & B'C' k L/t Ftl4f#A' Change Request

>x&##!: uZc$AsfiV'„ ^ Assembly Model, Parametncs ti. ^'(4, #S#t"®M®/t A©t7lP kf ^ 3jt 9 ti, i§l+^E5:->ffl3Elli:V'9EiS"C-k

®0$ex*»s6v'„ (*#) • ISH-tr* O"& 9M — bWy £S|6|®$ T & f\ gSH-^BttJa^Sfc f' aiffi-c-u*^t*** set>btt^o cccmoffltoB«* s$>&©T-ti:&v';b\> • E!t$5©*l'#tti:j£nTvx^fctotc. aet@®E®6#9>r% £-r-5„ cn^neRa&ETciBiiiet:BWT-#n«, Eo-rio #C*to L-ra§8t$BEIB0#WA (*?ft) &T^A\ tg^Ctto LTtSHISIt-S ^A^l- „ •ISSitbTtt, l)feature la]fflfS(*S: jtbf *® A!&t2)tolerance t4 AP224 ©S"C 6t>©;b\, 3)iffSW (7^7198+) ®^x-> • *la|CI±c^t6©pt|g&*#-e#Bf 6. (4) wssegtktx jnifiittit-s#iaty7S«?ti*0ti*aiitffeo • AP224ttEH--tp?>$e^® t- -yxyaysT-fc-Bo Ani&Mf # hAyye. mztz„ *

5. ijcEi^s 6 H 1 8 B (A) 14:00- #@ i)A05 SEASSSSt- (»EH) 2) Lillehammer AMtffi a 3) T h'*y7a@ICMUT

• XglStf- (777) • ^7^ b U yi ’ + y-bXXOISIf- • EfSffli£"E7->0S$ Ut*) w±

119 I ^ r| ¥J5£ll$Jt 3120 63 h$3<

IHiBB$ : 1999 ^ 6 B 18 B (A) 14:00-17:00 : JIPDEC JECALS ttiSS (##«&) :

## MJ£ T# sb @-m Sfx^lVdr— • 1E7K ^ 3L2 /j\# —to 'a" HB *X SB tifi EB*SttW sb xm? '>^-rm SS #BB43 # GUE frrt J£: #6 :iE at 15 £ tWtc : JIPDEC JECALS

1. miamwma 2. ao5 g*sas*it«s 3. Lillehammer eBISS 4. asstssr p* y 5. igiatHe^-Di/tco^T 6. vt^ h v y^kriz>yuElt 7. EfSEVi^ii/toies 8. *0%

S8-A05-06-01 m 104«7n-fexi/X^AfflSSftbSM^aw*) KS-A05-06-02 ¥J® 11 $@###*@56 STEP WG ms t$$-A05-06-03 ¥/& li SS-A05-06-04 ISO/TC184/SC4&WGs/Lillehammer SSiffiS ttg-A05-06-05 Ett$ET >y$g@ S8-A05-06-06 istt-XET- Grass tt$-A05-06-07 i£ cad /cam SS-A05-06-08 mtf esgfF A® 6&0*m@5amm ^$tb

120 §*J 1. P'l> 01 & t UT*|g£ttfc,

2. Aos •BJw4 IX *^S A05 SlSOgglcouT, #« 02, 03 C4 DTB3ffl$@*fco fZo ■ $S7"D-b^'>XTLA©tiip'fbS*B(rSV m:, T-k>y h V y ^ wg ib-rttlSlff, 7 h* * -y »c k 6@£ V TV'-So #ti'56$JP*iWdAtC^fl|*j3®V' LfeV', • STEP ifft-7 WG >/i—!4&#&*6-3* 0I4#U, SttkLTttE*kiBiEJ:3(c^orv>fcyc(j'ti«Sv'o • AOS I4$fli?t:fii!1"6, WG kSMSr©^ >x-i4i4kA,jf-*g-i:\ 4-^14 WG -3Cftotl'So (-S*ST- WG) - ipa g®*^, tc®T^'&femim%itz,o (Bt^s©^iSiSf+wGi&»t-6) • 6kva d*-c-$*css*, mA&ajLtv-'e. (flk©SM#-CI4ttiLTV>*V'.o) 4-#6#*-e#6nSn6SflCI4g*6©eH 0lSim* i^'i7t>tlX^^\6, 3. Li 11 shammer 6###S #@@MA4 0 , W#4 04 l:®oX\ Lillehammer 6#©#@*&3 A, • *5j 150 £@«ffl#Allo t|Brl4 Lillehammer College, 0**6,14 20 @©#*11, • AP224E2 **H*6tl$*&£tvCV6, 0**6>14, JNC Assembly Model SSS, c4L6,©***m#$4LTL'6, %@-c©mm&#w*6, • EXPRESS-TC1 *IS J;*6, EXPRESS-TC2 (4 DIS Ballot iM*% 7» • EXPRESS-E1 ©X3—7&KK*6g$*$4tTL'<6, • PSL©5%b&**&$iU WG8-C©#M*^%$4tA, EXPRESS b©##*^@7&6, • Java-SDAI, J-SDAI fflllie*ailStC»oTV'te, • 7 g 27 0 ll:00~John Downford (NAT0-CALS © PLCS f&MiT'A—7© >)—?) t AOS S*Sk©Eli6ff3*/g, *01: JECALS T-fe5.4— •NAT0-CALS ©7A-7"t'ti\ PLCS & AP T-|4&< V V-7 k LT45 tK 5HH©@ffl± ©eirAk UTV'-E>, -*51II/Chris Vaughan ©7A-714, PLCS &iStf’*6>iSfe AP Modularization S^JiCajSWC^xAtbLs STEPfflSa^ffo,

4. istt$57 k * »•? smiE-s- MB4A SSI+$57 h'*y^Sar-©l#ErtS***4 05 C4 6$6£tx JiTFffl MmfttLefitzo • x-j'JExA©%5l* 16:>g-CI4&V*bU5ii8lnl:&oTt,'6, aS8+^®{4 —3>© tObPTx ftt7-(4-C(4mmcm7fcA^L',©T!14»V\A,k#x6, (#00)

121 • gSH-ElkvdigAT^'J'SI-^m/tp? (##) • WtcSH-EH«ij-6SB lzmz.ZtLZt>, %ZtittZ\$^B.LZ^Z><, mtdtf < , IIiAs^SVTV?)o E@&#W6 n^v'o Tr-j'^7=->icisn-eH*k -®«iiSAs^suTvx5©/tisias6io (mmm)

ttfMtiZi^&o #$Xx;kXi4:%%i%lfiJts:3Sz.iAM-gzmmmtftZ US6 &*o %AkmuM@a-e&&0-eia&v'&a@7. (¥H) • s C4iik*c$T-^h,«w©»\ xjxy-h - A5T*#&itftte\ "CSfck U"Ct), ifeiCiot^SCiftS ii "5 ip, (^M) • t^;p©cpl:A6%u##&, taAJt>frmizm.t)&AJz'n < zttf'&mziZtM'fr tiio &A,6;tP©JB"t\ fi*fe^§lo?in?)J;-5(cUT*5^ *k -a*6 $Fa@o AP224 ^ 213 icEg+EHtolBizMfcSAU f$l$©itii©^mTi;U

• ssr*ttxt-p«ffi-c, EH-$B$totteST*ffa©»sg$f$>-6„ OPS) iti £ftLzm%M£ HcU»V'kto*&u2:vxdjSuti:ifc3M, • ttoEffl-SfioCkU k*©J;ol;:EH-£ft/c»U h**^ > MbStlTV&U^e.? $ < v*&v\ > MbStiTt'tili&o fc«M^b$ki&©T;tt&v>;(>\ kvx d@a* s$>5o Wrt) •iSSftfcU-m, ##(b©g%A'6l±fktX$Xt\6j:oC#U6. ((*&)

5. xaElt^-rXxouT XSEH-X t-XC-DV x -C*S 07 iCy$Ex.%vxttHX$>5o • Workingstep tii, H^©j)DXffSk*f'ti'6EUTVx^o iflx*jy^ N mx©#m->x#©mK*&6. (sc4 cia&c cnc ^-^x ^h : UAx%tx#%X&6) tmxtf7 7 4,xirotxTtt6nxH3as (mm, tin, isb+imb) xSBft±U2 am (ffl. tt-k) ©6*0 Ufr&Uo rnc, xa©8jSkx*©ljS©jg14;!mB t^k#x-5o SSW*ti|gii^ttvrt'*vx 0 2.5 fk7cX©Anx&#^^ U6AnX#{K (Machining feature) fr\ Workingstep &JR ttiUtlo, • $tt^E©fl-msipiisv^^ h;i/cj;5 (A2i)„ A23x-en&^p-rfbt-So $&cnk:grave, fPSS Wft otzo ■ I-AAM Cot^T, PLCS 3if&6#x&OkiMIiliTtf&Ok, Chris Vaughan liao TOSo oUbiSfh SSfc»St0b®^®i!li6:-6fflTtt£i:Ofro (fpfi) • f *tCZ D Design Manufacturing A\ SE:b5®T$>tlli#X-Sy <$A:?>3frx 3 > h D - 11/frl# 1^ 1* » 6 f Ni k'R@T I* » Oo ($*) • _tfr5>3 > h n— il/T^Ti/'&tptx kfr®#®Ei£fr5> 7 -f — Po" -y ;7 £ftT t^kkfr&%^53o fc£U kftCJ;DIStf\ K@® APfr$t6kkl±x lit Lt^oT, §§tf-x StiB®®ni*JT:#x3 kkti:S*fr6-5 kSx£x k0 3 hn— ;tSiiiPl-?>ctT-V'V'®-ci4*V'' fro Zc7cLf#7cldTTg&kia#o#Oo £'$»t)®6E^t)'ti-TfTlj'tfAV'x tOoOliChris Vaughanlifpf k&3o NATO-CALS kb ±#&afrL^ltWfV' 06t'k±®1"^fr6 Ltvfct'o 7B 2 7 BtcMisTSCklc&STcSao (SS)

6. /15X b V y7k7t>7VR:+ ###M j;bx B*fr6jgSU7c Assembly Model COOT OHP TIOTlfrfeo fe0 • Lillehammer SM6TX ^KciA/'V3 Slovensky, 5tlH Navy b k Workshop Slovensky 81$® AP224 Extension ktlTV'6®T, t67l LT O < k kT'pfiLfco - ^*L7c7t>yutffr®#ai±x #M®mafre&fi7cieCx 7^-^aX E*/d«®Xgi§|+*f7ofebx gB»6t)»SSS#ATx #WA ttfflSaSifffi-r-5 V V—XXT-VVSff-5 k kTfc&o • £-$6ts«ttx m&a&«mi-6gn@®##Rx uruusskx mxaa®#*x as na®mfw# (AP203»k-cffis)x mfM#®[pT®mM@g&*fm#&Tff# &$f&*®##T&6o •AP214x AP203 TttS?©H&fr B3i£T$3J;7C&oT$T*5lb -eftCIHLTti: -e*>5>6Bt>3 kSoTOSo T-k>y V txitk LTK?#|B|±® M#6±k LT #*LTOko k#xT06o

7. toeiEltlEx-'A-rofSS E^S**; Dx frCoOT*#08 C%&

8. 9 21 B (*) fmif

0&*5 Workshop on Assembly Model (T19 + SC1/WG7) 6 9 M 21 Bf #—22 B C

123 TIME24 &H©7-fc>7')-5# x^iC-otxTitjlS* f&o Manufacturing Technology, CNC, PLCS —"7 k L/rVio

0$fc^nC5fciL*.7fl2 7B (*) ll:00~*e>tt John Downford(NATO-CALS)k 0 SMxitS: TIME24 e>T‘ffdo

i®c NEDO SBKJ;D, mmby'aih-t h©tpT!t>, kvxd C kt, NEDO 041T* ifeffffl* siW<, NEDO 0y7UV ^>7 h©5 riessvfcesfct'o tt±

124 HEQBxf : 1999 m 10 JJ 6 0 (zK) 10:30-12:30 : JIPDEC JECALS mss (WW) :

##

ts* 3V'^3:>^z:TV >y SB gfxmmrn — • m #e mm [/M-1^'ni mm

¥m mm

wwi [X3 >m B*TA H-JiA ee wm BSTAb'-JiA urn mi 7 7±\y^ m # «IE ttm mm ms IE# S1E It 20 S fAj^TC : JIPDEC JECALS

1. E1BSSEEE 2. (#####)

3. rmyyv-xm^cpm&ifcblfl^bxm^-zHziiEU'T (##w

4. b 0 y MzmLX (± m 5. *.-)wmLT m^m) 6. &@m/£

ESSA4 : &^-A05-07-01 m 2 ®4l7D4!^y^fA0mii^l &^-A05-07-02 I-AAM #lt(DSm ##-A05-07-03 WG12/Parametrics Workshop(7/28-7/30) ^#.A05-07-04 ISO/TC184/SC4/WG12 N295

125 S8-A05-07-05 ISO/TC184/SC4AVG12 N339 ficg-A05-07-06 &mXD-LXX-XXf'A©^% ($) ss-aos -07-07 i] SS-A05-07-08 JECALS/JSTEP Assembly WG ©4-#©%#l:7)V^X S8-A05-07-09 ISO/TC184/SC4/WG12 N_ Date:99-ll-9

:*4 01 LT&mgtlfco

2. K>E*h*ss#ilgldiaLx

•MttftStXLHzXti:. I-AAM leafed rssaias+js r^jffifdlSftj. D-feXj ©E-oXZigSo • I-AAM 14 ISO ^®$&$Sg©1uBttt4£BJ3Btcf o . eng ###&!=&&ca(4&Wo X0X7>6S8:9'lbLX. ^®S§igK)TV>gfel'o * 00-ZL—*1J >XT-6l*lS6'Oti)TV''$7cV'o • f77 b©b ti-LX. 8*lcre*S *Ei'LfcV'o -e LX* @©-2L-* v >XX. *&. B*X© 7“^3'j74#it I'Sfcl'o

• SteSSKSittt ITA XtlS®. ISO ^ig3BA\ (NWI) t>\ (tiE) • OPS) I-U-y XCMLXIi. gM6&ffoX:#b‘ b. v—’Ply 3 7X14VSX&3. 7t>XV 6 9-XX3 yX&$mff%cXt\6. (*«) - m*®##©vs&M-3omx6*0#mexs^ i-aam x&i-aam ©iliSSirct-MoWtBf©*^, toIbLaMif6^#A%6©XI4»UA)« #1X14. @#$©m+%0&. £#LX. Hl^tcstt© STEP X14k*©J;a tiZtifi VSLXU-5;tPkA\ ##© IS Ask-® 4d%v-yb->Xlc»5©/tP6*tttot;#l4 fa!&##&a©xi4%!-'&. (^fl) • CAD (gatb) kiax6 k-©J; o CiBU-'-Dlt^A^SSo ifi,ffl©K6ttl$ijui:otxT7— X> h6KoX. «B

- ##K%©*|n|lCl4. *fl02 i:SVXo©*|6|f$As%xe>h,-6As. A05S*=X*I4. s®(D©#i6] (-c0Kax7AA^x#aN&msLX:###:+&R%3 6A07 xxEX4-©^fffcx‘-xx7-op©pa%) i:mSLx##R%f$#&m©6cac X-?*o (^S) • ffHIStt AAM L Data Model P14gGotxX!4. #TO 02 XV14 7 CXo©8*W% X*A S$>^„ *fc 3 «774'X®c43tt-5jbaxXD-t:X©»^«ffllt EXPRESS* 1«MLTV'5. (I##)

126 • ffaUMCDfctoCtiu iDX7'D-bX©®*|6]T^7 L-f tf 4 X5OU©6 CAM troWS-SiMUiB&'DWSC k & B#1U XV'iSo - iso /\©#*©#$A-wa ? (*iW) • I-AAM ©t)itCfflXX>4k-Clcti*f4ltSA 1icJ;So (^S) • cfttic Anx© v v-x©x#>-fbtc&s®-eti:&^A\, (##) • #&©%##*/-At:4" M±&S#>? (*@) • XIt*M-*Ctt&©ASAo CAD k CAM <• £*£&Sx S C k t:S*A* feSo • cn*^6 CAM i/XXASffSAc©ffl#,«X7->C*SAcSdo ISO ©M#kf^ S^k'oA^C-oUTttx ##TSCkA^S7:6-5o (*S) • #*© AP £AVLTA|6HWA5X$SS©C&SkJgdo ($*) • ffSHSIt* 0 A #©%!%(:-oi'XtMmk DTIif-5 A>„ (*iS) • — i— ;t V XXSH^T-tCT-V X* y S>a ^TVSfcVNo **5 5ttC ovT*i6?BnJ|gAdk#^.SAk MjBtt3 «ttix6^<-Xtc^l#UAcV'„ (^S)

3. X-tzXXU-tT-’JHClIIXSSXtiffl^-kXXvi-lUCliaur T-b >Xy WG ©Cft*X©##I:MLXX# 08 £ J; 0mtSM*6SiBlJA5*o A. • ISO © PPG &k"t-fct, NWI k U-t©t6$&Vvoff dA>Asito£ft"tUSo 1999 # 2 H©#-X h 7 U T^atc NWI CkSi^tCLTUSo XZL-*U>X 6 ItT'(^Ayi'3>t5fS. • ass-fbAsEto-DAx^A/CSIif SX#>k%i.TVSo NWI'MD'S-X > h &fMUTVi <#*&, T-fe>X0 WGStf'blCffoTV^o

4. /\‘^y b V y fVHClBf a#0*B,»kXXv:L-IW;:MUT n=7* b U v i7 WG ©rS®Co^T, 8*4 03 MO *S$ * A> 5> S6BH A!$> o fc0 • NWI BraicHLTtiC -zL-^-UyXSET-^ >^^V—>3 yVtfn.-^fTd'F So ^#©Et)0 $Ac(i&Xflgnr- CD SStiiU ®lll£tiiLfcUkitxTV«3o • PWIMIiCHLTIft JgBS^xX h V y^C-3V'rtt«6t6Wo (WD) £fN£UTV>

5. ^fiKI+IClHIf5©0ffl*tXX'>'i-IHCMLT SSXD-bX#-*—^X7-Vl/©ISJ6to^T, *S06tCj;b$*$*A ie,SiB^As$.o&o • Process Data Model ©Uto&ff'S o STEP AP224 XxXA^ftXXA^ ftXXX A1 ?> CNC =r—% X Parti ©@ #$# SWIgtCfSo • AP2l3tt^tik#ATJX'o %#©#m^xm0#^&f$A#SA^koAN±m#0 iK>SA5$>So t#XD-bXX^3P0(A##IAI:ot\xa, I-AAM ©tfC#* fetlTV' So 4bftX^Ibk0M#&%6A4CTS&#A%So

127 • E@CM-r-5)89toai©!§;t -12 H*, -2H*. IB © ARM 6 £71' AAM fflfM -5 H5t^ NWI SSffl > h ©ff/jS -9 •Sr#SliM*©6^itx't*< !£;-S6Safe5o fegl, c# A%|#©##t: & ZZbttmfrT-foZo rD-tXr-?^-iMcli, tTVl/©##, x eEl+SWSEI+©T-- » X7=-> 6o (

6. io^ 26 g (*) ©f4SEI+WG tr-t>yv wc^fe-s©-^ 10 M 26 g (*) © 15:00-17:00 Cffdo a@ : ST'l'71A©=^-*U

128 11 *FJt *40 7 o t X v Z 5^ A

108$ : 1999 # 10 0 26 0 (*) 15:00-17:00 I#mr : J1PDEC JECALS z? mS# (114) : SSI 1I15P m$ mfc B^uL-iyx JE* f# r? V'yjiys/ —y u >y SB li-g|3 Sr 3i^;i/^r— • Si B41

B$T^lf-3LA M m59*# frm ir£gR 3

:JE St 11 #

{Mx : JIPDEC JECALS

1. luHJESi 2. I-AAM 3. yt>yvtyvi/C'oC'T 4. 74 —^y>^-ovxT 5. ISO New Orleans ^

6.

t£#-A05-08-01 m 3 [B^S^D-fey'>yy A©wtb^ !^?i #i#-A05-08-02 4i7°D-t!^7“(S) ^#-A05-08-03 Integrated AAM on Engineering j^#-A05-08-04 Aosm j^#-A05-08-05 Process Planning Activity Model &^-A05-08-06 ISO TC184/SC4

§zj 1 n<6> ## 01 & t ITMMZtlfz

2. I-AAM(D&t^COUT

129 • A22 CD 3 > b u —)\/k LT Machining Process Data Model UZio A22 (DT^zr 1 b':^ ^ 6C A223. A225 {l3^T(iM^M^Ufeo '-^-^V>XTCfl^B*7(P^CD#W#m-, ^g$#CDyDt^CD##K B*# 'K&ot b k#^

• Machining Process (ik"o t£%>CD£ C k/t)siftllk£ilT < %0 • Assembly Feature Data Model &> New kbt®DIo 0 tzfz LCI titt D [APXXX](##f

3. Vf^Vl/l:3t\T

'fo'ZtfZo ' ^>^>CDESt-eSx.ti\ b* b 'S(D%>^7 7 b CDISS^CD^IS®^ n-t>di^ k^o Zo&ck#jW

• jetlt>m&%mmtZ V V-%t^Vl/&#t^Ck^WGcDB%%r $>3o f • X3—ycDtpky yD-bX3 P7 >n y^CDjW'lK'^

�LTW < tzfo(D' ^;C,#%kr#EI#lC#%U)kl^CD4b&^C k^#%%f $>6o £fcfp'i>@k^{>fflkcD^y ^ b U ^^cD^#CD##^^lcoi\%cD#%l:o

- by^y;%t^;b#Part47t:;&a*\ ^) o • Cfi6C'O^TCD^[q|#^#mlL/Tx -n.—^-U yx\z b'^rn-t > b £tfiLTlftBML yk V^o

- im&(f&;%35#m:#l/r, #^LTU6CD(d:(m#^4

• 4 yx^Zi /3 ytemtzimWZSfzTfcZo £tzXvJkxxx>~>XfiK #M\z

$)£o • Shape Aspect CDf #t k Its Assmbly Feature UfeV^o Shape Aspect {± Shape Aspect Z kii&t^o fztzLUft® STEP Shape Aspect

• Assembly Feature *T?{± N ^ b U U^/c&Vo Feature L 5<&^k&ao • Zb LTs SULTdbWa'&UCD ’m&l^o

130 4. Machining Feature Model fc0 • AP224, AP214 l)DI0u Jilifit

• B#(Z)]A#U\ AD%#0AL#C^o"C, 6 CNC T0#U/=^o • Form Shaping Function hbXfeWtX^t£\''1P}l\^o Z.b'&'ftX y YXfc>%>o b ckcT, ^ a, ^0j;o^A0%^T^6

• 7 —;i/^ It, LX^z.X£^^(DX\±tf: i^o y—-r - %(4:#gLTl^^o

5. ISO New Orleans ^©Ail

• Xlilt AAM Ifc I-AAM t^)o • FSF Machining Process (D AAMS AD%7 'f w-'5:'-\7~-4r:r;K -r^P (C 7)OT(±\ LTO'^ C. ^ & x Disscussion Paper

6. 12 B 2 B (*) 15:00-17:00 Sli8 :-a-*U>X£?§*$ tt±

131 IBR : 1999 if 12 R 2 0 (*) 15:00-17:00 HSfi/T : JIPDEC JECALS £tiSS (#M) : i*S ## @U; iK* T@i SB 8-fiB 0rx^;i/^r— • M SB $1 a B* SE

SB EE E*y^ tf-:nA *B £ *s a 7 7 j- y 7

±J sE- #iE I+16S f#^7C : JIPDEC JECALS

1. Huinigi

2. 2.1 V '>— > ^7°D -L X ^EtDI/ 2.2 UtfVl/

4.

ElU*# : f£#-A05-09-01 m 4 ^#-A05-09-02 ISO TC 184/SC4/WG3 N830 Proposal of Integrated AAM for Mechanical Design Manufacturing^) &S-A05-09-03 ISO TC 184/SC4/WG3 N831 Proposal of Machining Process Model &^-A05-09-04 ISO TC 184/SC4&WGs New Orleans M ^#.A06-09-05 Summary AP214/AP224/ISO14649 CNC Meeting ^#-A05-09-06 Feature Models of Machining Operation and Machined Shapes for Single Cutting Edge Machinig H-A05-09-07 Feature Models of Machining Operation and Machined Shapes for

132 End-Mill Machinig f£ll-A05-09-08 WG12 Parametries %#-A05-09-09 ISO TC 184/SC4/WG3 N448 JNC Proposal for STEP Assembly Model of Products

m m 01 m

2. New Orleans####!#- ISO/TC184/SC4&WGs New Orleans

• E*^e>(d:N830 (MU 02) ,N831 (MH 03) ,N448 (m# 09) • 2000 ^0 2 m&ZZtlZte-Dtzo m'MtZ SC1/WG7, TC29 0#$a,

2.1 U-tX^TiV fcfvEPd; D> I-AAM(2)l:-ot\T, • t!S L/z Machining Process Data Model tiu IS010303 STEP AP224 IS014649 CNC Data Model Part 11 Data Model for Computerized Numerical Controller ^0t5S!l0tra£fM£ Lfeo • Assembly Model $rSilxU/co • SCI SC4 0^CfHL/:O'o

• jjpxxuAP 7°>b51-AAM 0^Ck:#JG&f&0&»& I-AAM tT40fPi§B± X0X7tt ^(Reference Model )bt% Zb tz<>

• Machining Feature CDiESCl^T, AP214, AP224 \txnm\OXti, CNCX-ft^ VT^S#*D#>b5EEo UXtt CRased on Real Life Practicej LXs AOX##0XXMb&^c/z#C, ^PXXD-teXCD A Machining Feature C h • Machining Feature t Form Feature ©E^iJfc'OVTtllSo • cft6coA&mmwo m^mow§,^mi^tz^ #au iso ^mvmzv

2.2 yx>y vxt -> Wf## d; • WG12 h U yf y;b-7-e##&fjz)Zzo 4^0X4?> X VX-X>0ft Ws

133 #h%B#lal®M#&nB%Ef -5 k C 6&, shape_aspect Srfighll bTV'-SAb A71 h V w 777:0; geometeric_representation_itern Sffiffl b "C l' -5> c 7 h V -y 7TriA $ -5*^ -5C • Change Management "TrSiBfl LJfco T-byyV^^VttV V— 77>J 7-^a>itya-M:L fcS^ftV'kv? Vny y^-y-ay^feoZio M###^®B#'I:f a *6 AM tc bfc 5> kt'-oliiMfefc-ofco fe/cb, f 0# Greg Paul I:#gb6kk6. lu«> 8*» ss$nTu&ttn«v v-7#jS3ki'7®»w>BJE,7:-ifctb 4-E, «kBlIIi bT 7;«®teBft „ • 2 7’-fe>7‘U;ET-‘;h®rt§§#6Sf S7-7~>a -7 7&ffV\ :W-r-f fc/c b7 ®#ha6y>*Vx®t! NWI 7"D^—tt>* ttt fH b-^77rifc&o - T-k>yvt^;i/^®#An#a*K. r7 v*. 7-7>7. 5$H»6 7JS$ivt;&t>x & k ti M -7 ® 7 > A— & £ Wi&B#$> 3«

3. 4- 5 c • AOS k LT®J$$»&k'C$T-tti1it;i (##) ^*^KSi9 3®T\ ^Si*rStte®IBS=4'$-C-®SS«&$ kt63, kt^B? en. 56igS«tt*U>»b kST’Dy^ Hiftkhfc^5kEAt-t'-6„ (JSA) -»7Dyii> hA#Tb-e&6 3 (NEDO) • 7D7i^ hE7^*$SLt6e,V'7cV'k#aLTtN-5= (JECALS) - 2 H 13 0®^;P4t;h>^ttT-tts 7-7^3 7c 7,7 o • I-AAM \Z.tS.Z,ti%Oo bft% i'. * ‘5t'C, fis^o-ru-a®*, aist"^^-7ic»ntf j;t'k®7o • h®l//\;i/0 AAM t&aiaf/cAb NATO y;i/-7#A#%&tTo7t\S. AOS -tii, cc>9-7O>7'®a'BT0AAM&#c?f.#7:t\k#%7t^. • STEP 10303 © PartSO tkoV'T, AOS k b%6 b bn.-1-6^BA%6©'CI±»V\*k ai»®aa*i7*5#*#vt^-5o •^37>b5-r-(>7flt ^B%7 >A-#ambA$7: I-AAM * st>k 000 77 l/'yX^h/k&SkkC&oi/cOT-, AOS ®ffittj*s7'Hf>7&Wfc{8t7:fc-?>o 0* 6»e>4Si;put'A»s#iaurietoru$7ci-'k@o'rvx^0 (jecals)

4. #®7® [0#] 2000 # lfl 7 0 (A) 15-17#

• 7-77a 'y7©#«©#m&f?7. -^WSikfttt, AP224 T-®T-b>^0 tf ;i/Cot\-C0#A*-^^:*®7Dt7 7'7>ICot,\T:##iT6. • I-AAM 07nh7®, x>i)=7'J >7'®|gilA i?>MiibjiiI)0'r-5o (7 >7^7

134 iz3>^k-* sA^i:6v)

• sc41 ii urn 12 ft 13 Hffl jnc sar-as^iSo • 1IC7D-J; Machining Process Model IdltteS-l'l>T i? £: ill'd&M'C&'Zio ( h

• NIST ifiX — A—7Pi/i7 h&iito&C iC&oTl'-So (yrj-y!?) Cfttt NC m-MmnmWt®. Hardwick (CrtSSSiBfl V T* 6.ackA5#x6ii^o »x±

135 11 +FJt $6@ x->Xt-Ei

IB* : 2000# 18 7 8 (A) 15:00~ 17:00 HSfi/f : JIPDEC JECALS JilJS# (tor-mS) : JtiSli J\¥ ## m& *M.m±L±¥ $* T$li 37'7:n>7 —7 0 >7* BB *8 $&* SE %M±# TW &S Arwj SIjS B*xl —->XW 5)na#@sxs

KB B*T-f t-xi> SB S+N B*7'f kf-JiA Sr SB

ig-£r *E 1+14 6 f+BK+c : JIPDEC JECALS

1. BUlHlttW: m 2. J (1) -?'> — >¥7VtX'tf;! (2) 77 7 7 V > 3. 7->—>7 77—77— t7lMC3t^T

I2*PK*4 : +6S-A05-10-01 ¥fiSl 14+SS8 5 @$jl 7 d -b x -> X 7 A©tlWbSW SitStii ($) SS-A05-10-02 Assembly Feature #1 1 &S-A05-10-03 AP (’SI+ ?> 77 7 7' 'J (OgH (AP214, 203, 221, 227)

i. %# oi wnmut txmg^nto

7-^->a 7 7-©|g«C7V'Ttt, SC4AVG 3 7E7—irSSS&fiofcAA p

SET- SC4 k L?iK-*l^M#&BLTA^9-773 77&R-ot^#J:t^kmM,# ^ Os 2flCKU7-7'>3'j7lig*+j;l;i;if; s

136 2. y;u7tou>^ii>PtJtx (1) V '> - >-t? X X^'* iS* :

CAMt:-^X.^(D^AP224(Z)#X.^ -^CNC^-^X^l/aL%(j:x NC3>hD —LX £*>%.*> tlZ^Zo #WCTU\ CAM (D^Tt bz. ZtlZ?

♦ Ztl£t>fr 0 LT£ t&Ts CAM

♦ ^pxrnxx£iB$*£Xx;w;£x

*M : ♦ fo^oTi^nx&u Apx##( &6^? :

&Vo iS* : ♦ S*ftjM AP224 ©*f

^ : ^ Aoxm^6(±j±#%##^^0auxmx.^o iS* : ♦ muz#* 6 bxz^oiztzzt &xmtd t&o* : ♦ M£:SI$lyfcS©£x BM%MMlsfz!b(DX&Z>zb&M&t>titzb&o1)K v y

♦ z(D£otemm%, sc4 tLxmm'tz&m s&%fr¥ofrtno%m$)&ms& ■?> o iS* :

(2) XX>yUXx> ## :

137 ♦ luiuor-fcyyv WT® 3 AC-o^T^B® WG T##L^o (1) Assembly Feature Assembly Feature Association $E#® V V—X Shape Aspect ®X—3? T 7°£: (2) Assembly Parametlics b (is Shape Aspect

♦ Prametrics Assembly Model Assembly Feature £ £f® j; d 1C#X. 6 ♦ STEP ®^rTGl/® AP AP Tf (d;N Shape Aspect ^ b t $ tit O § o Prametlic Assembly ® # ^ C (d: ^ Geometric Represantation Item £EjlctM LT/iililhb » Z-Ofztib^ Assembly Model T? 6 Geometric Repre santa tion Item b #X. ^5 4:3 >E> o ♦ Assembly Model Tt3\ t)® TUl^X.Tl^o Prametrics f ®$#^^L/T#X.GftT^6o ykrWi ♦ &#@^G®^7-hv ^ 4:a1 : N %fzl3i)sWi£ UVx0

: ♦ AP224 \t Shape Aspect b, M®Fmbs#;L e>ft£o EMs b W®TrU:&^&o ## : ♦ LT%#® AP ^ Shape Aspect £WtlUTl^fc#X %)

♦ WG T®##®^^k U%\ ®*0bCi4:^2 %i&]ELtz&(D\Zt%o Ztl%, *

♦ I-DEASx UG n SolidWorkSs WorkingMotion N CATIAN HI-CAD #o

138 3. ## : ♦ AP cd ^T\ yt>yV&#cT^6'Wt:'O^T, yt>yV&^cocto}:

♦ $kM(D{±jjmMofiK %#A%i^yt>yv ^ AP22L AP227 (:o^TW\ m^J-IULT, MULX^tc^t^xX^^o

## :

LTl^o ♦ f;%# v j:o(:#x.Ti^o ♦ W^CDT^yX ^X^MZ-W^ APfi AP214 0

4. ^fcCD^n 2H90 (7k) 15:00-17:00 3020 (*) 15:00-17:00

\X±

139 11 B7@ £E 7 d -tz x '> x ^ A rotlipfc: gwgas :2000^2^90 wo 14:30—16:00 mmWiPlT : JIPDEC JECALS 6i aj®# (##«&) : @$ @A jS* f# Z}-?"J3-'yV—-7 I) 'sif B*^- —i^X Isffl A Et $616

*» e#i 4$B # SIE

JE# #fr :JE It 14 £ fMtc : JIPDEC JECALS

1. lutHESEBE 2. Melbourne 2.1 Machining Process Data Model 2.2 JNC Assembly 2.3 Parame tries 3. %ftgmmm 4.

: &^-A05-ll-01 m 6 ##-A05-ll-02 Need of New Machining Process Data Model &S-A05-11-03 % 114# r^^n-fe^'>^xA©«Uptbj (£) ^#-A05-ll-04 Process Data Model For Machining V2.0 j^#.A05-ll-05 Integrated AAM on Engineering &S-A05-11-07 WG12/N513 JNC Proposal of STEP Assembly Model for Macanical Products ^#-A05-ll-08 WG12/N511 Prametric Representation and Exchange j^#.A05-ll-09 m± EXPRESS-G

140 1. wmmmmmm 01 uzmg&fi&o

2. Melbourne 2.1 Machinig Process Data Model fo-otzo (##4 02)

7V >7*7 -r — 7"D 43 7^—7 SC4-£'l!fg'f SCI (^^7^ 7;i/ib4t- bl:(d:y-^7 7 7f'4' V 7^77"^ 7;H7 tK— b^lloTl^ SC4 DS7^§&0Ttd:&l^o) (sci^) • WG8 h(Dm%\z~D\\T!b^z_Z, ‘&^t>%&10:£o'T:fo%o - d' >77 b V 0--X(±^V\o

2.2 JNC Assembly Model ####<&%, TX>7"U^rVVClLT^ 7A/7fUV>£?Si"CtEST£ AS0ES£/bs&o (##07) • N448 0B7S7jE£fN$l/fco b V 7 7 T X >7" V t%Dl/0|#R2p6#IE L^o EXPRESS 0 Entity JM Dfco U£o • Shape Aspect • Assembly feature, Assembly feature associtation Lfz Entity £ Lfzo • muiz^x^mm^ALm^m^vrzo • AP214 Assembly Model £ V V—7 t ^ AP214

• AP203 MDT&,

2.3 Parametries /^7bV77t^i/c^LT, fo'otzo (## 08) • 4'@Xy7~:fr;VftR|jii£I£#)T, CD • CCX#o Parametric Assembly hti:, aPonP^0 >r y>r u xo

• Parametric assembly constraint W\ Assembly feature association ®+t774* 7° ^■otDI)o • A-*yy ^ 77^0g9WW£lllLT, ^4©7-t>70

141 • 4-0©v<7y H; j6)S$©6©"eafeDs NWI CfttSf 3$©■£&*o g®$# • h u -y ^^7->t;oUTttSiJt; PWI 4: L7%©TU6.

3. • A» 6 ©#i^ics-d $ g *$6fM Lfc, • ftm&mMm-e'no&, &$mctt"£@tcjSbTT---*©tgHj|!FT'rtS*£43®vLfc l'o • 2 4>CI66»S1 V, toe]© AOS $*S?CTVC® < ^/ST*V5,

4. [SB#] 2000 # 3 44 2 B (*) 4=* mracou-m,

ssws

*43- 3 44 14 B (*) iz JECALS STEP *>-7"©fiK*«SS6S b'-'V-eff^o ^Pluttc

142 lx*

: 2000^ 3 E 2 0 (*) 15:00-17:00 : JIPDEC JECALS mS# (WW) : #* f# ## mis ss earn me

ms #b§ Scffl g*ym tr—xA m «ie

S1E It 12 £ fM/c : JIPDEC JECALS

1. luliliM 2. (1) (2) #### (2) *rWj#il 3. Lt 4. 12 iyn-LxtiWbj Illiu 5. i&fc &#■A05-12-01 ¥$1 l^gj YEBSyn-fexiyx x A©ffiip-fb- I &#■A05-12-02 Za I «S 4E*S* A05-12-03 y $B© ##@M &#-A05-12-04 y tisjiSHa kikS U A05-12-05 VfiK 12 A05-12-05 TfiK 12 A05-12-06 ¥fi8 12 Ipg^jlT'D'fcXSifHbSflSrSIfr (*) A05-12-07 4arD-kX©ffiV-fb (STEP$®&t§©S%) 5* &#■A05-12-08 HISS(8$CM1"-E>I8*S A05-12-09 J N C7t>7'J

143 1. mmmmmmm ct d 2 #]E&fT9ChT,

2. ^;i/7t-ou>#ii^j^ a)

♦ SC4f^-^;i/7t-7A^7-a7 7^ft U >%7u—'?teTfrfc>tlfz0

♦ PPG ^T> SC4 Manufacturing Strategy kits V —il7r7f t'J >7>HIH^K:|liT

Data Aspect in SC4 and Process Aspect in SCI Integration of Manufacturing Gaps in Data Model Data Dictionary ♦ AP213 0 Process Plan Data t. LTco ♦ 6 Manufacturing Feature Cibtv AP224 UV> Process Data Model ♦ Data Dictionary &{f$lT;5Zttet£-ofco

♦ AP224 f0##co;*a6M:-3 CAM A©Ai]B^^7:'7^a7 7 7f t

♦ vnzL^y^-^^U t, AP224 tefo-oT & Xl^fiK ##CD7°D4z Ztlfztfr*lZ^-hfrTfc%o ±fomzfc>fz-DX,

♦ Feature £11 LT£Su&S&T&Gfc$TSlfli£f7 7

(2)

♦ WG12 IZX, Tt>7'V ♦ AP224 (SlovenskyX AP214 (Mohmann) CDi§- D t. 7 >f—7"^ CD^ D £

♦ WG12T&, N513 77>F©M^ili(;o ♦ 7t>7''jFf>ttii©Moo^T, 4-$ TGd:7*-*;p^(-i$goycl2idi^^oT^^o ##&0a5^CD#m(d:, fCD#CD#^ £S;ifflT§£CDT\ 7*-£;p£|Sg^t~3£'Ei;W^CD^vb5&ofco CD FunSTEP

144 ♦ ZtllzmLXte, b Ltzo

>JV-^fT>© 100 chz^ lbTfcJu WG12 <7)3 >

♦ AP224 n AP214 TidU characterized_objct <7)f k LTx feature_definition b LX assembly_feature ♦ cNcimLTkL fet^sum©®3 bmow? 0 ♦ N513 Mohmann x-X?-a Standad Parts (7)% D SH\ f?;#N assembly_feature_association

♦ . p-T NWI^S^ffo^o

(3)

♦ b U 7 77£o^Tx PartlOS £ NWI h LTH%^o ♦ ^7 7 b U '7 ^T-b>y U (3-ol^Tx N511 h UT;£S£: UT$ h#)Ttgtij Lx ffo^o CD £ Ufcl^#XTV3o ♦ expressions & functions ^SESWH ♦ ciiicULT&x mmiz NIST (zt 5 "F^o ♦ 5G 26 g^T'^x 7t>yot^;i/t)#^-Cx ♦ PWI a LT#ATl^o ♦ • OMG IZX CAD Services V1.0 CfU±x IIf©^7^ b V '7 ^i:tx CAD a CAM, CAD a CAE ♦ JIM^oi^Ttix DSiSto&l^#x£>n5o

c<7)^^

(4) STEP lZ&tf%7 4-?-^lZMLX stef iz&tfz? j -3-^ izmLxmmztitzo ♦ 7 4 —v e>n^^?AP Tiix zn?ti74

♦ 7 4—77^-iiii:7^ -F 7 <7)##^%£ 0 7 —7 £f Z> Z. b£tlfzft^ O £ < $ h $ G T shape_aspect

♦ yj)\sttmm%:^tz>zb\zmui$ibz>bK ^n^iix

145 mmtfifrfrzizzoo ♦ 7 -t—f+k Ltb ♦ product_definition kV>o fcti©(i$i^iAss 7 -f—7" 7(7 i4, definition V't^OX > ftf definition 7 4—f'+isS;Cil'S7'(’T>T'f 77-ff-S C t* s*ST ’fe5 7o ♦ 7 4 — 5=--fr©toB'W£fi;777 4 — f-Vtol iT'fex 'Me < T * :ff d1 h* 7 d1 > As-05o ♦ MW£W,ia.&v-tZttr‘Z‘7CMb"Cli^ bteufflT-tio » 7 4 —4-7KMUX STEP tt®8t8tl"CVi&V'©"t% LTESL'tjb'^&W'ja &e>&t'£7>7 o

3. f£S*g*|g ♦ F77 HK&ffr®bfc (SBISI). ♦ 3^ 21 Htatut-s^o ♦ ±i$.s 300 ^.- -7 gg b & 3

4. 12 #g&m7-D t7##fb#M6@#l:ML-C ♦ *6* 6 Ek 4|»S, ♦ iso 6m 3 mcof 2 emek ga, iii»o ♦ e^Skb-r, pwis&Bb NwifflSto^ffl^itit-ckSSsRdnrt'-Bo ♦ jfc^giSSf -6 C b ©EEtt b, 0 *liW* 6©#6a£Sffito -5 -&$#$> -a„ ♦ 13 *ESm@ffi#&:fx.Tfl®rf&£'$$> Do ♦ 7t>7'0txii/|:Mb7«, *^^<¥toCE3$lcrBlb6$)to"T*>-Bg6 FIX £it

♦ BUm&tfcbtib *B, 77>7, M'X ^Htt#*PbT>7Mc©-Cx MUi7lt4 M'o ‘ fcfcU NWI%$bA#, fablR©##&#ETO'< ♦ jE^C-ou-ttx iE6tLTV'< ci:*^-8^7,7= T<-17 NWI tci±%b%t\^67^o ♦ BA©### *"&©%#©#: Ab Eatcb^V'.kE^t'o ISO Agrett g.m$AZt\6Ab a*Ciofe;ibttis, Brtt-a- ##e>&bh®U'o

146 ♦ T-tz>7Vtt, ♦ AP224 t©j®V'lCOV'-C0J!iit(;t'-5

♦ VTtiu Sb ■€■ do ^SEtc-^^d ^ T3 a Part49 (7 < l'o ♦ t)-o tMMZtV V— Z.^f-'A&MglztcZfrt) Lii&V'o ♦ 7 4-^7 SSai"5 C t USSti 6 o o ♦ 7'li5JtgA io ♦ SjfetoCttWSa^T 1—vr-fe^k@7„ fcEU *l#ick'©Zolc#-3-CV\^6A^ AsS K ♦ UDACU6, a.»t(]tj:fflZs #xTU»>&t,^ HttWft'f 7-i^efr 0 C < 1' £7,7„ ♦ $EUT©i*!n£fi7o

4. ♦ 3 Pi 14 0 C JSTEP 0fiK$|BeS6ff7» ♦ 4 44 3 H*6> JSTEP ttSFEi@7:X7- ♦ S®HTtt7 4 y^XTS-E.MeU^oV-tV&lx,, ♦ KTffl««Bcfi4„ B@tcMLTt±m#e#ams©7i, ISt&o #-## 4fl 25 B Ok) 14:00-17:00 Sg-fStl 4fl 18 B(*) 14:00-17:00

«._t

147 11 AOS Slt$57 K* v £

M# B B#: 1999 ¥ 6 H 1 0 (ik) 13:00-16:00 miS9f : JIPDEC JECALS 6«S

a +TS ha^SliS A»i ## ** ++f*3 8f5;BB #3E 1+7*

## 1 AOS Sl+EM*; 1.^^—xSKilrMLT *#2 AP203 RI+EH^ t=> #»3 ihi sw®m »fM %e-gfc$ ii* m*++ 3 nnii/cii,

1. *=Miro±BicoL'r • #» 1 I^S'3V'T*6»(0Hlg'6*gL+c„ • rEI+EjEl^MLTItjHTrof8#, F=1B^^fe-5t®5„ r+Lic-ov^rxy —TVX»y->gy-e^WV+cV\ , □ Mm T*'ei/t'a-it AP203 '(H-mmctev m,

d $BtftcidfeBmn-fextf#ci$+L;$rj!,51:(^feglFfi2imEI+'klfiD)7^—K>

+i mm ® /.i m 3 » m+ 4- □ A05$BSSItli7DJ58$+:LrttgSjf-Ci=—X^3SV'=—X'SrgjfeLT ISO (0#|C i" $L+‘i+9 +m i' +) mumv m,,

2. ##m#

*iB:

148 G

AJ p ffi SA X AJ $X 4K # life K» 4^ A\ AJ X tO g J|f , -R -) a -R # " f-J »A u # 1-3 -> A 15AJ I 'R G 'R to AO *V e i£ /- P •M X sHi -tK G 4o g S! X S y tV l iim >X p #K t* S y V *r\ §1 a e tTA # aR -R #i!> y X 1 y y -> x AJ AJ X ^ jX f AJ u x -R "k AJ AJ Jj g 9 gg o _> % te K K) CO _> mE ,r\ -&j G % aiT# V 1* 1^ 'k NO 4 S W aj P ■p x> X Jj H A X p w AJ I M ^ 'V =\ AJ y (M •an K> U- 3E x> AJ y y G X % -R i IP p x -R tO X >CN eK X %y s& ±$ IP AJ £ ,J>5 °/- A S "R *s> ti 'R H S’ N G y) i ■£ im: S II 'R ss 5 X ' i* ^ t"6 >R m I -I -A 'H T # X -> It t@K te § n si ON 2 23 4y y G # tt J \Z p^ x> o ?S 4^ s ,« X> /" tf ^R X y # y rH -> m ^ \ x> 3 10# y |y 4(0 X i|n ^ I hQ Sr-? % K to itm tFI «* k pin -R X ti 4? #P * m" y g >lO x 4- It 4^ *0 <\ y +0 _> m= Af\ X AJ ^ G !|s "R 1$ ^ B5 X AJ ^,i\ Inn. X # ti AJ IK IK s I a e 'R $S HI ti_. y y tA x gg y i? X e#ep p tO X G V f5l » K P %j G !E U e w _ |« 1 Ik sit ^ X ifc 5. % *5 1 *r\ 40 X ip # 'X G # aCA "H AJ

£ 'R 5d G aA % " ^r(D A(-^>v ^TB^LTV

$EB: • jECALs 6<7)^#%#T$)5o mzm^Ace

. AiE*/u

• emf, P.17 -#±c, m#(D^m(D-c^$)(f-cv^5o ### CAD

^V\

@^ovnr<52\ v " -A"CI±#m(c^6L, -<^5(7)-eil^v V;\ ' |R|##(D P73 4^ CAD —-e^(7)##r CAD (c^cT$:Lv\

!&W£

• r %%(lv ^V 'ZfeJ$3Vjjffi&>Z>] h\ ^W^TIttV \ • A{$(D#%^V ^9lx/<;l/-C(l^V ^(D^\

AiE:

• CAD ffiSW • j:k#% £ A(cB:;+LTt)V^^\ il^^S^SrESL^ItiUto

• 3vyK0lSt^0^^v\ n-^yK(Z)^v>At)Ai-cl:oTiiS5o #@(c

' ^LT<^V\ ^#tmEI<7)Aa:y^(c#^5j:9^ ^E-f/l%(C^o T#TV ^ V \

150 #1%: • AP203 • AP203 t IHI m&m&kmLX^fCo • Action directive (7)^%.^il^nS^7^v '(Dfr0 . IHI AP203 (C##VX

-kit:

• Action directive

" A '5^y H7-f #%6,

(1,

5d'a ^c^-e$)5^o 3^7ceT/k(7)#^fx t.fc $t ttUto iX&l 'Z.k1)^\ X . STEP ^v^m#(c##LT^5^x mm##^m%.TL$9^v^A(cMgm^#c-cv^o - *^-e#5(D-e(±^v v,x • MMtLXb, ^-yi/^T]Jy?(DMMX'fa^M£x.&vx

(0%^ ^#tp(DT(l^V ^x kM:

• '=e%vHh(7)i@& • fe^OorA-CMKLTV^oTXs ## • ^§fr • 9^IEi5^n —^"70^—K:5r^-y^ /K^M'CV ''•So

T<6(D'e(^V • mi%

"T:1telX^

151 ti Q # *y 4^ G W 'R hO a y Ph ttV CX f 4" Q t-0 -R 'IS % AJ y U >J hQ ty # y -m sQ y K- >lO 61 _> Xt E y "R aS @ # y # AJ & 11 u_ u s aR # K> y AJ 4" 4A H y t§V "< r 44 hO hQ AJ ft ^fU K> y u y y S ^ 44 # P A u iW aR> >j y o A i s a hQ V »rx a CX "R t 1R *P is II 152 X y AJ m AfN V ^ 4? "R m % # |l A& ^ y bQ m U AfX E y .U s % m NO hO {« -> fR'iS Sfc G p > J Si -> £; A AJ $ AJ^ ^y co G t 4y 1 $ s y #L ilit a. j- AJ y -x IS y y o S$ 44 5 % J y) ^ 4- ■&) -AJ Xj y i $ K ^ % y a CX 40 IS # x/ ^ is fej Q |r JL. "R fc 'R u u u I S #Ph y Q 4A AJ "T?_Q fS 4) £ K yQ # # *r\ 44 y tin a 2 y AJ *> 0 W u K? 44 AJ x V AJ z |E -> 44 # X 0 y H U iia as4 m t1 Bfe y if Je5 y I % iH 9 # 4$ 'X "R y Eti IV A vj ^ m U Z\ i 2m I *i e t Q y K *v j* s m II X m K5 B NO IS ft «t -&J V 'A G # u oj K J # e p< g si I® y CO G H N -R II 0 AJ I m ft y e H] K> -K it H4S G # \S 1 life # Bti we E ^ £ 5fe ife 0 life m e CO B; £ m£ iS *% is E ^ M E# ^ iife m »0 SB AJ m g B IT |oH M B -K # K -K • 4M • ■K • # K * ;r—7&W^LJ&V Z V $0:

* Eim^-^(7) CAD ^6v^C&^6o gim(7)#l±

" yVyK-efM^cL^T/Ml, &o\z.^^xYE^tz.

#A: * 4^ STEP -y '%V \ %yy%7!;y^^T —y(D^6#^v ^ $0:

* ^0% CAD (D#%t^:b:h,TV'6#\ ttl*): * \ HTML

XM:

* Mci$tf}lz.^^bl)^'ThtU'£^'tetl'o^b&, XZj-Ts f

5o " fiJgfrLTVXfff j:^(7)-e(lo ft A:

153 XM: . ^#+yot^-e$)5o ^Ay^#%T#^V ^#%.TV ^60 #A:

Xm: * o yctfrf l$)^TTC^v Vc55o

##/urv X(7)r \&\

Xit:

&lV^

m%$)5o j:9^v ^^L"C#5o * ztT/l'£3t^i-Z)t\s'ymWafcfr>Z)—Xs AP203 7t 4;%^'

* ^ef/i/&35^Uc6, AP203 (DIx^/i/T(±^:i9^V^&,59o

* AP203 2)^T/W±^(Dj;5(c#^fL5(D/0\ WA: " B:#+##T#t>^5

* &T^m CALS T(D#m^V^-(7)^(:r^^^^j^r##:^-^j^-CAP203(DB:#i-^ M&r^(D Z9(C%I9 AfLTV V ^^»%LTV '60 XM:

WA:

154 • AP203 Xfe rchange requestj fiScnpCOA—^3^(7)^ -'ErZLTr'tiKAn.y

XM: " iso (7mm#^(D;%dsz(D#-#7) m ^9^uyc<^v \ mmu-cv

tttbiLhvttil '

#P*P

• v^i\ #iiti'd:v ^iiTv ^o

" PWI g (%a#LTV'&,

5o XM- " 30#MC6v^^'g^^6^59o #F*9:

V^"C^V^^#X.6o • '? g ftj-e^-—X^^WJ^HtUbTV VcTcV 't7tn—t6o • ^l+^MSrotofeTV'o^x —#*r7£/i'3£giz1fg%\/'tzkB5o Bf+EH

• ^JE^n-Px, flJE##^^#^L^V^VX%V^P^W^^(7)-r, #^T##fbo7c 66(c, SWJSf^fLfcV>^HV&V^<7)-mo #p*g: * T^hy^h^-e#5^(CL7c^j:V^-e, ^X^7^—x6LT##^c^&f'^7'7^^L'T %mLTt)69C6^j:v^m9^o

## <-YLTV^yD-Px^x/P(^J%.(f Part49 ^^)(DA

155 .151

" AP203, AP214 " 4 AP214 <£>Tchange_requestoo ItM

156 tMr7-t7'>3y7‘ i.wmnm 10^2 20 (A) mm 13 : 30-19:00 1002 3 0 (±) mm 09:00-12:00 2.WD# (9%)

/J\# (OV'VX $0 (h3^), fr# (JECALS)

3 . ## • ## 1 : ISO 14649 Partll draft Version 12.0 for DIS • MU 2 : 4l7’D-bX0r- ($) • ##3 : rS-CAMj 0^ -##4: m± (K) •## 5 : Ltz CAD/CAM ©EA (mfWMVWA) - ##6 : A05#%## A## (1999/10/6) • ## 7 : Model of Machining Process based on Form-shaping Function - ##8 : # - ##9 : [#M## 1 ] '##10 : t7i^p nJ m) • ##i i :

(1) mw CNC (Sto : ## 1) • 6 0^MA& • #f PC' CNC ^feature iC§| 0 Topological _region -o fzo • CNC 5^-^ Region (± 3 #7cAd%m &o ' manufacturing_feature & ^ ^ lx — i/ a > b I T © Mashining_operation b Mashining_feature b LX CD Two5D_manufacturing_feature,Ttansition_featuer $ tz (3; Regin $rf^o0 • Two 5 D_manufacturing_feature ©Tb machining_feature tiX O 0 • CNCf-^;tf>t*0:AP 2 2 4 3:0 feature • Planar_face (3: Boss Itfvfotl^o (Ad%&A©#A^6 AP224 T?(3:±@ b Boss tfemt&fiK ^lEb < ^Oo) • Generic_feature 4b©^bTM#^ftTO^o (AP224 XltW^t % 60(±#%L%C'o)

157 • Step CD Boss C Boss & C a(±& W • General_outside_profile : C&#To r;>

• Machining_feature Property_parameter t LT surface_roughness (_side/_bottom) &Mi£t LTft-Oo • CNC D j (C0^#T 3 o) • Machining_feature ^>o

(^#) ftlltl^o • Swept_profile (i AP224 h|5jC#XT\ 60 • AP224 iZ^2 LT Loop_slot_end_type t)s$>&0 • Round_hole 6D^#(± AP224 CNC AP224 (£d)/5U; AP214 -miS-oTl^o) • CNC 7"^7>T1d:liM5id: MKS m, ittHHESU m D Mtt/sec T'/£H S I • Chamfer ttfim£*^#XT^S£;hT^T r^gj(7)^|3^j

• Executable (± CNC -t'—^^E^Vl/CDSr UV'#X.^T'$) D CL tl^)s main 7U^7AT^ ;£p "T V>-&Executable T?(4: Work_plan &-^ffT'Std-^ A "5 CL & "oTt^o • NC_function tiSF LAVS'—i/ 3 Executable ®TC^#$ftTC»'5o • Machining_operation 0## d" C C^# ^ C» 6 o • 1 i©I^t 1 #0 feature &{p%> ^ • Two5D_operation teLfijfr 6 Is] CztillTx$)£0 • Two5D_operation T (i Plane,Side,Bottom Tfl* 9 Il^lb %>%>*&> ^!i ^ Cae 2H £ tlT V '» •2) o • Its_stategy ULXMCDifr^ A£||3|lf 2>o • plunge tttgff-f 2>^&^£tlTM2>o • (II©) WjgCDmiX* feature CAc ^ o (Reaming/Boring N Center_driling/Driling • Freeform_startegy, Uv_strategy> plane_cc_starategy (^jlElSlr—- P ?) A/ —

• Three_axes : Three_axes_tilted_tool (M#|-#ADIL : 7^ > Five_axes_var_tilt_yaw ( 5 1 2 ) • Five_axes_const_tilt_yaw ( 5 #AO%#Ir 2 Three_axes_tilted_tool bs

158 • Machining_feature (X#©j^#^ ?) T:#XX\

feature X^&E'JX

• Freeform_stategy X 2.5 U — '^3>CD^N X#

• Toolpath_speed & B_spline_curve T^ilsf £ $:#)■?> s y • CAM 0'>Xt AT'$tf)Tl>>3JI'f££: Toolpathjist X^Et' tUi G 3 — hh|e)b£&3 (A.14©ftS)o • Trajectory \Z X 9 £'n3 (EStf© feature miM©/£li

- (^a&b)

— Machining feature liXM C## ^ 6 ch 3 Ca ElEi!"^ § X' fe -S o - Workingstep 0||^llt(MM bT^E£ft£^MM*i1~ ^L^X&6)o - AAM ^ £> featureN XMx operation (DM# & ^ tlT Ck&ZP Discussion y X—vGX$ %>o - AP224/CNC 9 —#X9)UD featuure ©^E© b^/:©^f ^&##bX, A0X$rf £_hX

- hOX%©^E^b^h^^mahDX^^#mb^ feature © AP224 &#&6XRMm b ©^&^o - #6^66©##^6 AP224 &MWb/zS^r© feature ©^E&tXHf o

- A0X©^&6© (feature ©^E^6©) V V—7©t§S (S) ##x6ft^)o (2) (#m^ : ##8) • ^##j###fb©#A2P 6 ©^^§tEStX§8 bts Model of Machining Process Based on Form-shaping Function • 3 0^77^ (2) ^ (3) 5% : • x#B^©m^%^E(d: p3-P l OX%L¥mzm%fcfit>nzuz>0

159 • y—)\//^7,'tt^$L't& machining process • umifiWJ <£££■&*) Macro Tool vb^i§£ft3 (P11-P13)

• Working Tool : X#©fF##$lx • Working Tool ©FtlS^:#o^f Ltc (#^##^) (j:, ->tonSs ^t°> fvk 7"-7>w%£'(D&oiz#s0 • Workingstep — >WorkingTOOL > Working feature

• x> f ^juDMmmi&w (^ujft) • CNC fr^-^XfrVFb Workingstep • Feature &|||&CDXM1$£(7) feature iZ.frffl'i'b %>o —S/ 3 (feature) &tf9fc&l\>) • XD y F/tfZy F£^o© Feature (^^©jlJOX&'t'fFtl&l^Oo - #&©## il$lliWfSoTU£$kil;£:M1~3Sj (;&S#JX&oT

(^b&6) (b©

• CAD/CAM • AOX##, *l©FWPtjllUl^0^7'>^>^7^ftt^^ • ADX^^%x.^)b, feature • STEP3^jl-x ^ M|]X&©gilravb sX £ 5 Atiy>& V b® 7 U*ifi') -Ft'*

• P9B(d:JlB^WT^/rV>o (3) ProcessDataModel ©#%% A/ : ^ItXDXAx—#Xt^!/©!^^ (S) : ##2) • Process_plan N Machining_process © # X. 7^ © #%% • Volumetric/Non_volumetric (C Feature ^^(j"X#x6#(d:ADX^^6#(tK^&6o • Non_volumetric < ©$&#X.6tb'#^$)'&o

160 • Volmetric_feature & Non_volumetric_featuer • Non_Volumetricii#HT#^ET'^^^\ tzti • feature • feature ©A^liti: AP224 ##U:^PX^^#g

4) S-CAM 0mm 0K*£A, : W*43> ##4) • CNC 7s— S^AftTl^o

5. X©ffe

6. SS (10^2 30) (1) : m#5) • ccad /cam • E-n-ADXtiE^—rs-CAMj (##3, WI44) (MSTC ©m##k feature ^-X© CAM X&V ^SRfc/b5&Uo

(2) +L#9 —^i/3 '^y©E@©^aAo : %#1 0, ##1 1) (DfflE©/M ^-XX-: — jjpxx^ — XX — : ->;bPX:7^—XX /jpx^ff1: x /v SCAM © Workingstep data table tZfg^iP6o) WorkingStep : = (jbPXf^S 0^PX7^-f"V©^ • Volmetric • Non_Volmetric • Slot • Pocket • Planer_face • Step OAPX • ttmmi • %##at© AAM 010/26 ©AAs V >X^(Dmm^mbX x^ ( = WorkingSTEP(d:X^©#fi)

161 Machining feature Sub-MF

A1 X$ A1 A2 X^A2

B ^ B1 X&Bl B2 X&B2 ;v tit? 1) AP224T*ii- • 2) CNC fr—7 X'rVl/X (;£••• • 3) -

® x###t ® &EMf 3 (CNC X - ^ t X ;i/ a ^ % (± f 7! $> 6 o ) An%#a<

© J; D*DX7°D-t?7t«:b3 (WorkingSTEP ® mashining_feature U j.—A-S o (##ZP

(9) AQX 7 >r—^-VltA — —7 t3^|$|S|Elh €> ^ o (boss ® AOX^^^f a Boss (±$>1^14:%^ ?

2) MMUT^SiSftSo

— : #QX feature : 1) xa©ZW:^bt^it^^tfe^o 2) ( 3) U%lX 4) 5) A — Volume

162 AP224 © local £St;6T-g& AP224: inxxgi*S®fcto©A*(*|g CNC : FSF : xrn®m$A^mAql#Wm, Volume .....fflffi

@E*±©--X (S#tt : CAMffl*^V-'>3>VXA sIISXS-E)S) -Mtlf F 3^#gx#0gKm^RXI±4 0 0-5 0 0 A0f###©kC5#5 OAg

- RmaiiFtM© w w«*i® s h 8@©#E6s@«x % a„ (# mxw&, «twt* 2 o h @$©#s) - saitfiawsct-lir-f SSmCttT-ST U

- a5n*4Bti*©Ex* sRrl6

- RP &BR#©#&#ul#

- ABR#©#:mYb- > A1: j; #A% 1 v

=J-iLt

163 TC 2 9, TC1 8 4/SC1/SC4

1999 ^ 12 ft 2 0 (7JO 17:00-19:00 : JIPDEC JECALS gmm

ItiSS (##!#) : mm A\li 5A/S ms ##am ¥m T#( 37'Vi>i/^7 ])>t? am #% IHI #Q Yrfa miE IE# ### H-11 & ffr®7G : JIPDEC JECALS

K^Sto : $£§-A05-09-02 N830 Proposal of Integrated AAM for Mechanical Design Manufacturing(2) E&#-A05-09-03 N831 Proposal of Machining Process Model !$S-A05-09-04 ISO/TCl84/SC4&Wgs New Orleans #### ^#-A05-09-05 Summary AP214/AP224/IS014649/CNC Meeting CALS/STEP EXPRESS-G diagram of the reference hierarchy SC4 Participating Members

1 . § fab s aig^^To/do

(^;S) ♦ Express kL SC4 < fife© TC ♦ STEP \£Z

♦ Z(Dtztb, 2000 ^ 2 E 8 B. 9 SC4

164 ^|j-n^SS©*0 '9l2)if4-'i ♦ Wl1 MW 1 ^(MW^rtSa.OSM-i'ySW* TOS '1%^ °9MX<^g:? ♦ Milfl® 9W3 X94-witogsiwtixiisoriK 'q^i##$ix0riga#@iiBi ♦ °9Mai $##:)##« ('OS '^MSic-^DAVf 'i¥0WIOX • (11(2)

‘"W$ff*tfc:? 9 32n?«i®¥#<2>„£ A E <- 4- £ q 1 )- E 1- °4 2?\n*$l?SBII©^ I0S 3 K)S • °9 Y*:? q < 4*0Y^xi$H wWiSSir^i/f-^ONO 34M w ^axq-nx: ♦ o 9 <$a-'te®are-T;)

0)S#4H < *-*< n 0o ^<24I->-^* °Xl&2HC.-4i01('-l'.4< X -4* cf ♦ («#) °'.n#a^'$a##9if*a^#$#m- 'a-4s$=i^-K6i ♦ °dA1W^09',1Xti)4s

'=6,® '(B# 'xu? 'EM 1151 'Haros 'aicxt y±4J-/\(zy&cyG ♦ $%#aic.:)2g %0 ros ':)l'*$4-67-4i dV ♦ (11(2) "9^^4) WmwMBfl?03r M#^H#*0#B 'S?9V1 aif$$VEBW3.1^$Q:i(.-4a94l*$BX0W 'sf??i?Sx5: 9i9'.iHxnm» °9-iac.^Hlx94-EBl$Era94-xn¥a4j0X4^a/; on '4ia'ic.rH(.-4i9q:MxiSxni( 'HXiWrti-a 14^41 0 4-^4.^-r-A ♦ °9 >a=-q:$,si)'4-^ 'Xit2T0-ua- if9rz:.4< fi 4-44^it-a ♦

(*$) 0Q«S'3}94® W$X-t£ —4<>0< e4-—/i^441-4x1144X3-0.4 '41210^05- ♦ °9',1X1 l(*ig$li?94-$®f$X—tx-44 >04-.-493M::rei* 'xD? '944eM0B ,®»B 'fiamm^imma'i(4:)#9 x< n4-^x0ros * °9<$am0W!2 94-M@ '^a0'iw$ac-%m5?i(^x 'ag^o^a-ifi ♦ °91X1 l%g$1294-##$0'$0arwXH 6301 °SMX1?$!fiX4 PWd~ IiJBd4HlKT*.-l '0l$94#$$iE#0ilc-2Hoo l3'Iwro'4ia'1c;)GSOl ♦ o-\ («*) ♦ SCI CAD/CAM Cait xX7° V

(5JH)

(%$)

SCI ^4bA#^o

(*»)

♦ SCI aSC4 £0) JWG ^^oCa^&Nj;,SCl/WG7(Dftma^OM:#hLT(±.SCl £ LX(D%WUUZ< M0 (5JII) ♦ &T#-4:\ @i^0$a#Ay^@gj^^±#o

(*$F)

GSD) ♦ TC29/WG34 £ LX(DmUX&tlW^tii^£&£>n%o

(*»)

(3tLlli) ♦ TC29CD WG34(^m^T(i^-V^4'X^+^2:(±#t^^o ♦ TC29 h LTti, ffl&&mtb'bifi*>£\/'5Z£’e&tl ISfflitl Lfzl^o

(*») ♦ @f#(ox^-*i;ltlt A- Yt>x.T£-m\^V7 W&ik\z-&\i\x5-

(3tLlXl) ♦ TC29 LTs — £bttl^o

166 3.

<0*&ISO fii#> JPN ISO TC184 SC4 WG3 T19 Kishinami Gerry Radac Sugimura WG8 Kimura J.J. Michel WG10 B. Wentzel WG12 G. Paul

TC184 SCI WG7 Pr. One F. Grantschnig Sakamoto

TC29 WG34 Pr. Maruyama Inokuchi

♦ TC29WG34 ©3 > If ■* — £ d >Lo

♦ JNC tZftUT, 1201300^^16^1-^0

Title : Joint Work Shop in Tokyo Time : 8, 9 Feb. 2000 Place : at Time 24 JECALS Secretary : JSTEP

Proposal : mW# : JSTEP

jSS# : TC184/SC4/WG3 Convener sw : mscope (Dmumm E*CDt£#E : 12/02 Joint Mtg ilT^nS Lfco

UJL±

167 S 2 m ^ItA? —^'>3 7 7° BBe : 2 B 11 1 8 m

##: 1. 7;i/7lt>>#S CEA) 2. au@#: mm##, mA. #. mA. tym

I —A AM

S C 4 ##m

I-AAM <7) S C

(SCI, SC41±§##^L (:) Zzx\ I^r-^^i/^itiilfco CNC%^-f t%VH±S C l-C^ h S T E P(a4###@W:AP 2 1 3 tffoZfiK D £7 izttmtz c t o Feature Model C& ^o Featuer CDillA ( 2 $@) CAM S/X’T"A h 1/T6DAA 2z Boss (D SideSurface (i BaseSurFace Manufacturing Feature b LTU: SideSurface Feature ^

168 (Boss ftL #4^## (FormFeatue) (3. g) B4K©^( 6 ©^#, Aox^^ ^ mtux ^ie o An%#&&(a#b L5&60 Feature ^#B#;^ADX^^6### (4IM)

I'o MachiningFeatue (4:##ADX#^ M AP224 t CNC X%x.;3©jtl^ttK^fc©£\ Ef9X&5o <£ f> ^®X^)o CAM T'#X.T V>-& ManufacturingFeatuer MQX^^BdxElf* %>tz$)(D (P4) >t4^ £: 0^ £> /^ £ b T if © ct -9 & X ^ X if © cfc O & jjQX f %> iP t% ManufacturingFeature ManufacturingFeature i:^©##^ if © <£ O -6 Z> (Dt)% 4 ^—f/©!# BJ3o MnufauingFeature (4: if© cfc 9 6 o

ufcti-5 i$t>-& u -^t- AP224 &&%!&/< g\ I-AAM X if © 4; d & §" T: APX©£:tf)© ManufacturingFeature ? AP224 X(4:&kl#>jg 9 fcl''©#‘ £ ^|#©jmx^^6 if'©4;o^^-^xf AP224 (4b'©J:9l:^oTi^^ m#L-c AP224 ©a&©mim##-D#D SC4 iZlt Machining ©Wf*Hb^&^4: 5 ftUifitZo (±31 ©A£f) sc4(±if©$Ba&^^-hf^^^mmLT sc4 ©%m^#%%. &#tp©x&N^ aoxm &#&###© AP224 mt^mwo AP224 (4: if © 4; ? tzttiWttit o ( 5#di©$H4: 6#tB© ProcessPlanData £) 6 tfcB©7°D XA 7°^ >©«fc a Feature ©^Ct) 6$B©4; ^j:7n-bX77 >&<&Wo & & ^(4:#i x ManufacturingFeature (iiQXX c^S^Sutilo Feature #&fttd:15xMT iPX^D >tf\LT htl%> o X#featuer £3£ i:3o GeneralOutsideFace i: PlanerFace |± j)PX ©X^C 4: ^O Mo o

169 (EXPRESS-G) SriESt" 'b ^Hl©ADX^^p manufacturing feature (iCCT)

Non-Volmetric 0S*P(ijj[lX ProcessPlan 7 Feature &# < ;toxMm±$;£fi,T;bnxf-3£;WD^ri\ 1 o-oo^TiiiPXA^MTjitt* 5 f 02 2 3CDBK#m^oT^6o Process Plan ^ SC4 %tli£3cM.fik

3.

CNC : mmir-f XTVl/

Machining? e ature WokingStep

AP224

Mapping

170 \L\

(WWiFM$31i6 'ViVOS) 9%^##^09'*'M3&^0*%#g0MVO'-avO @¥ • Wi0#B '£!S$(2H G^anjC.% ■ Summary AP214/AP224/IS014649/CNC Meeting 1999-11-10 — 10:30 - 12:00

ATTENDEES: NAME ORGANIZATION EMAIL

Len Slovensky Logicon/Team SCRA [email protected] Martin Hardwick STEP Tools, Inc. Yoshiaki Ishikawa IHI King Yee Boeing [email protected] Torbjorn Holm EuroSTEP torbjorn [email protected] Hirokazu Araya NEDO Japan [email protected] Mattias Johansson KTH [email protected] Meinolf Groepper VDMA/Informatik Jean-Jacques Michel CETIM [email protected] Takeshi Kishinami Hokkaido Univ. [email protected] Bruno Schilli ABB Corporate Research [email protected] William B. Gruttke Logicon/Team SCRA [email protected] Soon-Huang Han KAIST [email protected] Bernd Wenzel EuroSTEP John Zimmerman Allied Signal [email protected] Helium Mak Nat’l Res Council-Canada [email protected] Masaharu Tsuchiya Mitsubishi Res Inst [email protected] Seishiro Takeuchi JSTEP [email protected] Dick Wandmacher SC4 Chair Tony Frey UK Ministry of Defence

SUMMARY:

Bill Gruttke was designated to be the note-taker.

Martin Hardwick gave the status for ISO 14649 - Shop Floor NC Controllers (TC184/SC4/WG7). • Slides available on request • Univ of Aachen = Project lead for development of the Part 11 ARM • ISO 14649 is replacing ISO 6983 • Part 11 - Many CD ballot comment changes required • U S. Position that Part 11 should be resubmitted for a second CD ballot • Committee voted 5-4 that Part 11 should be submitted for DIS ballot • Needs to be integrated/harmonized with STEP 10303 • Germany, Japan, Switzerland, and the U.S. are the strongest participants

Len Slovensky gave an AP224 Summary (and AP214/AP224 Harmonization) • Slides available on request • AP214 and AP224 Teams have agreed upon Feature and Tolerance harmonization • Pointed out differences between AP214 and AP224 • Noted that AP219 (Dimensional Inspection) is moving toward feature harmonization with AP214& AP224 • Noted that AP213 (NC Process Plans for Machined Parts) was being revived • Discussed new additions for the second edition of AP224 (Assemblies & 5-axis features)

172 Takeshi Kishinami presented a Proposed AAM for Mechanical Design and Manufacturing • Slides available on request • Hardcopies of proposal were handed out • Scope (In and Out) discussed • Discussion of relationship of AP213, AP214, AP219, AP224, IS014649, and the AAM followed • Noted that AP214 appeared to handle most of what was in the model, but not NC code. • Action: (Takeshi Kishinami) - Research what TC29 WG34 ISO 13399 (Cutting and Turning Tools) is doing and its relation to this activity • Possibly some relation to MANDATE and the use of PUB • Action: (Takeshi Kishinami) - needs to research process planning in AP213 and AP214. Also research PLIB’s relationship to the AAM

Question: What next? • Translate to Express • Define interface between Operational Processes and Cutting Tools • It was noted that AP214 Process Plans could be complementary • Question - Where would we use this AP?

A follow-up meeting was proposed before the Melbourne Meeting to discuss where standards fit into the AAM and who is doing what.

Suggested locations for this meeting: • Tokyo, Singapore, Hawaii, Melbourne • Most felt that it should be held “on the way ” or “at/before” the ISO Meetings • The meeting should be for two days • Emails to determine meeting place and dates.

173 1. (1) I PAi>?jfflfe£7D^i^ h r$tt#gl(4fiKiyXIr A ©PBfg j CULT, gtott#©

(2) 3=m7Dtxy%^A©#$-(b@M6l:MU-C, 4BS:l+^B©jkli • SS6fio 0 (3) STEP ©asBEg+fl'Bt?©HEc Sto-T 3 5 „

2. rSSPtm 2. l *>n — za mm (Jtigli*^) ## Em (3myy':7Vyr) #»$ e* (r^wtirw (#,>vy->y X) ®s its (g±ex) oBB (B*7-f-t"-iA) 'J'S #Bg (377) Sffl {A-T KWX^TA) ©b ew wm (m%) m# «v (5ins#eex) (S±-t?n -yXX) =HI (3 WV7 h) Sffl m (NECV7 hCxy mm g (@±m*!M#7fAi7|/":7V77") «JE (JECALS) mfr $E (JECALS) Wrt (JECALS) #5fe (JECALS)

2. 2 IS.

A(H 10) M11^4^2 7 0(^) 10:30-13:30 M 24 h"Jl 10F JECALS A^ A(#2m]) 582 8 8 (A) 10:30-13:30 Mk 24 t"Jl/ 10F 7° l/t* >T-y3>)H 1 A(#3 0) 6 8 2 2 8 (tK) 14:00-17:00 *Hk 24 t"Jl 10F JECALS AES

10 7 8 2 7 0(A) 14:00-17:00 HU 24 t"Jl/ 10F JECALS %#AI 20 9fl 1 7 B(S) 14:00-17:00 Nk 24 HI 10F JECALS Am 30 1 082 6 B(*) 10:30-14:30 m± 40 1 28 2 Q(*) 10:30-14:30 m± 50 ¥$1 2^ 18 7 B06) 10:30-15:00 m± 60 28 9 B(*) 10:30-14:30 m± 70 38 2 B(*) 10:30-14:30 m±

174 2. 3 mmmm (1) y 7 5" A (a) S58<±#©EM 6f±#&#WLX:. (b) n%fisym©=t>isgfffl *$*6T-pg%fiK*ei©5@A» sfft)n1 *RBffesnffiLyco (c) gg%fi£$t;©*Effe6 *$*6©y yy 1:—T-$.5*©3tttcgEffffl$*‘BV' VTHttL&o • ?77y 7 7 7D?7>y(S •S±*xfi8 • 3 x'-ygS

(2) ^e^D-fcxyx^AmtgifHbSJlS; (AO 5$*6) ^©ESffiiS (a) Integrated AAM (I—AAM) ^xffliS# • VS! l«fil;JECALST-{«$tlfcI-AAM (g^yD-feXSA) tttbTA $en:@EI+©ActivityS$ 6CB«Mb (b) New Process Data Model©## • New Process Data Model©ARMSffgKLTtE#Lfco Cftld\ llPKT:tlgJJ|ffl#5S

• New Process Data Mode I © iib iEti CUB t" S C/4 7 ytTflyv k. ITSSLfc,

(3) s t e p ©tm#m-a-B-c©#mcM*f a a«®e?s® [SESEfBS] (a) STEPa^sa«e yiyvdttvySElcBBt-BEIS^ 1SS tlfco (b) CNCZ-^7111-^8) [#*D t< >75—*>f>©fi*ti$sts#(] (a) db#m±$ mm## • & D * • $B-tiOXiicJ:-6bnxg^7< *-XAhbDX7-f —5=--f (b) 3 V7 'J'SS* • 3v-7(r jb‘id"-6 CADZC AMK-nfflBltito^

175 (c) NE C7 7 b^x7 vtoS* • NECtdoW^CAM©®!)*!# (d) ^77-f y^yny^y #### • 8I SO 1 4 6 4 9Co©T (e) y-y V->7fAX (H*I BM SBB8fl©«A) • Product Process Resource (PPR) CoViT (f) B±SX ®#8* • y-f 71—XISIt^©fiK®'> 5 j- P—-> a Pliffl WJ • V IJ 7 h*x@iSg+ic 7 y a ©nig t

• STEP/WD 7 mBkMV —y5'C*0"3WI [f©#] jy."F©«|gA stl«Sh,fco •STEP AP224E. 2'sfflga •STEP AP224kIS014649 ©Manufacturing Feature© tt lx

176 3. 3. i (03-1 STEP AP 2 0 STEP A P 2 2 4^© Manufacturing Feature Z>0 ^mziz, mux &o

•Hole • Pocket •Slot •Boss

• PI a n a r_face •Step ■ General_outsi d e__profi 1 e

MMIZ, 2. -£(DlX\JL£t%o

3. 2 (1)

UTglfrlft^f£J$£ft3o f > F0 Geometric Software Solution cF tifz V 7 b [APR : Automatic Feature Recognition] &#BLT^ao 03-2ms-s&xwms -4izmto zWj^\Z\Z. £f\ Planar_face T&ZZ 03 - 2CD# iJT'&, • [Head 1 ] Planar face • [Head 2] Planar face • [Head_3] PI a n a r__face • [ S t e p_1 ] S t e p

177 • [Side_1] General__outside__profile ©& Feature tiu C©##£JtR'Tffjjjtt'% C kC%%o

t£U [Head_1] PI anar_f ace (KW 4 *Bt) fct, Boss

±E(D A z tf(2)©##& m ^ $ ft wt ;n Cli, KTi;^t-«#6Asfe5o (a) PM £iMljll-CRM5tt©i<7rxis 4 Will t.##© #^

(c) iJDi«SSM©ll«tf* (BK#miM#tc ©aSfMtFtflE

±IB©I*K (c)©imx#mi^©M«#$gl4, STEP AP 2 2 & Sip#®pstI8EH-& e x Etc ttm wfc&tim:- & a & i?x sun Ltz. c©im%#ai@©Mmm#©M&, Hs-scst.,

3. 3 ffffilSS ctoiyx^AmMlcovMTtt, *$*£©x >a "—tafe-6 • X"? 7 -f yXx"DX'X'yB$ • S±SX|®

[ffifflSffi] - *;>x^ a km®© c am ^xt A£<$m vfc@^-©ttet6ff do •MSSrott, WT©3Akf 6. (a) $SA H3-2 tr^tassa (b) S6BB 03-6 cmfgga (c) S5BC (014*16) • j'tt, CAD©##lcA^D##L^m [fflWS$] • WmM'fztz^tz 3ttk fc«T(;S-f«fi|B«©i6§S£f#feo (a) X^ACHLTtt, *'>XfiSiffllfe*^ 2{SS6$Vx„ (b) ®55BCMU-Cli. m®CAM->X^A&EfflLfcSAs*»biSV'0 <— ftlix oPSnB ©^1P2-, ^^5pPpn©m BTz.tA Feature PPL/^f^-dfc (4, m^X^Att,

178 AP 2 03BS _x_ STEP AP203

im 3 -1 ^ ^ ^ A %####

|H«le_ll]*2 (D)

|Slot_4] (D)

[H«l._l] (A)

(CvimtakonJwU «wi«

[Hol»_6J*2 (A) (H«l,_ffT2 (C) ! [Hole_6T2 (A)

(A)

[Hol,_ar2 (A)

|Tbp«WJm1« ti I [CHUllW TI [Poek*t_l] (A) pu.j] (AerB) tTh*wjL2T2 CP)

179 £8e £* j6*v B*b6flNti^ Cebufl flt>**t* Mfitttitwt Mete ^:

03-3 atJtm yiAFIl Cvolujtian f I E S T MODEL h 1| O* £* y«w flecygnue 6*t» i* I # f®" # 6> ha K r « «v“ *

* -xfFiWetChaiMte* * $ VduteetooFwtom

Hete- pee* r W - ' f«6w*6 wS*1 b "" FiiB C

12 3 — 4

180 181 ISO TC184/SC4 & SC4/WGs Lillehammer i. 0 m 1999 ^6^70 (B) -6 B 11 B (A)

m Lillehammer College, Lillehammer, Norway

3, ### ^J150^o :0©^==amwm&&T

4. A*i ‘M

WG3-T23-1 SC4/WG3/T23 : ATS318 Updates (KS-STEP) WG3-T23-2 AP226 Parts Library (CTC) WG3-T23-3 AP217 Updates WG3-T23-4 AP212 Usage Guide Updates(CTC) WG3-T23-5 AP215 Updates(Peter Lazo)

WG8-1 WG8 N198: WG8 Meeting Minutes, San Francisco, January 1999, lOp WG8-2 WG8 SD1 R8.0: WG8 Document Register, 99-01-24, 3p WG8-3 WG8 N200: ISO CD 15531-1: Industrial manufacturing management data exchange: general overview, J.J. Michel, 99-05-11, 25p WG8-4 WG8 N201: CD Ballot comments on 15531-1 resolution, 24p WG8-5 WG8 N196: ISO WD 15531-32: Manufacturing management data exchange: Resources usage management: Conceptual information model for resources usage management data, M. Westekemper, 99- 06-07, 36p WG8-6 Precise definition of product properties and their use in STEP APs, G.

182 Pierra, 99-01-22, 3p WG8-7 WG2 N387: Referencing PLIB Dictionaries and Catalogues from STEP APs, Overview, Status of Work & Example, Gunter Staub, 2p WG8-8 PSL Frequently Asked Questions, 4p WG8-9 PSL Concepts, 3p WG8-10 WGl convenor ’s recommendation to TC184 SC5 re standardization of Process-Specification Language (PSL), 99-06-02, 4p

WG10-1 Input for SSID:STEP/SC4 Industrial Data Framework ^Working Draft: V0.9A= ,Yoshiaki Ishikawa,

Para-1 WG12/N321: Integrated Application Resource: Parametrization and constraints for explicit product models, M.Pratt, 99-05, 64p Para-2 WGl2/N339:Key Issues of History-based Parametrics and Ideas to Relieve Them, A.Ohtaka, 99-05, 9p Para-3 WG12/N338: JNC Proposal for STEP Assembly Model of Products, N.Sugimura 99-06, 30p (Assembly- 1

WGl2-shape-l WG12 N3xx: ISO/CD 10303-42 Second Edition Ballot Comments Pertaining to the Mathematical_Representation_Schema, P.Kraushar, 99-05, lOp

Asembly-1 WG2/N338: JNC Proposal for STEP Assembly Model of Products, N. Sugimura, 99-06-05, 30p Assmebly-2 CD-ROM for AP 224 extension

183 ▼Joint WG3/WG10 Plenary

0 m : 1999 ^6 0 8 00k) 15:30-17:00 wo#: is mm

Jurian Fowller J; D Integration of Industrial Data for Exchange Access and Sharing

Current SC4 Problems: -Incompatible set of Standards -AP interoperability -Product centricity -Extension -File exchange vs Data contents Requirements: -provide an integrated plat form forSC4 -Support data integration and sharing -Integration of Different Data Models -Use of different data modeling language SC4 Data Architecture: -not the new STEP architecture -designed to enable the integration of data from STEP-AP, Plib, MANDATE -Key aspects of the architecture- new implementation methods -Application view What is an Integration model? -Ontological approach -Integration and external models mapping Time scales: -New Work Items for Q12000 -Committee Draft Q42000 -Technical Specification Q22001 Progress: -Requirements for EXPRESS identified

184 -Integration Model -Integration Method-draft

Em : EXIST(Expression of Information based on Set Theory)® tUS

: M. West Ufa EXIST izm LTti: EXPRESS DM

▼WG3/T19(Manufacturing Technology) Plenary #5#:

BBf : 1999/6/7 13:00-15:00

##Q# : Mormann, Neal Laurence, Lens Solvensky, EldL 16 15 #

1. Agenda ®fiWs>f> 2. AP214 Update DIS ballot status by Mormann mm: 99/6/10-11/10 DIS ballot Official ballot comments from National bodies directly to AP214 Project team. DIS vote only allows eg. ARM, Mapping table, AIM short-form 3. Proposal for NWI of AP224 Edition-2 Scope: manufacturing of single part+manufacturing of asembly Pi# : San Francisco k |sj L 4. AP233 project status 5. Manufacturing System Representation(Sweden)## AP214 L\ manufacturing system k L/cPl#o Pl#6DL$ L

LL±

▼AP224-AP214 Harmonization

BR3 : 1999/6/8(^)08:00-12:00

#jjP# : Mormann(ProSTEP), Pascal(GARIA), Len Solvensky(PDES)($^

185 mm, e*

isira 1 ProSTEP t^^(Mormann) Si!lit"^£SlE©tES 1.Optional vs Required value 2. Different Attribute Values 3. Machining feature Supertype in AP224 4. Thread — Thread occurrence + thread in AP214 5. Pattern- pattern definition in AP214 6. Counter shank hole(AP224)-Counter hole with chanfer 7. Chanfer-mapping 8. type of- taper, path feature component, hole bottom condition, indirection 2. PDES tH$(LensSolvensky) 1. Harmonization between AP224 and AP214 -pattern feature -transition feature -underline component for feature 2. AP224: all attributes required, AP214: less attributes 3. AP224 path

186 definition)

Michael Entires ProSTEP GmbH Notes from WG3 T19 Meeting on AP214 — AP224 harmonization of features

June 8, 1999 in Llillehammer (status: noon)

Participants: Rogerio Barra PDES Michael Endres ProSTEP GmbH Manfred Fischer ProSTEP Bill Freeman SCRA Pascal Huau GOSET Helium Mak NRCC Jurgen Mohrmann debis Martin Philipp DiK Gerry Radack CTC Len Slovensky Emery Szmerescani DaimlerChrysler Masufumi Toho Mazda General: - The scope of the harmonization efforts is restricted to features in solid. Features in panel are speciality to AP214 - Issues detected by developing Recommended practices for Cax Implementor Forum by ProSTEP/PDES and by investigations for requirements on AP224.2 by Len Slovensky Issues/Agreements:: Issue Agreement

Profiles, paths, transition_features, replicate_feature => AP224.2:releasing constraints (upward compatible

AP224: mandatory attributes change for the issue optional vs. required attributes)

AP214: optional attributes, and differences in STRING values

Transistionfeature, replicatefeature => AP214 change rules at subtypes,

AP224 rules local use strings from AP224

AP214: rules at parent mapping through OR cases for face 1 and face 2 (on

string values)

Replicate_feature: => Open!

AP214 has new entity pattern feature

Compound_features:

AP214: Parent feature: Compound Feature in: solid

187 Issue Agreement

AP224: Parent feature: Machining feature

Thread: => AP214: no subtype threadoccurrence

AP214: additional attribute, external_thread_definition shape_aspect. name = „thread_occurence"

AP224: external_feature_definition change mapping thread_feature.thread_definition to

IDENTICAL MAPPING in included feature case

-parameters to threadoccurence at shapeaspect

corresponding to AP224 - appliedarea (subtype of

shape_aspect)

change externally_defined_thread to

externally_defined_feature_definition

(char_object.description = .thread"}

AP214: attribute english_or_metric in the ARM!

=> AP224.2: change mapping applied area to thread

to applied area to instanced feature

Hole: => AP214: proposal to use tapered hole instead of

AP214: hole with chamfer chamfer in AP214 in ARM, AIM accordingly

AP224: Countersunkhole and counterbore hole final decision on AP214 ARM change in New Orleans

recommendation for implementor forum: do not use

optional chamfer, use compound mechanism with two

holes: 1 round hole, 1 tapered-hole (compatible to

AP224, mapping identical to future mapping where

AP214 ARM will be changed)

AP214 DIS issue on flat_with_taper_bottom/removal of

top chamfer by Len Slovensky

Different attribute values, e g. „hole bottom occurence" - => AP214: use AP224 strings

,,bottom condition occurence"

Type of taper, path_feature_component_condition in => AP214: Leave as is (in description attribute)

description attribute:

(consistent between AP224 and AP214, but inconsistent

within AP214 because normally in name attributes)

List of features: =>

only 5 AP224 feauture types used by AP214

AP214 has 2 additional features: rib features, general feature

Issues against AP214 DIS will be submitted by US / AP224.2 Team

188 SEDS issues on AP224 will be submitted by GER / AP214 Team

&L±

TWG11 EXPRESS m BBt : 1999/6/8(^0 13:00-15:00

: Pill Spiby, Donard Sundarson, Julian Fawller,

1 . TC-2 In 1$'t %> Ballot comment 0comment- 1 : LIST m : LOCAL 1:LIST OF INTEGER:=[1,2,3]: END_LOCAL;

1[2]:=4 L=[l,4,2,3] MM96 : t"TGn INSERT operation ISM : f'TGn E-mail

B^^£>(7) comment-2 : Subtype Entity %

Super E ...... o X I I I T U V

SELECT

Sub F...... o Y

189 ±mizmt£o

2 . Quality of EXPRESS Models ©t^WFawller) • Quality b tiiqj jp ? • Quality ©^^©^J^&fRj;^ ? • Semantic Quality Usage, Use of Template • Qualificable metrics for semantic representation • Qualify of EXPRESS Model-next step- Action: 1. Identify sufficient of EXPRESS Tools(using SOLIS) 2. Wide range of available to Secretariat 3. Build up Style Guide based on training materials 4. EXPRESS Clinck l.QC report by Neal Laurence EXPRESS-E2 1 . Complex 2 . EXPRESSION Choice Capability 3 . Parametrics — b 4 . Function extension 5 . ANNEX-G ©STJE 6 . PSL b EXPRESS-E2 function 7°btl^o

3 . EXPRESS-E2 © Documents & N61 b LT 7 SOLIS U±

BB5 : 1999/6/9(*) 13:00-15:00

: Pill Spiby, Donard Sundarson, Devid Price,

1. Supertype constraint lZ~D WG10 © Modulazation of AP ©lE/^/tP 6 D.Price (iLVF© Supertype constraint ©^'^#&tE^L, ##LLIT©^#1:#LX:o

Supertype Constraint b L~C ONE OF, ANDOR, AND ©li;;£pIZ TOTAL %zb%mMo

190 CfflXa — EXPRESS-1 fflttilti: EXPRESS-1 Amendoment t LX NWI ttZo

2. B6© TC2 tCSB"#"%> Comment-2(Redeclared Attribute)tBI'f"5H.RL5:8l ZCDg^li6M:fflLXMfflLfckZ5, Pill Spiby a AP210

<£> oZzo «._t

191 ▼Assembly Model Workshop

: 1999 ^ 6 B 5 B (A) 9:00-12:00

/±}S# : Leu Slovensly, Mike Barter, Akihiko Ohtaka, Nobuhiro Sugimura

Asembly-l JNC Proposal for STEP Assembly Model of Products, N. Sugimura, 99-06-05, 30p Assmebly-2 CD-ROM for AP 224 extension

B^ft* CD tUS "£:$)£ Assembly Model 4o 7 V-' AP224 Extension o t.h1 & Cl, L/:.

(1) JNC Proposal CD#% - JNC proposal includes both assembly for static and assembly for kinametics - assembly feature (SUBTYPE of product definition) -> assembly feature (SUBTYPE of shape aspect) - Components are assembly, subassembly and parts

(2) AP 224 Extension - AP 224 includes assembly for static - Components are assembly, subassembly and parts

(3) Free discussion - JNC assembly model & Module t. O (Slovensky) Technical Report, 1 HO - 4*^1 'Mid L*t assembly Model .

- Part 105 Kinematics Slovensky, Batter 6 . - AP 224 Extension CD NWI JNC

(3)f Oftk - Part 105 Kinematics SEDS Issue CD resolution (Djt^fJ (V

192 (D AP224E2(Assembly Model)+JNC Assembly Model * 5#|# $ fix • AP224E2 CD Assembly Model CD*3 —IAAM CD^S^^

• JNC Assembly Model CD PSL CD^iJ ffl cFftTtB^o • AP224E2 • AP210 4b Assembly Model IS t.fe%o • EXPRESS-TC2 > Lillehammer DIS Ballot MBuTo • EXPRESS-E2 > Doc.N61 7 8^, SOLIS 1:##, 8 8 Workshop > CD Ballot H^ q CD^^ o D oc . N48 • EXPRESS-1 Amendoment(Supertype Constraint One of, Andor, And, Total MX) > $16 : AP Modularization (Dtzfo PDES inc.CD#MC Z D NWI Xt$.%>0 • EXPRESS, SDAI, Part21 £0 ® PSL(Process Specification Language)* 5 SC5,SC4,SC1 T'l&tM$ tlZ> C. b 0 • WG8TPSL CD#ml&^ • psl t express cDmm* 5#m^^^o @TC211(GIS)lC^OT EXPRESS-E2 CDSffl RTSE'fto 20 Bel XML/UML EXPRESS-1 EXPRESS-2

Interface ##O X O

Behaviour ##O X O X O O Meta SH 7 X O ® Java-SDAI, J-SDAI kmHi$ • K -i y tt Java-SDAI • J-SDAI (Part-26)ti;*H t? Sl% tf © m##*5 AP202 ISO/TC184/SC4 LlTlS^ © Functional Model b Product Property 0^lw* 5^$n^ tl%> o • Functional Model: Product LT^'0##b • Property: Product * 5[@# 4b O## © PLCS(Product Life Cycle Support)© AAM

193 ® Sweden £§^0 Manufacturing System Representation #111# 6 ###25 o tz o • AP214 Manufacturing System Representation £:#XT ####

- WG8 0fa#0##A@##&^d:3l:mx.^o mm EXPRESS X n Interface ##\ Behaviours SSb0££^#j£l^l?'X:IE5i<£iU C tt 6 0##b& tZZbT'EXPRESS Ctt#Z0 XML&^U #m^fw#PDML (xML0m^#^-^^mtt:#) PSL 0 SC4,SC5,SC1 0)% D &fr&18%'Vs SC4/WG8 D -S o 21 ©fttuDick Wandmacher (J PSL (i Assembly Model §£0"

HjS#Z) project b LT AP224, Sweden/Manufacturing System, WG8 #<5£o Cil^CD Project &###IAAM 0%Sl^ B*#e>t§$0f«dU£BM##3£'S#25 -&o

▼SC4

B # : 1999 #GU 11 B (A) 10:30-15:00 itiW# : SC4 Chair R.Wandmacher, SC4 Secretary Lisa Phillips P-member: Australia, Canada, France, Italy, Japan, China, Norway, Portugal, US, UK, Sweden, Korea, Germany ftiLMftm&cto' WG Convener fc b. It 40

( 1 ) SC4 San Francisco A#0$#0|TIE : Resolution 394 (i££!KcF tl&#o fz

194 STEP Release 2 C (3) SC4 Secretariat tfi NIST Jerry Smith 0 X(Dtz&>(£) Transition Plan Ballot processing 1999-09-01 Meeting coordination, announcements, minutes 1999-06-01 SEDS 1999-06-01 Email exploders 1999-10-01 SOLIS NO TRANSITION Project status information 1999-10-01 Development software/tools support and maintenance NO TRANSITION (4) U WAction Items0$M X 2*111^0 Action Items fzo Eto Action Item 9 o '#AP1: EXPRESS-short-Form b F >f VH #0 Resolution-F (J: QC+WG3+WG11 0 Action Item bt^-ofzo # A tX /)1/1C Short-form h Long-Form Long-Form t. £ ^0$»IE^>&iEo • Part-lx t. Part-2x 0 consistency SDAI-Directional-Schema, PLIB-Part20, EXPRESS-E2, EXPRESS-X 0 Meta-Model 0 Set ^X %> b F X y resolution-E T3* 31 LtzWGl 1 0 Action Item bt£ -o

• Change Management Committee (J, Part41, 42, 43, 44 0*H —‘US (Initial Release ItlbfciA,

(5) Resolution 0^^fTt»tlfco i^^)0ttWT0 • 10303-35: Abstract Test Methods for SDAI, 10303-301: Abstract Test Suite: Explicit Draughting A3 3r 4* > "L A/ X U is jl# F btfi-otzo • New Quality System LT (1, SC4 Quality Manual Standing Document h • Process Specification Language i)% PWI b VTMMc*tl?Zo • STEP 1CJ6 Product Structure -S cF ^ %fz&) 07 F^y 7°0ig@^lf>^n^oC:0^;F —7 ttete'ofzo V — Z'y 3 y 7# 9 8

SC4 Lillehammer AP tlSvbsM£ ftf\ &'DtztW*.Z>o *E>?P t>s LT AP224E2 0 NWI $ISvb3&o£:0<7r£\ *@X0 STEP

195 Ti'Z&Kte&ttZo Plant, Oil and Gas o fcrSlltt* < , M.WestfflJg S© EXPRESS Tii&V' Ontology C*^< EXIST MlgfflffiSk New STEP Structure As Plenary T$6S$tlfc8iK"E$>-5)o SB, EXPRESS San Francisco B eacii EXPRESS Turtorial &K h£N61 £ U ®*©N48tt®*i:Lfc, N61 tt7g*$-C(r SOLIS $ fc Modular Approach IZi&S& EXPRESS ©HIBtt5I@#As PDES, Ino.A 1 Supertype constraint(ONE OF,ANDOR,AND,TOTAL)©8FA& nJIBbt'S EXPRESSl- Amendment AOS ig Hi? I-SI® 4* IAAM © PEGS ^-©ilKf, AP224E2 ©!8%^©X 3 — 7©##E k, B#TSS"#"-5:P$© Machining feature, Assembly Model ©ffiB^tt&IBitC-f -So *fe7HX, MAX© -John Downford k ©lAIBSteldffiS fc tt S © T\

196 ISO TC184/SC4 & SC4/WGs New Orleans 69

i. 0 m 1999 ¥ 11 H 7 0 (0) -11 H 12 0 (A)

2. i m Radisson Hotel New Orleans, Louisiana, USA

3. ###

(^b^c) WG3/T19 Manufacturing Technology n UiE (JSTEP) PPG ##me Assembly Model & (JSTEP) WG3 % (FQS) WG3/T19 Technical Data Package AP, PDM Schema mm mm (00) WG3/T19 Automotive AP xm ( E 3^) WG3/T19 Automotive AP (T'%y) WG3/T19 Automotive AP 0# mm (^>$E$0 WG3/T20 Piping prefabrication extension NWI > %') : WG3/T20 Piping prefabrication extension NWI i&Bg (M^) WG3/T20 Piping prefabrication extension NWI nm umwax) WG3/T23 Shipbuilding AP : WG3/T23 Shipbuilding AP ¥* S1E (£1H) : WG3/T23 Shipbuilding AP am (IHI) : WG10 (AP Framework) (JSTEP) : WG10 (AP Modularization) mm me utm^mx) : WGll (EXPRESS-E2) ^ (JSTEP) : WG11 (EXPRESS-X, Character Set) XM SS (JL—i/%) : WG12 Parametrics ±M IE# (MRI) : WG8, WG12

4. x^mn-m PPC-1 1999 Oct.

Assembly- 1 ISO/TC184/SC1/WG7 Status Report Regarding the Standardisation of a New NC Programming Data Interface, Aachen Univ. of Technology, 99-10-08, p.12. Assembly-2 WG12/N448: JNC proposal for STEP Assembly Model of Products, N. Sugimura, 99-11-09, p.29. Assembly-3 JNC Assembly Model NWI (slides), N. Sugimura, 99-11-09,, p.8

197 Assembly-4 Change Management Committee Review Questionnaire, p.3

WG3-T19-AP232-1 Agenda for WG3/T19 AP232 Meeting WG3-T19-AP232-2 ARM Express-G Diagram

WG3/T23-1 AP216StatusN Frank Stolte, Nov. 1999, 7p WG3/T23-2 AP218 Status Report, Yanxie Janke-Zhao , Nov. 1999, 5p WG3/T23-3 AP226 Progress Report,Zabi Bazari,8-12 Nov. 1999, 9p WG3/T23-4 AP226-PLIB Status, Gerry Radack,09 Nov. 1999, 14p WG3/T23-5 Project presentations at STEP in New Orleans, J.Haenisch, 08 Nov. 1999, 17p WG3/T23-6 ATS318 Status, Injoon Kim, 08 Nov. 1999, 20p

EXPRESS-E2-1 WG11/N86 Pre Version: EXPRESS Edition2 Reference Manual, Don Sanderson, 99-10-30 EXPRESS-E2-2 WG11/N96 Pre Version: Product data representation and exchange: The EXPRESS Language Manual Technical Corrigendum 2, Phil Spiby, 99-11-11 EXPRESS-E2-3 (White Paper) New features in EXPRESS2 and their impact on existing EXPRESS schemas

EXPRESS-Tutorial- 1 EXPRESS Edition Two: The Express Explanation

Part 21-Amend-1 TC184/SC4 N939 ISO NWI/CD Ballot Results Clear Text Encoding Structure: Amendmentl

Param-1 WGl2/N440:Parametrization and constraints for explicit geometric product Models, M.Pratt, 75P Param-2 WG12/N441 :Parametries framework for the exchange of geometric product Models,N.Christensen,53P Param-3 WG 12/White Paper: Feature-Based Construction Operations: Shelling and Draft Angles,B.Anderson,3P Param-4 WG 12/White Paper: Analysis Report on the Application Interface Specification, B.Anderson, 7P Param-5 WG12/Whie paper: Some Feature Definitions/Information: CATIA Version 5 Part Design Documentation, B.Anderson, 16P

198 Param-6 WG 12/White Paper: Some Feature Definitions/Information: Unigraphics Version 15.0 Documentation,B.Anderson,40P Param-7 WG 12/White Paper: Some Feature Definitions/Information: Pro/E Release 18.0 Documentation, B.Anderson, 13P Patam-8 WG 12/White Paper: Some Feature Definitions/Information: I-DBAS Master Series 7 Student Guide, B.Anderson, 10P Param-9 WG 12/White Paper: Some Feature Definitions/Information: Mechanical Desktop Release 4 Documentation, B.Anderson, 16P Param-10 WG 12/White Paper: JNC Proposal for STEP Assembly Model of Products, N.Sugimura, 28P

WG12-Shape-1 Machining process Model, T. Kishinami

199 ▼Assembly Model

JNC Assembly Model lZ'O^X0foM%fr'O tz.

WG3/T19/T11 Manufacturing Technolgy

BBS : 1999 ^ 11 D 11 B (A) 8:00-12:00

fctiS# : J. Mohmann, L. Slovensky, ##, 10 £

Assembly- 1 ISO/TC184/SC1/WG7 Status Report Regarding the Standardisation of a New NC Programming Data Interface, Aachen Univ. of Technology, 99-10-08, p. 12.

AM B (1) AP 224 Extension • AP224 Extension © T 4? > 7" U © ft & £'o V vX lilra G fz. • AP224 Extension (C AP214 © mating_relation, mating_definition £'©Atl-?>.

(2) STEP NC

• AP214, AP213, AP224 h© harmonization

mmm • AP224J3, AP214 Atl3 • ISO 14649 t STEP AP213, AP214, AP224 *-'> a .

WG12 Parametircs

BBS : 1999 A 11 D 10 B (7k) 15:30-17:00

titiS# : M. Pratt, A#, ##, 6 £

200 Assembly -2 WG12/N448: JNC proposal for STEP Assembly Model of Products, N. Sugimura, 99-11-09, p.29.

B (1) Assembly Model * Presentation of assembly model * Discussion on Assemby model Assembly model has interface entities to the parameteric model * Requirment. shape_aspect and shape_aspect_relationships are not suitable for the application of parametric model parametric model directly refers to the representation_items 1 to many, n-array relationships are needed for parametric model. *Isseus Separation of functionality of parametric model and assembly model mmm • <7#, Assembly parametric model < C .

Change Management Committee

BBS : 1999 ^ 11 B 9 B W 13:00-15:00

HiSS : D. Wandmacher, £JH, 15 &

Assembly- 3 JNC Assembly Model NWI (slides), N. Sugimura, 99-11-09,, p.8 Assembly-4 Change Management Committee Review Questionnaire, p.3

(1) JNC proposal of assembly model * Recommendation Assembly Model -> Application Module (by Winzel and Slovensly) Reason

201 AP 214 has already included the same concepts. If new application resource model is introduced, the other APs dealing with the assemblies may use different data structures. There are many overlaps between the assembly model and the APs (AP 214, AP221, etc.) Action WG 3 chair will review N 448 Assembly model, and will examine whether AM is better.

* Workshop in Melborne Meeting to distribute information to get the interest members from other countries.

*NWI proposal Before Australia or France Meeting.

mmm

AP#mm, G. Paul • *ilS£/uyb 5, G.PaulhlS^LT, U £ o \Z\m bfc.

a (AP214, AP213, AP224)

202 ▼SC4 Technical Forum

0 m : 1999 11 g 8 0 (g ) 17:30-19:00 #OT : ft 50 &

(D SC4 Standard s in an Internet World by N.Shaw ## : STEP k Internet STEP Ix>^7 V >P0tztbl£ Internet LTffi web^mu-c, £ #ts iJ $ V V % SJ;Ip t % Z 11 & 6 o o

• Iz & t^X 0 # •i±SS

1. Updated to today "7 0 n -XML has arrived, -Internet -Web capable & Rjfto -Extended Enterprise approach tsM^.

(DWiHte&Zo V^L, -PDM business ©^fftirfeUrtfe3 -STEP b OMG PDM enabler b -*ML ^*.com (± SC4 ©tig^t ^fco 2. What is electronic commerce? Commerce b(ittTO&.0

Electronic Commerce bl& Computer systems 'yck-6%^1 CDZt'X:&%o

• EDIFACT • X12

ZtlhOWjWt

203 -XML

4&M SC4 standard & Web Ji't? • File exchange (and e-mail) • PDM interaction • Remote access L:£p Ln SC4 Standards Web _h\ZMo

business Commerce standards Tr(i&t''o

3. Use of EXPRESS in the WWW world

Hytime, XML |± WWW world £iS§t btt^o LfrU EXPRESS li an_instance_of no_select no_constraint single heritance fc-tf&CDfr? UML&jeft£qJSE£:UTl^o SGML ^ STEP

(B Fun-STEP 6D,|g/h -EDI+Internet+STEP -ECOS-IT tt XML £ STEP

(D PDML : Product Data Markup Language by Bill Burkett(PDIT) PDIT Qom\ : XML/DTD & PDML Toolkit RTfbh't"^ (XML+Product Data) standard ©S? a £ HftlfttCJd: XML for EXPRESS-Driven-Data I*]S : ©XML-EXPRESS schema early binding (DfztiblZ -Integration method based on mapping, -integration engine,

204 -XML style sheets %>o ©PDML Architecture -Communication based on XML DTD -Bigtalk serever? : URL:WWW PDIT.COM/PDML

@ Supplier Part Information DTD by ABB ABB 7? EXPRESS Schema £ XML First STEP/EXML 7?ff o tztK £ titz * fUl/©EcGfe S < Sfc ^ 6 & £ & a o

(D J=SDAI by Lochan Klein/LK software GmbH SDAI CAD/CAM/CAE (Dtz&)(D Client-Server enviroment

© Development of XML NWI by Robin La Fontaine/Monsell EDM #&#)## : -A brief history of time -Development of EXPRESS language DTD -Late-bound data DTD -Early-bound data DTD NWI t LTCDftSftS : EXPRESS Language DTD -PDML (i early binding algorithm

EXPRESS Language DTD -EXPRESS XML syntax Z Z U'o -EXPRESS syntax L < < -otMDftWfitoZo - L/?P fzbz.13. qualifiable factor -C CD Draft 13EXPRESS language DTD ti^CD syntax

P/rS : STEP £ internet LT^iJfflf ZtztbtZ XML & EXPRESS-Driven Data & MMt % & cd t lxmm t Z> $J|r) § ID C b £ L tz o

205 ▼WG3/T19 Joint Meeting with AP219, 214, 224 ### : E ^ : 1999 ^ 11 E 9 B (40 08:00-10:00 #AD# : iUI : T. Vorburge(NIST), B. JDanner, BB, UK1 £N NIST 2 £ 0 ^ : AP219 Dimensional Inspection Development Meeting 1) Agenda CDfiBU 1. Introduction 2. Review of Agenda 3. AP219 Modularization 4. Review of Draft EXPRESS-G Model(V2.0) 5. Review of Definitions of terms in the Model 6. Future plan 2) aamr 3 ) AP219 ARM V0.2: Modularization of End-user requirements with EXPRESS 1.5 by Bill Danner Mil : AP219 Modularized AP (Dfz&XD^ifcR.J Module CDtHS

Angular_Linea_Dimension_Module (J Angula_Dimension_Module ^ Linea_Dimension_Module Dfc Module £ UTtBSc^ilTl^o

Angular_Linea_Dimension_Module ____ i use i use Angular_Dimension_Module Linea_Dimension_Module i Reference Dimension_path_Module

OFeature Slot : 1) Design View AP203, AP214 2) Machining View AP224 AP213

206 3) Design Inspection View AP219

O Design Inspection View

OUser_Defined_Feature Feature feature S[l:?] U ser_Defined_Feature \l/ bounds Boundary Feature

: Bill Danner (± User Defined Feature CD aSd; D User_Defined_Attribute

AP219(Dimensional Inspection AP)(± NIST Ld; D NIST ^6 2^(D#A0x dodl%;^(D#m^ Bill Danner C(DCa^6 AP219

▼WG3T19 Joint meeting with AP214, 224 and CNC Data Model

B Bt : 1999 ¥ 11 U 10 0 (zk) 10:30-12:00 #^P# : AP224 #| : Len Solvensky, King Yee AP214 m : #AP#% L CNC Data Model: Martin hardwick WG8: Jean Jacques Michel WG10: Bernd Wenzel SC4: Dick Wandermach

207 IPO: William Gruttke, John Zimmerman irm, siik ±e Sweden: Torbjorn Hollm, Mattias Johansson Germany: Meinolf Gropper, Bruno Schilli Canada: Helium Mak Korea: Soon-Hung Han

Agenda: 1. Introduction 2. Aims and purposes of this meeting -to clear the scope of each APs and some Data Models regarding a machining process. -to define the position or roles of the proposed machining feature. 3. Presentations 1) Scope and machining feature of CNC Data Model(M.Hardwick) 2) Scope and machining feature of AP224 and AP214(L.Solvensky) 3) I-AAM as a reference Model and Machining Process Model (^$1)

( 1) 3 AP Data model © Scope ft I-AAM 0 i&Ta ^ c ^ c&o i-AAM Bruno ( 2 ) Machining Feature AP214> AP224 (J Process Plan Mfc't''bCDlZpi DT> CNC Data Model (J Process Plan Otitic (CNC ^(DAtl) LT n'So B [Based on real] LT> jjQ

machining feature (D'fcM'feWkm'tZ £ (3) Machining feature £ Form feature OEgij Machining feature (J 1 ) 2 ) 3) 4) Form Feature (J 1 ) 2 ) {S@ • 3) m&Bmzmtz>o

208 I*to#!® I S OSEttlulr WORKSHOP Z hT-grit Ltzo Workshop CDjfcHi : JSTEP : 2000^ 2H 8 • 9 B mnf : *» #JDi^/£# : SC4, SC1WG7, TC29 |M«#

209 TWGll EXPRESS Edition2/EXPRESS TC2

BBS: 1999^im8B(^) 13:00-15:00, 15:30-17:00 90(40 8:00-10:00, 10:30-12:00, 13:00-15:00, 15:30-17:00 10B(zk) 10:30-12:00, 13:00-15:00, 15:30-17:00 11BW 10:30-12:00

: P.Spiby, D.Sanderson, Martin Pain

: EXPRESS-E2-1 WG11/N86 Pre Version: EXPRESS Edition2 Reference Manual, Don Sanderson, 99-10-30 EXPRESS-E2-2 WG11/N96 Pre Version: Product data representation and exchange: The EXPRESS Language Manual Technical Corrigendum 2, Phil Spiby, 99-11-11 EXPRESS-E2-3 (White Paper) New features in EXPRESS2 and their impact on existing EXPRESS schemas

:

> h **N9 6t LTRST < LTPrem&A3%&.

• EXPESS Edition2 & 7. 4 * "EH LX o X U 3 . (N89) N8960PrelK(j:A^^.

• EXPRESS(DAmendment&^:Edition2kBf %fEdition2&Edition3^^^C C L ^ tlX

t=j . B • • 6 Edition2lcMf 6

- #m#Edition20yi" ± 3. ^ f T V \ 6 0 KonT 0##%

210 ->Entity

- TOTAL Over$imTANDmi^^m^^f^l:oWT .▻total overmmz, % &

otm-tz* t-4 ca^c^suPERtypeib mFpTrANDm#&^#f

• TC2T'CD[*)S/b 5P-Lib Part42T'^^ LT - P-Lib Part42*m, ^S^tSELECT^£^ST3P^WHERE;V-;i/£ffl V T06. TC2T(d:SELECTM^^f1-^WHERE;V->(DEffl^J^±Lcfcd LL/^A5

WHERE;i/-;i/to LT'ti^E^L^)C tmm Lfc.

(1)SELECTSl WHERE (2) ftA^©^©-^M|iJ £*f LTELlMlg^rixS. (3) TC2&iji^AtlfcEXPRESS^T?©SELECT^©IEflt$*^x !V £ Lft&f

• SELECTS#

▻Message-ID: <618FD3AF120DDlllA27900805F19D9C4063F97EB@xch-blv- 03.ca.boeing.com> ▻From: "Kraushar, Philip G" ▻To: '"Phil Spiby"' , ▻ Express users ▻Subject: Recursive aggregates don't work? ▻Date: Tue, 19 Oct 1999 10:55:59 -0700 ▻MIME-Version: 1.0 ▻X-Mailer: Internet Mail Service (5.5.2448.0) ▻Content-Type : text/plain;charset="iso-8859- 1" ▻Sender: [email protected] ▻Precedence: bulk > ▻Suppose I wish to model arbitrarily nested finite sets of positive ▻integers. The EXPRES declarations below appear to construct an ▻appropriate type:

211 > ▻TYPE positive = INTEGER; ▻WHERE SELF > 0; ▻END_TYPE; > ▻TYPE recursive_value = SELECT (positive, recursive_set); ▻END_TYPE; > ▻TYPE recursive_set = SET OF recursive_value; >END_TYPE; > ▻Now consider local variables "alpha" and "beta" of type >"recursive_value" having the values"[ 1, [ 2, 3 ] ]" and "[4, 5 ]", ▻respectively. What is "alpha + beta"? Possible answers appear to ▻be: "[[1, [2, 3]], 4, 5]", "[ 1, [2,3], [4,5]]", or ▻1, [2,3], 4,5]". > ▻The local variables "alpha" and "beta" could also have been typed >"recursive_set". Does this have any effect on the interpretation of ▻"alpha + beta"? ▻ ▻Comments? Note that this sort of recursive type is precisely what is ▻required in Part 50. > ▻Phil

Cftti:, SET^ L^O^CD^CDSELECT^^r^S Ltz &£&£5jCSETS! ttZt,

ZtUzftLX,

-Editioni-rti, TC2'r*fjfct*. vcfok® %.

-Edition2T{i, Type Mark .

212 • EXPRESS Edition2CDlnformative Reference (il fl" S; tl a EXPRESS Meta Model £

- sDAi^##^ ^ ^ ^ t u% u m o a c ^ £tlfz. ->Ztlh&Informative Reference!! $> D , *? )]/)ifiu.Jib!! ZZt’Z'&MLtz.

• Edition2^4o(t a EXPRESS Code0^ 0 SklUZ'Ol'X ->UTF-8&#o ZWEtZZttLfz.

• 7,5—7^-Vb >\Z-Oi^T(D%kM • -7!r#&a^—^3 >###% A—TU:#;h,TU:W!%:^

▼WGll EXPRESS Second Edition Tutorial #&#: mm## B# : 1999 11 R 10 B (7JO 15:30-17:00 #Ad# : Donald Sanderson, #, 20 ^ SE^f^N- : EXPRESS-Tutorial-1 EXPRESS Edition Two: The Express Explanation IffBip : Donald Sanderson(NISTZETSU) : 1.Ambiguities in EXPRESS-1 2.New needs in STEP community -Parametrics -Part Libraries -Manufacturing management data -Interface Specifications(SDAI) : 1.Number Type 2.Binary Indexing, Comparison S.String, Logical, Enumeration 4.SET & Bag of Unique S.Subtype ik(Dfz&>

213 3. #%%%#& 4. Conformance Class <%)#A 1. Class-1 Static Model 2. Class-2 Class- 1+Dynamics 3. Class-3 Class- 1+Expression datatype 4. Class-4 Class-1+Dynamics+Expression Datatype EXPREESS-G ®mA m: (1) JWG9 eim^LT(±7±D

(2) : Character set & EXPRESS-1 tM Lt^xX cLlVfr? : |3jD-£'&£o ffi® : SB^S^ttEXPRESS-2©«ES*3llS¥1"^©±*C^#^i:*ofco f&o

▼WG11 SGML+XML^-M^m : mm## BR5 : 1999 ^11 D 8 0 (£) 10:30-12:00 iHjE : N.Shaw Mum : Bill Burkett, &&&& 11 £ E^SM:& L

1.

QWG10 NWI t LX SGML and Industrial Data(STEP/SGML), (DWG11PWI t. LX Part-28:XML representation of EXPRESS driven data mmimmxmmtz>z.ttL, uwm&%fi'otzo

2. XML MfafemcDfflft (1) Development of XML NWI Draft by Mr. Robin Lo Fortaine /Monsell EDM Ltd. (supported by ESPRIT)

—: 1997: SGML strated.

214 1998/Feb.: XML1.0 appeared. 1998/June: XML Demonstration in Bad Aibling C8 ^ bt^ibfco -XML Rep. Of EXPRESS driven data. -STEP/SGML

-MathML -XML schemas -Geographical UML work -XMI -PDML — XML Representation of EXPRESS Driven Data

Late-bound Early-bound Use of Architectue to relate the early-bound — NWI : XML Rep. Of EXPRESS Driven Data (J June/1999 tlfzo

EXPRESS Language DTD: -Obviously better to develop XML syntax from EXPRESS -But there are none at present -Time and effort increased Language DTD issues: -EXPRESSION and Function Calls -We should change to using MathML style e.g 5+6*7+8 Late bound DTD issues: -Does STEP need a canonical DTD with no options?

Architectural DTD

t t

Early-bound DTD STEP Canonical STEP DTD

t

STEP Canonical Early-bound DTD Part21 t XML N.Shaw cL

215 ▼WG12 Shape Representation: Joint meeting with WG8+12

0 Be : 1999 ^11 0 9 0 (^) 15:30-17:00 : Ray Goult, Bill Anderson, Noel Christensen, Ray Consner Raymond(boeing), Philip Kranshar(booing), Mike Pratt,

: WG12-Shape-1 Machining process Model, T. Kishinami mm: 1 . Some shape representation and parametric requirements coming from the development of IAAM by T.Kishinami Z D JSTEP A05:Machining process Model Safety.T ff o fz o

© ^ b v ^ © © mmmmnMm £tilS ^io 2) Shape Representation if)]/—~/i^b CDjxJb (D Part42 (J CAD S' /Co © iitiv b Part50 £ftTl^o

@ BSSto CD a £H(J Out of Scope T'$>£o fW :

0-^mtzt PartSO CDStt&frd 6o

216 ISO TC184/SC4 & SC4AVGs Melbourne

1. 0 IW 2000 ^ 2 E 13 0 (0) ~2fl 18 B (S)

2. # P)f Carlton Crest Hotel, Melbourne, Victoria, Australia

3. ### $^120^0 (E#»&)o # mt (JSTEP) : SC4, PPG ## Mfo (;*dMfACk) : Assembly Model f£# n (JSTEP) : WG3 JE* Slk (3-?'yx>yz7'J>^) : WG3 Mechanical Product #_t Id (FQS) : WG3/T19 Technical Data Package AP, PDM Schema

B# EE (BM) : WG3/T19 Automotive AP fm 1#^ OimfiX) : WG3/T23 Shipbuilding AP : WG3/T23 Shipbuilding AP Um MfiP (IHI) : WG3/T23 Shipbuilding AP Sill mm (IHI) : WG10 (AP Framework) (JSTEP) : WG10 (AP Modularization) (JSTEP) : WG11 (EXPRESS-X) ## (^L —>>X) : WG12 Parametrics ±M IE# (MRI) : WG8, WG12

4.

WG3-T19-1 AP224 2ndEdition (CD_Rom)

WG3/T23-1 AP216Status> Tim Turners Feb.2000N 15 M WG3/T23-2 AP217StatusN Bourton GischnerN Feb. 14s 10 Jt WG3/T23-3 AP218 Status Reports Uwe Langbecker s Feb.2000N 8 M WG3/T23-4 AP226 Progress Reports Zabi Bazaris Feb.l4-18.2000s 8 WG3/T23-5 AP226Working Drafts Zabi Bazar: N 2000-02-10s 120 H WG3/T23-6 AP234 Status Reports J.Haenischs 2000-02-17s 20 M WG3/T23-7 ATS318 StatuSs Yong-Dae Kims 2000-2-15s 10 M

217 Param-1 WGl2/N511:Parametric assembly constraints in explicit parametric model representation, A.Ohtaka,21P Param-2 WG12/N512: Comments on N440, A.Ohtaka, 13P Param-3 WG12/N513: JNC assembly model for mechanical products, N.Sugimura, 42P Param-4 WG 12/White paper: Feature based construction operations, B.Anderson, 4P Param-5 WG 12/White paper: Part-108 EXPRESS-G diagram, M.Pratt, IP Param-6 WG 12/White paper 'The description of properties using mathematics, D.Leal,4P

▼WG3 T19 Plenary

0 US : 2000 ^ 2 B 14 0 (B) 13:00-15:00 SJlQ# : SijE J.Mohrmann, L.Slovensky, 03 d1, 1 2 &

1. ^ WG3 T19 m$k

2 . AP232 • DIS IZfill'd1 (2000 5 B Document out ©J^) • Doing #© PDM • ^ 1 7 B 15:30-17:00)Second Draft of Recommend Practice Guide

3. AP203 (NextGeneration) • SECD Sftfc# < © Issue (Compiler and Coding Problem^ EXPRESS Error %^) • STEP ##©"Modular'AP tta^>0 (39 a— tlZ)

218 • MM Scope (a) Non_manifold Shape (b) Colour/Layer (c) Tolerances (d) Parametrics • NWI/CD tESid:> 2000

4. AP214 fKra • DIS (382 0 Issues 1 5 Agree 1 Abstain 1 Disagree (France) - 4#0% (a) FDIS Version 2000 ^ 4 D (b) FDIS Ballot 2000 ^ 5-6 E (c) IS Version 2000 ^ 10 E

5. (WG3/T19H#) • 6E 2 6 B (G) 13:00-15:00 WG3/T19 Plenary 2 7 0 (^) 8:00-17:00 AP203 (E.2) 2 9 0 (*) 8:00-12:00 AP224 (ISO 14649 Discussions, Final AP214 FDIS + AP224 E.2)

&3L AP219 46d;t>,AP232ii,

219 ▼SC4 Technical Forum # (]7wy':mr) g Be : 2000 2 B 14 B (B) 17:30-19:30 #iD# : D.Wandmacher 4 0 £

1 . rSC4 Manufacturingj by J-J Michel • Manufacturing CD^H'T'U\SC4 CDf*]q|5;fecfctF SCI Category

T Harmonisation ###!!:$>£ C £:#1*982 tltzo

2 . rNeed of New Machining Process Data Model j by C.Sakamoto • CAM #^CDttJ;^'-^£13$^3fc$CD$fL^ Data Model CD#####*982fl%:o • Manufacturing Feature ^HLTN AP224 -6# L/C' Process Data Model b CD

3. r AP224 Direction j by L.Slovensky • AP224 E.2 CD|%#mr2fl&o • CAM AP213 ^ UTC£o

4 . rDigital Plant and Process Plan Data using AP214j by M.Johansson • AP214 (Automotive) CD Ah#### 3; %m^#^CD#####%98 2 3r^o

5 . rModel Driven Intelligent Control of Manufacturingj by M.Hardwick • AP224, AP213, IS014649(CNC Data Model)Ufc!£St • m^-MnfhO

• ^^A^CD t"— ^”Super Model ”f 3o

6. ^Process Plant Data Exchange (AP207) j by M.Palmer

7 . FThe FunSTEP Project for Furniture Manufacturingj by R.Concalves • ^HCDlSfh i£?£'\CDSTEP?§ffl;7Pn^x^ • 17*a (i 3 s^wc-) ##adutc30

8 . |~TC184/SC1AVG7 Perspective j by F.Glantschnig ISO 14649 t CNC Data Model CDm##i%##^2fl&o S-DAI Lfz STEP CTC£ Z £&&m$tlfco

220 ( 9 . STEP for 3D_MID Production by Klein)

771 v oa • • Manufacturing 6 Manufacturing FeatureN Process Plan^ AP213(NC Process Plan)&^©*- V- K til LX,

221 ▼ WG3 T19 AP219(Dimensional Inspection)/AP214/AP224 Harmonisation

0 m : 2000#2H 15 0 (ik) 8:00-12:00 #jjP# : B.Danner, J.Mohrmann, L.Slovensky, K.Yee, M.Simon, 9 & (T.Vorburger (is ##^#T#AD)

1 . AP219 Scope tlfco 0 1 ^)o

0 1 AP219 0^@<7) Scope

2. AP219 (0 2#®)

Inspection Design AP219 Plan

AP219 AP224 AP214

Manufacturing Manufacturing Plan AP213 AP214

0 2 AP219 <7M5g-dti

3 . Harmonisation COMMARM • AP219 • AP214 • AP224 &4b\ AP213

4 . Tolerance

222 (1) AP219 t AP214 (2) AP219 t AP224 Category CD Harmonisation Wfstitlfzo

5 . Feature 0 Harmonisation 5.1 AP219 CD Feature •Point • Cylinder 'Cone • Sphere • Plane -Slot • Closed_slot • Geometric_curve • Geometric_surface ‘Pattern &£'CD 1 2UM 5.2AP224 AP214© Feature ^CDR# (1213##) aspects S[0:?] Shape_aspect

Feature_definition

component S[0:?] Feature_as_designed Feature_as_designed Inspection_feature _component

Inspection Design Design_feature _feature Element_select .relationship

AP224 Machining AP214 Feature. Included feature.

El 3 Feature CDIU^ 6 . AP219 CD^#CD%

• 2000^ 1 OH^-TC CDDraft&^a^^o • Fund • AIM 0 Harmonisation 6 ;B#) Z> % o

223 ▼PPG SC4 Manufacturing Strategy

0 ^ : 2000 2 0 15 0 (zk) 13:00-17:00 : Siil D.Wandmacher, H.Mason, J-J.Michel, L.Slovensky, F.Glantschnig, K.Yee, M.Simon, M.Hardwick, M.Gropper, ^BJIL HL ±J§L 1 9 ^

:

LT, Manufacturing C ^ ^ L/:o 1 . Data Aspect in SC4 and Process Aspect in SCI • SC1/WG7 #3 > H-f CD F.Glantschnig ^6 IS014649 CDPlfgrtS^/r^frt)

tlfzo (Technical Forum IS014649 D o (a) TBdPU^CD First Phase CD DIS fqjG Document out (^# 2 >r HLlF^l) (D Part-1 Overview and Fundamental Principles (D Part-2 Executable Structures for Linear and Conditional Sequence as EXPRESS Schema d) Part-11 Process Data for Milling (Including Tool_sheet) (b) Second Phase (D Part-3 Application Software within C language (D Part-9 Glossaries ® Part-51 AIM Mapping for Part-11 [Action Item] - SC4CD/>/i-kL SCl/WG7CDm#&@A#f^^±^T^o

2. Integration of Manufacturing (Standard Search, Harmonisation)

• CCD t^—VT'tiC ' C CT:(dG PSL "C Process Plan Data cf £^

3 . Gaps in Data Model (Ex. AP213 is not Position to require) • CtltdC AP213 ^(d: Process Plan Data%#^^|^#&#g%BT^^l^CD0*^6CD ±tftz&(D-?:&z>o [Action Item] • AP213 CD^itbdlUj LTHS't'-So (K.Yee and L.Slovensky) 4 . Data Dictionary (Ex. Manufacturing Feature) • Technical Forum Manufacturing Feature AP224 t tUSt"£$r lA'i Process Data Model Lfz0 • L.Slovensky £IT0 3 > h £>tl fzo (a) AP224 0 Feature §: Form Feature b&{\ttfX\^Z>0\&» (Feature IZ§1 LX 1 0 LTn Manufacturing Feature L

(b) AP224 0 Feature CAM ^0A±J%0 Feature Tffo 0 N CAM ©JU^x—^CD

[Action Item] • Manufacturing Feature 0 Data Dictionary 6o (L.Slovensky)

• D.Wandmacher £tz0 • ±m3&&Zf4XM0 Action Item fcgiLTL

ELt

225 T WG3T19AP224

0 m : 2000 ^ 2 0 16 0 (*) 10:30-12:00 #*P# : MM L.Slovensky, B.Freeman, K.Yee, M.Simon, 1 0 & 1MWI4 : AP224 2nd Edition (CD_Rom)

1 . Assembly Model

(a) i£-&®;/si*-cfc Manufacturing Feature L?Co (D Cutout © Recess (3) Rib_top @ Shape_profile (c) %#© Manufacturing Feature (D Planar_face (2) Ngonjprofile © Ngon_base_shape @ Rectangular_boss © Feature_group (d) First Edition tltz Manufacturing_j>art_properties Entities

Ufco (e) AP214 English_or_metric &#lSt" 6 %

$ tl/z W^l- (AP224 2nd Edition [CD_Rom]) Manufacturing Feature © WJ & i i ^ & IB ^ £ ft T £ o

226 Assembly Model

BR# : 2000%-in 16-17 B(7k-yfc) /iJJrtj#: Slovensky, Mohmann, Paul, Platt, Fauler, ##

1. WG12N513, INC Proposal of STEP assembly model for mechanical product, p.42.

(1) WG12 Parametrics

(2) Integration with AP224 2nd Ed. • AP224, AP214 Feature (3) Workshop with Mohmann • Remove many entities (New entity 2 and their subtypes) • Modification of Assembly Feature

explicit_geometric_constraint

characterizedobj ect shapeaspect assemblygeoemtricconstraint

feature definition geometricrepresentationitem

assemblyjkature association assembly_feature_assoctatton

shapeaspectrelationship shape_aspect_relationship

227 WG3/T19/T11 Manufacturing Technolgy BB$ : 2000 ^ 2 H 17 B (*) 10:30-12:00 Slovensky, ##, 10 £

1. AP2242nd edition CD.

(1) AP224 Stasus • AP224 2nd Edition mmm • AP224 , AP214 b|sj b£ O £, X O • 1st Edition t , AP214 t .

WG12 Plenary

BBS : 2000 ^ 2 B 16 B (%k) 10:30-12:00 tiM# : Paul, Goult, Mohman, Klein, b

Document Status • 10303-41 will go forward as FDIS document • Next month for FDIS publication • 10303-43/44 will go forward as IS documents • Next month for IS publication • EXPRESS defects technical corrigendum for 10303-40/100 series IS parts • 41,42tcl,42tc2, 43tcl, 43tc2, 44, 45, 46,101,105tcl • Needs additional work - 47 • Additional TC required - 105tc2, 42tc3 • 10303-507/508/509 target 06/00 for IS • 10303-518 was sent for DIS Available for review for ISO 10303 • WD for 50/DIS (Mathematical constructs) • WD for 108/CD (Parameterization and constraints for explicit geometric product models) • WD for 107/ EACM modules

228 ISO TC 184/SC4/WG12 N513 Date: 00-02-17 Supersedes ISO TC 184/SC4/WG_12

ISO/ [ballot stage] [standard number] - [part number] - [ballot cycle] Document title : JNC Proposal of STEP Assembly Model for Mechanical Products ABSTRACT: Establishment of neutral assembly model within STEP is quite important and urgent issue from various application viewpoints, such as parametric assembly, assembly/disassembly process planning, kinematic analysis, and tolerance analysis. The objective of the assembly model presented in this document is to establish a neutral representation of assemblies of products, which are composed of sets of components.

KEYWORDS: Connecting association of components Hierarchical association of components

COMMENTS TO READER: This document is a quick version of the previous version for making entities consistent with the latest status of STEP 40 series parts.

OWNER/EDITOR: Nobuhiro SUGIMURA Alternate: Akihiko OHTAKA Address: Osaka Prefecture University Address: Nihon Unisys Co. Ltd. 1-1 Gakuencho, Sakai, Osaka 599-8531, 1-1-1, Toyosu, kohtoh, Tokyo 135-8560, Japan Japan

TEL: +81-722-54-9207 TEL: +81-3-5546-4784 FAX: +81-722-54-9904 FAX: +81-3-5546-7810 E-mail: [email protected] E-mail: [email protected]

229 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 1 Contents Foreword Introduction

1 Scope 3 2 Normative references 4 3 Definitions 5 3.1 Terms defined in ISO 10303-1 5 3.2 Terms defined in ISO 10303-44 5 3.3 Other definitions 5 3.3.1 component association 5 3.3.2 assembly feature 5 4. Assembly model schema 6 4.1 Introduction 6 4.2 Fundamental concept and assumptions 7 4.3 assembly model schema type definition: assemby feature schape 7 4.4 assembly model schema entity definitions 7 4.4.1 main components usage 7 4.4.2 auxiliary components usage 8 4.4.3 componentsassociation 8 4.4.4 connection 9 4.4.5 movable connection 10 4.4.6 fixed connection 10 4.4.7 intermittent connection 10 4.4.8 relative motion 10 4.4.9 relativejiosition and orientation 11 4.4.10 movable connection_property 11 4.4.11 fixed connectionjproperty 11 4.4.12 intermittent connection_property 11 4.4.13 relative motionjproperty 12 4.4.14 relative_position_and_orientation_property 12 4.4.15 components_association_relationship 13 4.4.16 components association hierarchy 13 4.4.17 component associatoion alternative 14 4.4.18 assembly_feature association 14

230 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 2 4.4.19 assembly_feature 15 4.4.20 assembIy_feature_associationjproperty 15 4.4.21 assembly_feature_property 16 4.4.22 mechanica*_product definition 16 4.4.23 mechanical component definition 16 4.4.24 mechanical assembly definition 17 4.4.25 mechanical subassembly definition 17 4.4.26 mechanical part definiton 17 4.4.27 standard component definition 18 4.4.28 standard component standardjpart model 18 4.5 Assembly model schema function definitions 18 4.5.1 ancestorjproduct definition 18 4.5.2 descendant_product_definition 19 4.5.3 usingj)roduct definition of^shape aspect 20 4.5.4 using_product_definition_of_item 21

Annexes A Short names of entities 23 B Information object registration 24 C Computer-interpretable listings 25 D EXPRESS-G figures 26 E Explanation of assembly model 28 Index 37

231 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17,2000) 3 Industrial automation systems and integration - Product data representation and exchange - Part lxx: Application resources: Mechanical assembly

1 Scope

This part of ISO 10303 specifies the resources to describe the associations among the components of an assembled product.

The followings are within the scope of this part of ISO 10303.

- the connecting associations among the components constituting a assembled product;

- the associations among the components which are not physically connected;

- the relationships among the associations of the components;

- the description of the product composed of both the designed components and the standard components;

- the characteristic features of the associations among the components;

- the design, the analysis and the manufacturing preparation of the assembled products;

The following are outside of the scope of this part of ISO 10303

- the configuration management of the assemblies and the components;

232 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 4 2. Normative references

(To be completed)

233 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 5 3. Definitions 3.1 Terms defined in ISO 10303-1

This part of ISO 10303 makes use of the following terms in ISO 10303-1.

- Assembly: a product that is decomposable into a set of components or other assemblies from the perspective of a specific application. Component: a product that is not subject to decomposition from the perspective of a specific application.

3.2 Terms defined in ISO 10303-44

This part of ISO 10303 makes use of the following terms in ISO 10303-44.

Sub-assembly: a constituent that is an assembly.

3.3 Other definitions

For the purpose of this part of ISO 10303, the following definitions apply.

3.3.1 component association: an association between a pair of mechanical parts and/or mechanical subassemblies.

3.3.2 assembly feature: an element to specify the associations between a pair of mechanical parts and/or mechanical subassemblies.

234 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 6 4. Assembly model schema The following EXPRESS declaration begins the assembly_model_shcema and identifies the necessary references.

EXPRESS specification:

*) SCHEMA assembly_model_schema;

REFERENCE FROM action_schema ( action_method ); REFERENCE FROM geometry_schama ( geometric_representation_item ) ; REFERENCE FROM kinematic_motion_representation_schema ( kinematic_path ); REFERENCE FROM kinematic_structure_schema ( kinematic_pair ); REFERENCE FROM product_definition_schema ( product_definition, product_definition_relationship ) ; REFERENCE FROM product_property_definition_schema ( shape_aspect ); REFERENCE FROM product_structure_schema ( next_assembly_usage_occurence ) ; REFERENCE FROM support_resource__schema; (*

4.1 Introduction The objective of the assembly model presented in this document is to establish a neutral representation of assemblies of products, which are composed of sets of components. The products to be described by the assembly model are summarized in the followings.

(1) products composed of sets of components. The products considered here are the assembled products composed of sets of the components. The whole products are called "assemblies", and the components of the lowest levels in the assemblies are called "parts". The components of the intermediate levels are called "sub-assemblies", which are composed of one or more parts and/or sub-assemblies. An assembly consists of one or more sub-assemblies and parts.

(2) Product structure configuration of assembly Product structure configuration is now dealt with in ISO 10303 - 44 to describe the parts lists and the BOM (bill-of-material). Various structure configurations are given to one assembly depending on various contexts. For instance, one configuration of an assembly is considered in the design phase, and the structure configuration may be changed in the assembly process planning phase. The objective of the assembly model is to establish a model describing both the product structure configuration and the connecting associations among the components needed in the various design, analysis and manufacturing process planning phases.

(3) Standard parts

235 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 7

The assemblies include many standard parts, such as fixing bolts, keys, and electric motors. The standard parts are basically divided into two; they are, the standard parts included in the parts catalogues discussed in ISO TC 184/SC4/WG2, and the standard parts defined by the users.

The interest application fields of the assembly model are as follows. (1) Kinematic analysis of mechanical assemblies Kinematic analysis and simulation are very important application fields of the assembly model. ISO 10303-105 Kinematics supports the kinematic analysis, however, Part 105 is not sufficient to integrate the 3D-CAD systems and the kinematic analysis systems.

(2) Animation of mechanical assemblies The animation of mechanical assemblies is very important for future extension of the digital-mockup technologies.

(3) Assembly/disassembly process planning The assembly model will support the integration of the product design and the manufacturing preparation. The assembly process planning and the disassembly process planning are important application fields of the assembly model from the viewpoint of the integration of CAD and CAM systems.

(4) Tolerance analysis and synthesis The tolerance analysis and synthesis of the complicated mechanical assembly are very important application fields of the assembly model.

4.2 Fundamental concept and assumptions (to be completed)

4J assembly model schema type definition: assemby feature schape An assembly feature shape is a selection between types of shapes of assembly features.

EXPRESS specification:

*) TYPE assembly_feature_shape = SELECT ( geometric_representation_item, shape_aspect); END_TYPE; --assembly_feature_shape (*

4.4 assembly model schema entity definitions

4.4.1 main components usage

236 ISO 10303-1XX-.XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 8

An entity which represents the parent-child associations between a pair of components. This entity is a subtype of next assembly usage occurrence in Part 44. The attribute relating product definition of this entity represent a parent product definition, which is an assembly. The attribute related_product_definition of this entity specifies the main components of the parent component.

EXPRESS specification:

ENTITY main_components_usage SUBTYPE OF ( next_assembly_usage_occurence ) ; auxiliary_components : SET [0:?] OF auxiliary_components_usage; END_ENTITY; --main_components_usage

Attribute definitions: auxiliarycomponents: the set of auxiliary component usage, which specify the parent-child associations between the parent product definition and the auxiliary component definitions.

4.4.2 auxiliary components usage An entity which represents the parent-child associations between a pair of components. The attribute relatingjproduct definition of this entity represent a parent product definition, which is an assembly. The attribute relatedjproduct definition of this entity specifies the auxiliary components of the parent. The auxiliary components keep the association among the main components of the parent product definition. When two body panels of an automotive are connected by a se of bolts, the bolts are the auxiliary component and the panels are the main components, respectively.

EXPRESS specification:

*) ENTITY auxiliary_components_usage SUBTYPE OF ( next_assembly_usage_occurence ) ; END_ENTITY; --auxiliary_components_usage (*

4.4.3 components association An abstract supertype entity which represents the peer to peer associations between a pair of components. This entity is a subtype of the product definition reltionship. The associations considered here are one to one (binary) associations between a pair of components.

EXPRESS specification:

*) ENTITY components_association ABSTRACT SUPERTYPE OF ( ONEOF ( connection, relative_motion, relative_position_and_orientation ) ) SUBTYPE OF ( product_definition_relationship ); feature_association : SET [0:?] OF assemlby_feature_association; UNIQUE UR1: SELF\product_definition_relationship. id, SELF\product_def inition_relationship . relating_product_def inition, SELF\product_definition_relationship.related product definition: WHERE WR1: SELF\product_def inition_relationship .relating_product_ definition : <> : SELF\product_def inition. relationship. related_product_def inition ; WR2 : (SIZEOF ( feature_association) >0) AND ( 'PRODUCT_PROPERTY_DRFINITION_SCHEMA.SHAPE_ASPECT ' IN TYPEOF

237 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 9

(SELF.feature_association.relating_assembly_feature)) AND (SELF\production_relationship.relating_product_definition IN using_product_definition_of_shape_aspect (SELF.feature_association.relating_assembly_featute)); WR3 : (SIZEOF (feature_association) > 0) AND ( ’PRODUCT_PROPERTY_DRFINITION_SCHEMA.SHAPE_ASPECT ' IN TYPEOF (SELF.feature_association.related_assembly_feature)) AND ( SELF\production_relationship.related_product_definition IN using_product_definition_of_shape_aspect (SELF.feature_association.related_assembly_featute)); WR4 : (SIZEOF (feature_association) > 0) AND ( 'GEOMETRY_SHEMA.GEOMETRIC_REPRESENTATION_.ITEM ' IN TYPEOF (SELF.feature_association.relating_assembly_feature)) AND (SELF\production relationship.relating product...definition IN using_product_definition_of_item (SELF.feature_association.relating_assembly_featute)); WR5: (SIZEOF (feature_association) > 0) AND ( 'GEOMETRY_SHEMA.GEOMETRIC_REPRESENTATION_ITEM ' IN TYPEOF ( SELF.feature_association.related_assembly_feature)) AND (SELF\production_relationship.related_product_definition IN using product definition of item (SELF.feature_association.related_assembly_featute));

END_ENTITY; --components_association (*

Attribute definitions: feature association : the assembly feature association that specifies the detailed information about the interfaces between a pair of components connected by a componentsassociation .

Formal propositions: UR1: the inherited attributes id, relating product definition, and reltaedjyroduct definition uniquely identify an instance of components association. WR1: the relating product definition and the relatedjproduct definition should be different instances. WR2: the shape aspect specified by the feature association.relating assembly feature shall be used to define the product definition which is specified by the relating product definition. WR3: the shape aspect specified by the feature association.related assembly feature shall be used to define the shape of the product definition which is specified by the relatedjproduct definition. WR4: the geometric representation item specified by the feature association.relating - assembly feature shall be used to represent the shape of the product definition which is specified by the relating product definition. WR5: the geometric representation item specified by the feature association.related - assembly feature shall be used to represent the shape of the product definition which is specified by the related jproduct definition .

4.4.4 connection An abstract supertype entity which represents the connections between a pair of components which are physically connected with each other. This entity is applied to describe the physical connections between a pair of components.

EXPRESS specification:

*) ENTITY connection

238 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 10

ABSTRACT SUPERTYPE OF ( ONEOF ( movable_connection, fixed_connection, intermittent_connection ) ) SUBTYPE OF ( components_association ); END_ENTITY; --connection (*

4.4.5 movable connection An entity which represents the associations between a pair of components which are physically connected and movable. This entity is applied to describe the possible relative motions between a pair of components and the properties of the joints, which constrain the components. Typical examples of the movable connection are the shaft-bearing joints, slider-guide way joints, gear joints, and so on.

EXPRESS specification:

*) ENTITY movable_connection SUBTYPE OF ( connection ); END_ENTITY; --movable_connection (*

4.4.6 fixed connection An entity which represents the connections between a pair of components which are physically connected and fixed. This entity is applied to describe the properties of the joints, which fix the components with each other. Typical examples of the fixed connection are the welded joints, the key fastenings, the screw fastenings, and so on.

EXPRESS specification:

*) ENTITY fixed_connection SUBTYPE OF ( connection ); END_ENTITY; --fixed_connection (*

4.4.7 intermittent connection An entity which represents the connections between a pair of components which are physically connected with each other intermittently. This entity is applied to describe the physical interfaces between the intermittently connected components, such as limit switches.

EXPRESS specification:

*) ENTITY intermittent_connection SUBTYPE OF ( connection ); END_ENTITY; --intermittent_connection (*

4.4.8 relative motion An entity which represents the relative motions between a pair of components which are not physically connected with each other. This entity is applied to describe the constraints on the relative motions between a pair of components. A relative motion of a robot hand against a base of the robot is a typical example of the relative motion. In this case, the robot hand is not connected directly with the base.

EXPRESS specification:

239 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 11

*) ENTITY relative_motion SUBTYPE OF ( components_association ) ; END_ENTITY; --relative_motion (*

4.4.9 relativejposition and orientation An entity which represents the relative positions and orientations between a pair of components which are not physically connected with each other. This entity is applied to describe the constraints on the relative position and orientation of the component against another component.

EXPRESS specification:

*) ENTITY relative_position_and_orientation SUBTYPE OF ( components_association ); END_ENTITY; --relative_position_and_orientation (*

4.4.10 movable connectionjiroperty An entity which represents the property about the movable connection .

Note: The contents of the properties will be discussed and developed.

EXPRESS specification:

*) ENTITY movable_connection_property; connection : movable_connection; kinematic_pair : kinematic_pair; END_ENTITY; --movable connection property (*

Attribute definitions: connection: the movable connection to which the property is given. kinematicjpair : the kinematicjpair in Part 105 which represents and constrains the relative motion of the related product definition against the relating_product definition.

4.4.11 fixed connectionjiroperty An entity which represents the property about the fixedconnection .

Note: The contents of the properties will be discussed and developed.

EXPRESS specification:

*) ENTITY fixed_connection_property; connection : fixed_connection; END_ENTITY; --fixed_connection_property (*

Attribute definitions: connection: the fixed connection to which the property is given.

4.4.12 intermittent_connection_property

240 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 12

An entity which represents the property about the intermittent connection.

Note: The contents of the properties will be discussed and developed.

EXPRESS specification:

ENTITY intermittent_connection_property; connection : intermittent_connection; kinematic_pair : kinematic_pair; END_ENTITY; --intermittent_connection_property

Attribute definitions: connection: the intermittent connection to which the property is given. kinematic_pair : the kinematic_pair in Part 105 which represents and constrains the relative motion of the related product definition against the relatingjproduct definition.

Note: Part 105 kinematics has not yet define the constraints on the intermittent joints.

4.4.13 relative motion_property An entity which represents the property about the relative motion.

Note: The contents of the properties will be discussed and developed.

EXPRESS specification:

ENTITY relative_motion_property; motion : relative_motion; kinematic_path : kinematic_path; END_ENTITY; --relative_motion_property

Attribute definitions: motion: the relative motion to which the property is given. kinematic_path : the kinematic_path in Part 105 which represents and constrains the relative motion of the relatedjiroduct definition against the relating product definition.

4.4.14 relativejposition and orientationjproperty An entity which represents the property about the relativejmsition and orientation.

Note: The contents of the properties will be discussed and developed.

EXPRESS specification:

*) ENTITY relative_position_and_orientation_property; position_and_orientation : relative_position_and_orientation; END_ENTITY; --relative_position_and_orientation_property (*

Attribute definitions: position and orientation: the relative_position and orientation to which the property is given.

241 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 13

4.4.15 components association relationship An abstract supertype entity which represents the relationship between a pair of components associations.

EXPRESS specification:

*) ENTITY components_association_relationship ABSTRACT SUPERTYPE OF ( ONEOF ( components_association_hierarchy, components_association_alternative ) ); id : identifier; name : label; description : text; relating_components_association : components_association; related_components_association : components_association; UNIQUE UR1: id, relating_components_association, related_components_association; WHERE WR1: relating_components_association :<>: related_components_association; END_ENTITY; --components_association_relationship (*

Attribute definitions: id: the identification of the components_association_relationship. name: the word or group of words by which the components association relationship is referred to. description: text that relates the nature of the components association relationship, relating components association: one of the components association which is a part of relationship, relatied components association: the other components association which is a part of relationship.

Formal propositions: UR1: The id, relating components association and related components_association uniquely identify an instance of components association. WR1: the relating components association and the relatied components association should be different instances.

4.4.16 components association hierarchy An entity which represents the parent-child relationship (hierarchical relationship) between a pair of components associations. For example, the components association between a pair of subassemblies is a parent componet accosiation of the components association between a pair of parts included in these subassemblies. The relating components association is the parent association, and the related components association is the child association.

EXPRESS specification:

*) ENTITY components_association_hierarchy SUBTYPE OF ( components_association_relationship ); WHERE WR1: SELF\components_association_relationship.relating_components_association\ product_definition_relationship.relating_product_definition IN ancestor (SELF\components_assoclation_relationship.related_components_association\ product_definition_relationship.relating_product_definition); WR2: SELF\components_association_relationship.relating_components_association\ ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 14

product_definition_relationship.related_product_definition IN ancestor (SELF\components_association_relationship.related_components_association\ product_definition_relationship.related_product_definition); END_ENTITY; --components_association_hierarchy (*

Formal propositions: WR1: the relating components association.relating component definition shall be a higher level product definition (sub-assembly or assembly) of the relatied components association.relating - product definition in the tree structures which are specified by the assembly component usage. WR2: the relating components association.related component definition shall be a higher level product definition (sub-assembly or assembly) of the relatied components association.related - product definition in the tree structures which are specified by the assembly component usage.

4.4.17 component associatoion alternative An entity which represents the interchangeable relationships between a pair of components - associations. For example, if two components associations defined for a same pair of components can be interchangeable, these two components_associations should be associated each other.

EXPRESS specification:

*) ENTITY components_association_alternative SUBTYPE OF ( components_association_relationship ); WHERE WR1:(SELF\components_association_relationship.relating_components_association\ product_definition_relationship.relating_product_definition :=: SELF\components_association_relationship.related_components_association\ product_definition,relationship.relating product definition) AND (SELF\components_association_relationship.relating_components_association\ product_definition_relationship.related_product_definition :=: SELF\components_association_relationship.related_components_association\ product_definition_relationship.related product definition); END_ENTITY; --components_association_alternative (*

Formal propositions: WR1: Two componentsassociations, which are related by a components_association_alternative, should describe the components associations between a same pair of the product definitions

4.4.18 assembly feature association This entity represents the associations between pairs of assembly features from the viewpoint of the application fields of the assembly model. The assembly feature associations are the key elements for describing the associations between a pair of the mechanical components. The assembly feature association may specify a pair of assembly features, on which two components are associated with each other.

EXPRESS specification:

ENTITY assembly_feature_association; id: identification; name: label; description: text; relating_assembly_feature: assembly_feature ; related_assembly_feature: assembly_feature;

243 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 15

UNIQUE UR1: id, relating_assembly_feature, related_assembly_feature; WHERE WR1: relating_assembly_feature :<>: related_assembly_feature; END_ENTITY; --assembly_feature_association (*

Attribute definitions: id: the identification of the assembly feature assciation. name: the word or group of words by which the assembly_feature_association is referred to. description: text that relates the nature of the assembly feature association, relating assembly feature: one of the assembly feture which is a part of relationship, related assembly feature: the other assembly_feture which is a part of relationship. If one element of the relationship depends upon the other, this attribute shall be the dependent one.

Formal propositions: UR1: The id, relating assembly feature and related assembly feature uniquely identify an instance of assembly feature association. WR1: two of the assembly features assiciated by this entity shall be different instances.

4.4.19 assembly feature This entity represents the assembly features from the viewpoint of the application fields of the assembly model. The assembly features are the key elements for describing the shape aspects or the geometric represetaion items on which the components are associated with each other. The assembly feature may be the partial shape elements of the components, on which two components are associated with each other.

EXPRESS specification:

*) ENTITY assembly_feature; id: identification; name: label; description: text; shape: assembly_feature_shape; END_ENTITY; --assembly_feature (*

Attribute definitions: id: the identification of the assembly feature. name: the word or group of words by which the assembly feature is referred to. description: text that relates the nature of the assembly feature. shape: shape representation of the assembly feature.

4.4.20 assembly feature associationjproperty An entity that represents the property of the assemblyfeatureassociation.

EXPRESS specification:

*) ENTITY assembly_feature_association__property feature_association : assembly_feature_association; END_ENTITY; --assembly feature association property

244 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 16

(*

Attribute definitions: feature association : the assembly feature association to which the property is given.

Note: The contents of the properties will be discussed and developed.

4.4.21 assembly feature_property An entity that represents the property of the assembly feature.

EXPRESS specification:

*) ENTITY assembly_feature_property; feature : assembly_feature; END_ENTITY; --as sembly_feature_property (*

Attribute definitions: feature : the assemblyfeature to which the property is given.

Note: The contents of the properties will be discussed and developed..

4.4.22 mechanicaljiroduct definition A subtype entity of the product definition entity of Part41, which represents the definition of the mechanical products, such as assemblies, sub-assemblies, parts and standard parts.

EXPRESS specification:

*) ENTITY mechanical_product_definition ABSTRACT SUPERTYPE OF ( ONEOF (mechanical_component_definition, standard_component_definition )) SUBTYPE OF ( product_definition ); action_method: SET [0:?] OF action_method; END_ENTITY; --mechanical_product_definition (*

Attribute definitions: action method : the action method which represent the action methods related to the mechanical_product definition. The action methods include such as assembly process method, design process method, and so on.

4.4.23 mechanical component definition A subtype entity of the mechanicaljproductdefinition, which represents the definition of the mechanical components of the products, such as assemblies, subassemblies, and parts.

EXPRESS specification:

ENTITY mechanical_component_definition ABSTRACT SUPERTYPE OF ( ONEOF ( mecchanical_assembly_definition, mechanical_subassembly_definition, mechanical_part_definition ) ) SUBTYPE OF ( mechanical_product_definition ); END_ENTITY; --mechanical_component_definition

245 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 17

(*

4.4.24 mechanical assembly definition A subtype entity of the mechanical component definition, which describes the definition of the assemblies composed of sets of parts and subassemblies.

EXPRESS specification:

*) ENTITY mechanical_assembly_definition SUBTYPE OF ( mechanical_component_definition ); WHERE WR1: SIZEOF (ancestor_product_definition([], [SELF])) = 0; END_ENTITY; --mechanical_assembly_definition *)

Formal propositions: WR1: the mechanical assembly definition is the highest level instance in the tree structure defined by the assembly component usage.

4.4.25 mechanical subassembly definition A subtype entity of the mechanical component definition, which describes the definition of the subassemblies composed of sets of parts and other subassemblies.

EXPRESS specification:

*) ENTITY mechanical_subassembly_definition SUBTYPE OF ( mechanical_component_definition ); WHERE WR1: (SIZEOF (ancestor_product_definition([], [SELF])) <> 0 ) AND (SIZEOF (descendant_product_definition([]. [SELF])) <> 0 ); END_ENTITY; --mechanical_subassembly_definition (*

Formal propositions: WR1: the mechanical subassembly definition is not any terminal instances in the tree structure defined by the assembly component usage.

4.4.26 mechanicaI_part_definiton A subtype entity of the mechanical_product definition, which describes the definition of the individual mechanical parts.

EXPRESS specification:

*) ENTITY mechanical_part_definition SUBTYPE OF ( mechanical_component_definition ); WHERE WR1: SIZEOF ( descendant_product_def inition ([] , [SELF])) = 0; END_ENTITY; --mechanical_part_definition (*

Formal propositions: WR1: the mechanicaljpart_definition is the lowest level instance in the tree structure defined by the

246 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 18 assembly component usage.

4.4.27 standard component definition A subtype entity of the mechanical_product definition, which describes the definition of the standard components.

EXPRESS specification:

*) ENTITY standard_component_definition SUBTYPE OF ( mechanical_product_definition ); END_ENTITY; --standard_component_definition (*

4.4.28 standard component standardjrnrt model An entity which connect the standard component definition and the standardjaart model which is defined in ISO 13584.

EXPRESS specification:

*) ENTITY standard_component_standard_part_model ; componet_definition : standard_component_definition; part_model : standard_part_model; END_ENTITY; - - standard_component_standard_part_model (*

Attribute definitions: component definition: the standard component definition which is a part of the assembly model, part model: the standardjpart model describing the standard part included in the assembly model.

Note: The standard part model shall be defined in ISO 13584 Standard Parts.

4.5 Assemblymodelschema function definitions This subclause contains the EXPRESS function definitions in the assembly model schama.

4.5.1 ancestorjproduct definition The function ancestorj)roduct definition determines all the product definition that are the ancestor of the specified product definitions in the tree structure defined by the product structure schema.- assembly_component_usage.

EXPRESS specification:

*) -- This function return all the product_definition that are ancestor of the -- specified product_definition FUNCTION ancestor_product_definition (ancestor: SET OF product_definition; child: SET OF product_definition) : SET OF product_definition; LOCAL local_parent: SET OF product_definition := []; local_ralation: SET OF assembly_component_usage := []; i : INTEGER := 0; j : INTEGER := 0;

247 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 19

END_LOCAL;

-- ERROR child is vacant -- IF (SIZEOF (child) = 0 ) THEN RETURN ([]);

-- extraction of related assembly_component_relationships -- ELSE REPEAT j:= 1 TO HIINDEX(child); local_relation := bag_to_set (USEDIN (child[j], * PRODUCTURE_STRUCTURE_SCHEMA. ASSEMBLY_COMPONENT_USAGE . ' + 1 RELATED_PRODUCT_DEFINITION')); END_REPEAT; IF (SIZEOF (local_relation) = 0) THEN RETURN (ancestor); ELSE

-- extraction of additional ancestor REPEAT i :=1 TO HIINDEX(local_relation) ; REPEAT ] := 1 TO HIINDEX(child); IF (local_relation[i].relating_product_definition <> child [j]) THEN local_parent := local_parent + local_relation[ i] .relating_product_def inition; END_IF; END_REPEAT; END_REPEAT; IF (SIZEOF (local_parent) = 0 ) THEN RETURN (ancestor); ELSE ancestor := ancestor + local parent;

-- ERROR ancestor includes all product_definitions -- IF (SIZEOF (ancestor) = HIINDEX (product_definition)) THEN RETURN (ancestor);

-- extraction of higher level ancestors -- ELSE ancestor := ancestor product definition (ancestor, local_parent); END_IF; END_IF; END_IF; END_IF; END_FUNCTION; (*

Attribute definitions: ancestor: the candidate set of product definitions which shall be the ancestors of the child product definitions in the tree structure defined by the product structure schema.assembly_- component usage. child: the input set of product definitions. The ancestors of these product definitions are extracted by this function.

4.5.2 descendantjproduct definition The function descendent_product_definition determines all the product definition that are the descendents of the specified product definitions in the tree structure defined by the product structure_schema.assembly_component usage.

EXPRESS specification:

*) -- This function return all the product_definition that are descendant of the specified -- product_definition --

248 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17,2000) 20

FUNCTION descendant product definition (descendant: SET OF product_definition; parent: SET OF product_definition) : SET OF product_definition; LOCAL local_child: SET OF product_definition := []; local_ralation: SET OF assembly_component_usage := []; i : INTEGER := 0; j : INTEGER := 0; END_LOCAL;

-- ERROR parent is vacant -- IF (SIZEOF (parent) = 0 ) THEN RETURN ([]);

-- extraction of related assembly_component_relationships -- ELSE REPEAT ]:= 1 TO HIINDEX(parent); local_relation := bag_to_set (USEDIN (child!j], 'PRODUCTURE_STRUCTURE_SCHEMA.ASSEMBLY_COMPONENT_USAGE.'+ ’RELATED_PRODUCT_DEFINITION’ ) ) ; END_REPEAT; IF (SIZEOF (local_relation) = 0) THEN RETURN (descendant); ELSE

-- extraction of additional ancestor REPEAT i :=1 TO HIINDEX(local_relation); REPEAT j := 1 TO HIINDEX(parent); IF (local_relation[i].relatied_product_definition <> parent [j]) THEN local_child := local_child + local_relation[i].related_product_definition; END_IF; END_REPEAT; END_REPEAT; IF (SIZEOF (local_child) = 0 ) THEN RETURN (ancestor); ELSE descendant := descendant + local_child;

-- ERROR ancestor includes all product_definitions -- IF (SIZEOF(descendant) = HIINDEX(product_definition)) THEN RETURN (descendant);

-- extraction of higher level ancestors ELSE descendant := dependant product definition (descendat, local_child); END_IF; END_IF; END_IF; END_IF; END_FUNCTION; (*

Attribute definitions: descendant: the candidate set of product definitions which shall be the descendant of the parent product definitions in the tree structure defined by the product structure schema.assembiy_- component usage. parent: the input set of product definitions. The descendant of these product definitions are extracted by this function.

4.5.3 usingjproduct definition of_shape_aspect The function using_product_definition_of_shape_aspect determines all the product definitions that use the specified shape_aspect to define the shape of the product definitions.

EXPRESS specification:

249 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 21

*) -- This function extract product_definition using a shape_aspect FUNCTION using_product_definition_of_shape_aspect (item:shape_aspect) : product_definition; IF ( 'PRODUCT_DEFINITION_SCHEMA.PRODUCT_DEFINITION ' INTYPEOF (item.of_shape\property_definition.definition)) THEN RETURN (item.of_shape\property_definition.definition) ; ELSE RETURN ([]); END_IF; END_FUNCTION; (*

Attribute definitions: item: the input shape aspect used to define the shape of the product definitions, which shall be extracted.

4.5.4 using product definition of item The function using_product definition ofjtem determines all the product definitions that use the specified geometric representation item to represent the shape of the product definitions.

EXPRESS specification:

*) -- This function extract a product_definitions using a geometric_representation_item FUNCTION using_product_definition_of_item (item: geometric_representation_item) : SET OF product_definition; LOCAL local_reps: SET OF shape_representation := []; local_s_d_r: SET OF shape_definition_representaion := []; local p d s: SET OF production_definition_shape := []; local_s_a: SET OF shape_aspect := [] ; local p d: SET OF product_definition := []; i : INTEGER; END_LOCAL;

-- find representations by applying functions defined in Part 43 local_reps := using_representations (item);

-- find shape_definition_representations REPEAT i:= 1 TO HIINDEX(local_reps); local_s_d_r := bag_to_set (USEDIN (local_reps[i], * PRODUCT_PROPERTY_REPRESENTATION_SCHEMA.SHAPE_DEFINITION_ ' + '_REPRESENTATION.REPRESENTATION_MODEL ' ) ) ; END_REPEAT;

-- find product_definition_shape & product_definitions REPEAT i := 1 TO HIINDEX (local_s_d_r); IF ( ( *PRODUCT_PROPERTY_DEFINITION_SCHEMA.PRODUCT_DEFINITION_SHAPE ' IN TYPEOF (local_s_d_r[i].representation_of)) AND ( *PRODUCT_DEFINITION_SCHEMA.PRODUCT_DEFINITION ' IN (local_s_d_r[i].representation_of\property_definition.definition))) THEN local_p_d := local_p_d + local_s_d_r[i] .representation_of \property_definition.definition; ELSE IF ( (’PRODUCT_PROPERTY_DEFINITION_SCHEMA.SHAPE_ASPECT ' INTYPEOF (local_s_d_r(i].representation_of)) AND ( * PRODUCT_DEFINITION_SCHEMA.PRODUCT_DEFINITION ' IN (local_s_d_r[i].representation_of .of_shape\property_definition.definition) ) ) THEN local_p_d := local_p_d + local_s_d_r[i].representation_of.of_shepe\

250 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 22

property_definition.definition; END_IF; END_IF; END_REPEAT; RETURN (local_p_d); END_FUNCTION;

Attribute definitions: item: the input geometric representation item used to represent the shape of the product_definitions, which shall be extracted.

END_SCHEMA; -- assembly_model_schema

251 ISO 10303-1XX:XXXX iso Assembly Model of Products (Ver. 031, Feb. 17, 2000) 23 Annex A (normative) Short names of entities

(to be completed)

252 ISO 10303-1XX:XXXX iso Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 24 Annex B (normative) Information object registration

(to be completed)

253 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17,2000) 25 Annex C (informative) Computer-interpretable listings

(to be completed)

254 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 26 Annex D (informative) EXPRESS-G figures

The EXPRESS-G representation for the schema defined in the subclauses 4 of this part of ISO 10303 are provided in the following figures.

Note: All the entities related with the assembly model schema is also included in the figure for the easy understanding of the model.

255 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 27

as s cnbl y ,mode I _

prnducl _ definition, scherra.product i on _s c he ira propert y , f i ni t i on u ion nut hod geoirvt r i c_ de fi niiion_ representation schema. shapc_y Vs pe ct

machani cal _ pr oduct_ definition action m: t hod S [ 0: ? j~

2, ; a s s e rrtb I y. mcchani cal _ as s enbl y ■ , st andar d_ component component , la definition property def i ni tion

coupon: nt _ definition dc5 cr i pi i on. standard, component^ assent)! y_ standard,part.

ass eirbl y_ r eI at i ng_ assenbly_ par I _modeI association, pr open y a s s enbl y , st andard_part. 'support, \. resource, V schema. k sj dent i f i erz l association a s s e nbl y _

associ at i on me c ha ni cal, mechani cal _ machani cal _ a s s embl y_ subassembl y, P»rt_ description definition definition definition

def i nilion, association schema, pr oduc S[ 0: ?] definition, retail ng_ Skfl al i onshi p coipponent s_ association ( ABS) component /support, compone nt s _ I resource. j s associ at i on association, ~tVs chema. tea t,Zl retail onshi p des cr i ption structure, component s_ s che ira . next, association assembl y,usage, Vccur ence cottponenl s_ component s _ associat ion, associ at i on, hi erarchy alternative

auxiliary, compone nt s ( ABS) connect i o component s _ posilion_and_ motion usage or i ent at i on auxiliary, component s S[ 0: ? ] position,and. orient ati on mpvable , intermittent, fixed, connect t on connection connection 0 ------C------o connection connection connect■on

fixed, connect i c position_a nd_ pr open y proper!y orientation, proper!y

ki nemal i c,pai ki neimt i c_pai r ki ncma t i c path

1 representat ton, j\ schema. I xj nemal i c pat

Fig. 1 EXPRESS-G diagram of assembly_model_schema

256 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 28 Annex E (informative) Explanation of Assembly Model of Products

1. INTRODUCTION

The objective of this attachment is to present a basic idea and examples of the product model called an assembly model, which is applicable to describe the mechanical assemblies based on the STEP framework. In particular, emphasis is given to establish a data structure to represent the peer to peer associations among the components of the assemblies.

2. CONTENTS OF ASSEMBLY MODEL

2.1 Target Product The target products to be represented by the assembly model are summarized as follows. (1) products composed of sets of components. The products considered here are the assembled products composed of sets of the components. The whole products are called "assemblies", and the components of the lowest levels in the assemblies are called "parts". The components of the intermediate levels are called "sub-assemblies", which are composed of one or more parts and/or sub-assemblies. An assembly consists of one or more sub-assemblies and parts.

(2) Product structure configuration of assembly Product structure configuration is now dealt with in ISO 10303 - 44 to describe the parts lists and the BOM (bill-of-material). Various structure configurations are given to one assembly depending on various contexts. For instance, one configuration of an assembly is considered in the design phase, and the structure configuration may be changed in the assembly process planning phase. The objective of the assembly model is to establish a model describing both the product structure configuration and the connecting associations among the components needed in the various design, analysis and manufacturing process planning phases.

(3) Standard parts The assemblies include many standard parts, such as fixing bolts, keys, and electric motors. The standard parts are basically divided into two; they are, the standard parts included in the parts catalogues discussed in ISO TC 184/SC4/WG2, and the standard parts defined by the users.

2.2 Interest Application Fields

The interest application fields of the assembly model are as follows. (1) Kinematic analysis of mechanical assemblies

257 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 29

Kinematic analysis and simulation are very important application fields of the assembly model. ISO 10303-105 Kinematics supports the kinematic analysis, however, Part 105 is not sufficient to integrate the 3D-CAJD systems and the kinematic analysis systems.

(2) Animation of mechanical assemblies The animation of mechanical assemblies is very important for future extension of the digital-mockup technologies.

(3) Assembly/disassembly process planning The assembly model will support the integration of the product design and the manufacturing preparation. The assembly process planning and the disassembly process planning are important application fields of the assembly model from the viewpoint of the integration of CAD and CAM systems.

(4) Tolerance analysis and synthesis The tolerance analysis and synthesis of the complicated mechanical assembly are very important application fields of the assembly model.

2.3 Contents of Assembly Model

The contents of the assembly model are analyzed from the viewpoints of the design, the analysis and the manufacturing preparation of the mechanical products. The contents are classified into four classes. They are,

(1) Information of individual parts. (2) Information of standard parts. (3) Structure configuration of assembly a) Hierarchical associations (parent-child associations) among assemblies, subassemblies and parts. b) Positions and orientations of components in a higher level component. c) Tolerance of the positions and orientations (4) Component Association a) Peer to peer associations among components. b) Relative positions and orientations of components against other components. c) Relative motions of components against other components. d) Tolerance of the relative motions, positions and orientations. e) Assembly features needed to define technological information of component associations.

258 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 30

Table 1 Contents of STEP model

Information STEP Model

(1), (3)-a), (3)-b) ISO 10303: Part 41 : Fundamentals of Product Description and Support. (1) ISO 10303: Part 42 : Geometric and Topological Representation. (3)-b) ISO 10303: Part 43 : Representation Structures. (3)-a), (3)-b), (4)-b) ISO 10303: Part 44 : Product Structure Configuration. (1) ISO 10303: Part 45 : Materials. (l),(3)-a),(3)-b) ISO 10303: Part 46 : Visual Presentation. (1) ISO 10303: Part 47 : Shape Tolerances. ISO 10303: Part 49 : Process Structure and properties. (1), (3)-a), (3)-b) ISO 10303: Part 101: Draughting. (1) ISO 10303: Part 104: Finite Element Analysis. (4)-a), b), c) ISO 10303: Part 105: Kinematics. (2) ISO 13584: Standard Parts

Most of the information mentioned above can be described by the integrated generic resources and application resources defined in the Parts of the STEP (ISO 10303). Table 1 summarizes the contents of the STEP model.

The information about the individual parts are represented by ISO 10303-41, 42, 43, 45, 46, 47 and 49., and the information about the standard parts may be defined by ISO 13584.

As regards the assembly information (3) and (4), ISO 10303-44 Product Structure Configuration model provides a mechanism to represent (3)-a), (3)-b) and (4)-b). ISO 10303-105 Kinematics gives the mechanism to represent the relative motion between pairs of links that are a set of components fixed with each other.

Therefore, the assembly model deals with the following items of the mechanical products.

(4) Component Association a) Peer to peer associations among components. b) Relative positions and orientations of components against other components. c) Relative motions of components against other components. e) Assembly features needed to define technological information of component associations.

The following items related to the tolerances are considered in the other Part of this Standards.

259 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 31

(3) Structure configuration of assembly c) Tolerance of the positions and orientations (4) Component Association d) Tolerance of the relative motions, positions and orientations.

260 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 32

3. BASIC IDEA OF ASSEMBLY MODEL

3.1 Assembly Features

Figure 1 (a) shows a simple example of the mechanical assembly, which consists of two plates and a fixing bolt. In this case, the connecting associations among the components are presented in the diagram of Fig. 1 (b). In the figure (b), the rectangular blocks show the shape elements on which a pair of components are connected and/or associated. The shape elements, such as planes, holes, screws and nuts, are called “assembly feature” in the assembly model.

The assembly features are the elemental entities for representing the peer to peer associations between a pair of components. For the example, two cases may be considered to represent the assembly features between the flange plate and the bolt in Fig. 1(b).

CASE1: The each individual component has one assembly feature. Assembly feature 1 of flange plate = Hole + Plane Assembly feature 2 of bolt = Cylinder + Plane

CASE 2: The individual faces are defined as the individual features. Assembly feature 11 of flange plate = Hole Assembly feature 12 of flange plate = Plane Assembly feature 21 of bolt = Cylinder Assembly feature 22 of bolt = Plane

The definition of the assembly feature depends on the various viewpoints and the application fields, therefore, both the assembly feature definition of CASE 1 and CASE 2 should be taken into consideration in the assembly model.

Figure 2 shows another example of the assembly of the automotive engines. In this case, the connecting associations include both the fixed connecting association and the movable connecting associations, as shown in Fig. 3. The types of the joints are described for the individual association between the pairs of the assembly features in Fig. 3. A spring part, an elastic component, is also included in the assembly.

261 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 33

Screw & Nut Screw Plane & Plane _

Hole & | Hole"^| plane) | plane Cylinder plane & Plane Flange

(a) Drawing (b) Connecting association among components Fig. 1 Assembly model example 1: Two plates are fixed by a bolt

262 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 34

1. Cam Shaft

11 Journal 12 Cam

3 Revolution 1 Point on surface 2 Revolution

3. Cylinder head 2. Cam follower 33 Plane 34 hole 35 Cone

4 Point on Surface 51 Prismatic 6 Fixed 52 Intermittent

7 Fixed Torus 52 Torus 41^Plane^J j^^^ylinde^^ | 43 Cone 44 Plane

5. Valve spring 4. Valve Elastic Part

^ mechanical part definition^ assembly fixed connection feature Pair name standard component definition; movable connection

Fig. 3 Connecting associations of assembly model example 2

263 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 35

3.2 Basic Structure of Assembly Model

Basic structure of the assembly model considered here is shown in Fig, 4. In the figure, the boxes and the circles describe the components (assemblies, subassemblies, and parts) and the hierarchical associations (parent-child associations) among the component definitions, respectively.

The hierarchical associations are classified into two types. (1) main_component_usage This entity represents the parent-child associations between a pair of components, which are main and/or important components.

(2) auxiliarycomponentusage This entity represents the parent-child association between a pair of components, which are additional, and/or auxiliary components such as fixing bolts, rivets and so on.

In the case of the assembly shown in Fig. 1 (b), the hierarchical associations are as follows.

(a) Assembly <- main_component_usage -> Flange plate (b) Assembly <- main component usage -> Base plate (c) Assembly <- auxiliary component usage -> Bolt

The solid circles in Fig. 4 show the components associations (peer to peer associations) among the components (assemblies, subassemblies, and parts). For examples, all the arcs in Fig. 1 (b) and Fig. 3 represent the peer to peer associations. The details of the components associations are described by the assembly feature associations and the assembly features.

264 ISO 10303-1XX.XXXX ISO Assembly Model of Products (Ver. 031, Feb. 17, 2000) 36

assembly

sub-assemblyl sub-assembly2

sub-assembly3 sub-assembly4 sub-assembly5

parts part4 parti parti parti parti

Assembly_feature_association Assembly_component_usage

Components_association Assembly_feature1 Assembly_feature2

Fig. 4 Basic structure of assembly model

265 ISO 10303-1XX:XXXX ISO Assembly Model of Products (Ver. 0.31, Feb. 17, 2000) 37 Index

(to be completed) ISO TC 184/SC4/WG3 N 830 Date: 99-11-8 Supersedes ISO TC 184/SC4AVG_3

ISO/ [ballot stage] [standard number] - [part number] - [ballot cycle] Document title : Proposal of Integrated AAM for Mechanical Design Manufacturing^) ABSTRACT: This document is proposal of Integrated AAM for Mechanical Design and Manufacturing. This Integrated AAM is detail about Develop Product activity and Design Machining Process activity.

KEYWORDS: AAM Mechanical Design and Manufacturing Design machining process Machining Process Data Model Assembly Feature Data Model

COMMENTS TO READER: This document is a proposal of AAM for Mechanical Design and Manufacturing process. And this document was presented at New Orleans ISO meeting.

OWNER: Yasumasa Oku Editor: Chiaki Sakamoto Address: Japan STEP Promotion Center Komatsu Engineering Co.Ltd. TIME24BLG 10Fl.,2-45,Aomi,Kotoho, E-mail: chiaki [email protected] Tokyol35-8073,Japan Editor: Takeshi Kishinami Hokkaido University TEL: +81-3-5500-0521 E-mail: [email protected] FAX: +81-3-5500-0520 E-mail: [email protected]

267 1. Background We have investigated the data model to develop and manufacture mechanical product. Our main concern is how to deal with the data model through whole process of mechanical product life cycle. And our goal is to develop the technology and establish a standard for consistent data model of mechanical manufacturing process system. At the SC4 San Francisco meeting in January 1999, we presented “Proposal of Integrated AAM for Mechanical Design and Manufacturing (TC184/SC4/WG3 N773)”. In that document, we pointed out the following requirements by analyzing the whole process. (1) Need information for process chain (2) Development of Data model (APs) to support the consistency between mechanical design and manufacturing. (3) Separation of AP domains. We surveyed several related ISO standards from ISO 10303, ISO 14649, IS015531 and so on. These results were induced by analyzing AAM (Application Activity Model) of whole mechanical process. When we investigate and analyze the requirements, we adopt the fundamental STEP development methodology defined by STEP AP development guideline. This time we investigate the detail relationship of Develop Product Process output, Design Machining Process and Design Assembly Process. In this document we will explain the detail Design Machining Process for process planning and operation planning, and emphasize the difference between Product Model Data, which is output of Develop Product Process, and Machining Process Data Model used for Design Machining Process.

2. Conclusion We recognize the importance of different handling of model data between Develop Product process and Design Machining process. As follows, we depict data model and its process activity and its expected functional requirements.

(1) Machining Process Data Model [The positions] Table 1. ’’Proposed machining Process Data Model ” shows the difference between Machining Process Data Model and other existing models. This new model can represent process planning and operation planning data. If the Form Feature of AP224 intend to be applied for Machining Process Data, we need discuss in detail. [The Functions] 1) Design Machining Process (A2): By using Product Model Data (output data model of Develop Product Process activity) and Model Data of Existing Machining Line, it can induce Process and Operation Planning Data. 2) Design Machining Line and Create Process Plan for Machining (A22): By using Form Feature based Product Model Data and Model Data of Existing Machine Line, it can induce Process and Operation Planing Data and Manufacturing Feature based Product Information. (A223,A225,A2231 ,A2232,A2233,A2235,A2251 ,A2252,A2253 will be explained later documentation.)

268 (2) Assembly Feature Data model [The Functions] 1) Design Assembly Process (A3) : - By using Model Data of Existing Assembly Line and Manufacturing Resource Data Model, it can get Tool requirements, Model Data of Assembly Line, Operation Planning Data for Assembly. 2) Capture Assembly Feature (A31): - By using Product Model Data, it can induce Assembly Feature Based Model Data

3. Summary • From this investigation, we propose the need of data model, which can be used in the design machining process activity related product model data. • For process and operation planning of Mechanical product, we must recognize the difference among Product Model Data, Machining Process Data Model and Data Model for Computerized Numerical Controller.

269 11

of

Part 13399)

shape

(ISO

Model

Operation

Operation

Data. Operation

Model Data finished

Feature Computerized

Workpiece

C

by Milling Tolerance

for Type Tool for None

Controllers Milling CNC

None

Geometry Length

Model Engineering for

14649

Cutting Drilling Drilling Freeform

Two5D not (categorized Features) Data.

,

Feature Dimensional only ISO Data Numerical Expression Manufacturing

Model

Data of

of

Model) C]

Data

13399) Tolerance Workingstep

Model

14649) Results

shape

(NIST

with and Model

(ISO

Planning

Data Data

Volume) Management (ISO

Features

Process Operation

Data Data

Turning Geometric Model

Operation Model

finished Feature Describing

Feature

Delta Model

mainly

Process by Process and

Tool of

and Operation

for Tool Type

between Operation

Milling

and

includes

Planning Geometry Data and

B

Model Milling

Machining CNC Cutting

Machine Two5D Drilling Turning describing

for Machining Machining (categorized (Attributes Features

Model Process ‘ * • Process Expression Dimensional - ■* Data Manufacturing Feature

for

[Data except

Model

of C. Proposed B

to to 1.

Data B

A

shape

CAM Geometry

the

to

from from is Geomeries

Table STEPAP224

Geometric

A finished

done done Input Geometry) Workpiece

None None Feature

by and

of be be

for 10303

between for

Planning

and

Planning)

can can Definition Model)

ISO

Feature Model

Process

Process

(categorized (B-rep (Attributes Tolerance Product for Features) Expression Expression Workpiece Dimensional Data Form (NC Conversion Conversion

Plan

Data

AP213 for

of Removal

for Models

Automatic Automatic

STEP

1-1. 1-2. Category Operation 2. Reference Workingstep Stock Feature Relationship Geometry Usage Data Data Tolerance Process Planning Feature Feature Manufacturing Name

270 Integrated AAM on Engineering :

Develop and Manufacture Mechanical Product

Node: Title: Number: 0 1 Number: Data Product Line

of

Model

Data

Manufactured Product Model Manufacturing Product

Mechanical

Tools

Database Technology Manufacturing

Manufacture

Manufacturing etc.)

and

Models

APs

Data Develop

(STEP to

Sysytems, Systems

CAD/CAM CAE PDM Systems,

Engineering

on

Requirements Product AAM

Integrated

Data,

Line

Components,

Model Designed of

Product

Parts

Manufacturing Ideas,

Data

Material

Raw Existing Design Preceding Preliminary Standard Model Title: Node:

272

Data

Product A8

0 of of

Manufactured Line Number: Line and

Model

Data Data

Design Tool Manufacture Tool Model Machining Product Model Assembly A7 Requirements Equipment Assembly V Ai Parts r Assemble — 7

^ ► — — v

Planning

______

l d Model Data Parts Material

[+]

Assembly

Machine

Process for Assembly Data Raw ---- Tool Operation

A6 f Machine i L

A

1 Parts

Machine

CAD/CAM System Model Product

[+]

► Resource Resource Data Manufacturing n -----

Mechanical

and Data

____ Material k program)

---- Mold Machining

of Operation

Process (NC Line Planning for

and

Manufacture

Data

A5 Die

Existing and

------Model Data Assembly

Ai of Model

M V Material Material Welding Develop Model Manufacture Data Database for System Technology

Manufacturing ^ Model

M A4

CAD/CAM Inspection Data System 146491

Design ------Controller Numerical Material PS0 Model

[AP209] Analysis Structural CAD/CAM Data Material

A7.

Raw

A1 Model

[APXXX]

Parametric Data System System,

AAM

Activities

CAD RDM of this

diagram

Line for

Model Model Geometry

child +] Model for

for

Data Data

of has model

composed

Data

[AP223] [AP229] Prototyping

Model is Machining

Model Data

box Title: Configuration [APXXX]

data

Forging Casting A8 Data Rapid [AP203.AP214]

Feature Data and

Designed Existing Model

Product [AP224.AP214, AO

Parts Ideas

Data Form Activity

O +:required ||g|||]:This Design Model Components, Product Requirements Preceding Preliminary Standard Node:

273 Data

Model

Number: Product

>• Test

Report

Machine, System,

Facility

Product Evaluate

CAD/CAM Measuring Test Analysis

Model

[AP209] Data Structural

System, System, System

Design Product CAD PDM CAE Material

Model

Raw [APXXX] Parametric Data Product

Geometry

Concep for

Requirements of

Configuration [AP203] Develop

Model

Data and ] Style Product \ Data Geometry

Model A12 Style Product CAD/CAM System List

Specification AAM System

Define this

CAD System, PDM Product for

model

data

Data

♦.-required Model

Designed

Parts

Ideas

Product

Components, Design Preliminary Standard Preceding

274

4 Planning

Number: of

Line Machinig

Operation for Data

Requirements

and

Data Program Model Machining

Tool NC Process

for

Controter

44643$

Mode)

Computerized

Machining pso Technology

Data tor for

Numencat System

CAM Database Manufacturing

Data

Based Feature Process Model

Model

Manufacturing Inspection Data

Machining

Model

Machining

Design Resource Resource System Data

for Manufacturing CAM

Model

Feature

Data Based Form +]

AAM

this

Model Feature

for

Feature Data Form CAD/CAM System [AP224,AP214, model

Capture data

Line

of

Machining +:required

Data Data

Title: Model Existing Model

A2 Product Node:

275 5

of

Line

Based Data and Data

Data

Number: Machining Model

Operation Manufacturing Feature Requirements Model Machining Tool Process Planning for

to

A226 Plan

Plan

Line

Evaluate Process Requirements Process Design

Machining

Technology

and

> Database Data Resource

Planning Operation Process

of Manufacturing

Database Line

Data

Machining

Manufacturing for

Existing Model Machining Plan

Process

Create

Tool

and

CAM System Line

Tool Machine Requirements Requirement Machining

Proces Plannin Engineer

Design

Manufacturing Planning of

Feature

Software Conversion Process Strategy Plan Process Tolerance

to Requirements for

Form Group in Feature

Engineer

Data Technology

of

Examine Database Model Feature Features

Tolerances

Manufacturing Software Categorize Category Title: Form Manufacturing Form Based

Data

A22 Feature

Model Form Node:

276

Software

A2236 Data Number:

Feature Requirements

Tool Model

Conversion

Data

Based Manufacturing Feature Data Form Model Based Planning Feature

Machining

for

to

Process Form A2235 Group

Process

Each Feature Assign Form Group Feature

Form A2234 Group

Plan

Feature Refine Process

of Proces Plannin

Outline

the Plannin Proces A2233 Create Create Method

Process

Design Each

to for Clamping

Proces Plannin Engineer Plan Manufacturing

Tolerance

Process

for

Requirements the A2232 Each

Machine for

of

Process Select Tool Kind

>

the of A2231

Process Machining Machining Number

Design of

Planning

Strategy Process Form Group Feature Node:

277 7

and Data

Machining Number:

Opearion Process Planning for Requirements

Tool

of

-► to

A2254 Data

Plan

Process

Refine Requirements Process Each

Workingstep

and

Planning

Data Machining

Process for Operation

to

A2253 Process

Plan Assign

Each Workingsteps

Process

and of

Planning

Data Machining Datail

Process for the Operation for

System.

A2252 Create Create Feature CAM

Data(*)

Generate Database

Machining Manufacturing

Workingstep

for Manufacturing Technology Planning

Data Machining

for Process

Engineer for of

Manufacturing

A2251 Line

Tool Data

Process

9. Select

Model Machining Each Page

Machine

the

in

Based

shown

is Data

Data

Feature

Title: Data

Tool Model Planning

Machining Requirements A225 for Manufacturing Process Workingstep

(*) Node:

278 8 File]

File] File]

Data Number:

Data

Program

Program Program Program

NC [Main NC [Process NO [Geometry

Auxiliary

of A234

Function Describe

Describe

Sequence Workingstep of

Names

Computerized

CdnttoBer 14649] for Workingstep

Milling Varible

[IS0 for

Model Mj&retfoa) Data

Program

of

NC

Names

Feature

Generate

Variable Feature

Workpiece Definition

& of

Describe Names

Geometry Variable Describe Definition Geometry

Data

Operation

and Machining

Planning for

AP203] Process

Title: Model

Data Based

(STEP) Data

A23 Model Manufacturing Feature 10303

Geometry [ISO Node:

279 9

File]

Rate.

Names

Data

Feed of Number:

Workingstep

program

and

of Variable

Usage etc. NC [Process

of

the Speed and

Allowance,

Strategy

defines Cutting

Removal etc. Finishing

A2337

Data and includes Chip means

Path,

Functions

Mist, Data

Depth Tool

Describe Machine Manuf Technology

Coolant, Cutting Cutting Workingstep 1)

(*2) (* (*3)

Names

Feature

User A2336 of Variable

Functions Definition

Describe

Definition

GotWkr Computettzed for

[18014649} Workingstep

Mattel

Nwigetfeal

Data Describe

A2335 Planes

Placements A2334

Definition Data(*3)

and

Describe Describe Definition Manuf A2333 Definition Machine

A2332

Describe Describe Functions(*2) Definition Tool A2331 Technology(*1)

Definition

Describe Body

Data Operation

Model

1/1]

Title: and

Machining

Data Parti

Planning for Tool A233

14649 Process

Cutting [ISO Node:

280 10

Data

Program) Number:

of

Line Planning

Robot

Assembly

Data

Requirements for

Model Tool Assembly Operation (Including

Process Model

Data Operation Assembly System

Assembly Assembly

for CAM

Plan Generate

Planning

Data Assembly

Process Assembly Technology for

Process for

Assembly Assembly Line

for Database

Manufacturing Generate Design

Plan System

Assembly

CAM Assembly Resource

Model Process

Assembly Design

and and Data for

Manufacturing

Model

Data Feature Assembly Based Feature

Capture CAD/CAM System Assembly Line

of

Assembly

Title: Data Data

A3 Existing Model Model

Product Node:

281 meeting

SC4 AAM

Center

Manufacturing^)

Orleans

and for

Integrated

New of Promotion at

Design

1999

STEP

Proposal Japan November Mechanical

282 !

.

? cycle it.

job life

its our

develop

for data.

must

through ,

, , we

model suitable

SC4 or

is exist

in t

’ product STEP data model isn

model duplicated

Model

use

t are share ’

data

scope developed

can and

are

investigate scope

s object Which We ’

must our model AP

conclusion If If exchange

- - We data

we ....! first

Application Activity

Many The But When

.Background (1)

1 Integrated

283

Context

.

Information Requirements Process Application line

AAM. and Jan.1999)

AAM, AP

guide

of

of

Lack ARM

of Meeting

ARM development consistency

AP the

Francisco

AP-2 consistency

San

the

current discuss

AP-l

(At

to the

is discuss

like

Overlap

Activity

must AIC

of

Activity AIM

or

would

on

approach We Discussion AM

Latest Proposal Latest Module UOF we

= ATOMIC If Our focused

Current is consistency (1) 2.The

284

' y

WG8 ..... —

Data

P2x/P3x/P4x Schedule

I girder, 4 ;

l^an /

Manufactured Production / — /

1 \

/

\< Process MANDATE Productio^ Purchase AP213/y / Schedule\

(MANDATE,...)

TC184/SC4

\<--_ .... Data

\ X

Data,

\ P2x/3x/4x

Planning v

Flow

Execute 'Production

A4 r Production : \

; / : Lv Available Operation MANDATE AP214/AP213/ Manage Z x Data

...... XjVIaterial / x Production

\ A ^ ^ J

nt'Q^pacit

\ / /

Operation Planning / Ra& /

| ------&

Model

Order

Plan Estifrtdjtful Productu

Order Parts Stock

Lines

Data Customer

and Purchase Production

Production

and

A5 A3 New Supply

Parts Materials Long-term Capacity Estimated Develop Data

Model^X

Data

Model

Model

Model

I I I I I I I Data

Data

Development """"""

Resource

Product Process Product (BoM) Product Process

Proposed Process

Product Raw

Schedule* &

. Machining AP214/AP224/IS014649 Assembly JVlaitnfa^turing Parts Stock I s

Proposal: Establish Requirement Product A1

! i P233/AP209 Model l

Data^lixjel

Data latest Product Product

Specification (STEP,...) ssembly TC184/SC4 Parametric AP203/AP214^ 'A Manufacturing Specification

The

(Ext. 2. Line

285 ! object

our

. for

model.

object

information. data

, our

information next process. next

for

chain SC4

data in sufficient

model

model

Model

have process

t data model ’

data

developed have don

t ’ Activity

are product product

translate modify data

don

conclusion the

We must must

Models use model -

We We second

we ! - -

Data

..... The received

When

Many But If (2) Integrated Application Integrated

286 Data

strategy Feature . ,

” Process

Milling Unidirectional_milling Bidirectional_milling follow

Program)

as

milling

Machining Manufacturing ------”

function Operationdata

Data Machining(NC ”

Operationtype Plane_finishi_milling Plane_rough for

Model

Model

Tool Process Machining Face_Mill FaceJMill Data

:Product

Planning Data Planning

Design Process Process

Product Head_Finish Head_Rough

Workingstep Machining

Operation

and Develop

of Feature

"Design Machining

Process of

Face

“ Result Result

Form

“ define Get

Put

- - Planar We Proposal

287

1

of

Operation

shape Parti Operation Model Feature

Computerized Operation

Workpiece

Chain

finished for CAM None

for

Milling

Controllers

Data

by Type 14649 Milling

from

Model

CNC ISO Process

Process.

-TwoSD -Drilling -Freeform Features) (Categorized (Categorized Expression Data Manufacturing Numerical Output

operate of for

Feature Data

can

shape

Planning

Feature Operation

model Turning

Process Describing Operation Volume)

Each

Manufacturing finished

for and Process which

for

by Delta Data Process

Operation

Type

Milling ”

and of and

Model

Milling

Features Machining Manufacturing (Categorized Model -Drilling -TwoSD -Turning Data Results Machining for Expression

process

Data of

CAM

to for

Design

shape

Workpiece Input

Process

finished

None None for Proposal for

by

Definition Planning

between 10303 Feature

model

AP224 Process ISO Product Features) Form (Categorized ivtodel Expression

Machining Data

Data isaid

need

Model Usage xxw (for step Operation Stock Removal Category Plan) Process Planning Working- Feature

. We

288 Model Model

Process

Model Feature

Data data Model

Data

Data

Machining CMC AP224,Ap214 Assembly

- - - - - Process

Design

Model Model Model Model

and

Feature Process Process Feature Process

Process

Process

Machining Machining Assembly Summary

289 ISO TC 184/SC4/WG12 N 831 Date: 99-11-8 Supersedes ISO TC 184/SC4AVG_3

ISO/ [ballot stage] [standard number] - [part number] - [ballot cycle] Document title: Proposal of Machining Process Model ______ABSTRACT: This document is a discussion paper for the proposal of Machining Process Model. We propose the detail investigation of Machining feature, which is core transform action between Design Process and Manufacturing Process. And we point out the further investigation of role concerning to Machining Feature among AP224,AP214,ISO 14649 and Machining Process Model.

KEYWORDS: Machining Process Model AP224, AP214,ISO14649 Machining Feature Form Feature Process Planning Workingstep

COMMENTS TO READER: This document is a discussion paper for Machining Process. And this document was presented at New Orleans ISO meeting.

OWNER: Yasumasa Oku Editor: Takeshi Kishinami Address: Japan STEP Promotion Center Hokkaido University TIME24BLG 10Fl.,2-45,Aomi,Kotoho, FAX: +81-3-5546-7810 Tokyol35-8073,Japan E-mail: [email protected]

Editor: Chiaki Sakamoto TEL: +81-3-5500-0521 Komatsu Engineering Co.Ltd. FAX: +81-3-5500-0520 E-mail: chiaki sakamoto@KEG .komatsu.co.jp E-mail: [email protected]

290 ISO New Orleans Conference Proposal (1999/11/7-12)

The proposal of Machining Process Model

Proposer : JSTEP Takeshi Kishinami (Graduate school of engineering, Hokkaido University) Contributor : AOS committee (production design group) Fumiki Tanaka (Hokkaido University) Naosuke Toyama (Hokkaido University) Chiaki Sakamoto (Komatsu Engineering Co.Ltd) Noriaki Kojima (Komatsu Ltd.) Yoshiki Muta (Toyota Motor Corporation) Yasumasa Oku (JSTEP) Seishiro Takeuchi (JSTEP) Takamasa Ochiai (JSTEP) Masaharu Tsuchiya (JSTEP)

1. Background/Purpose JSTEP has analyzed activities to the production from the design of the machine product and proposed I-AAM (Integrated Application Activity Model) to clear the following. Whether STEP/Aps proposed until now can become Data Model of which activities, and activities to the production from the design, STEP, to support it, by which activities and what kind of Data Model is necessary. From this analysis work, we have pointed out that Data Model which supports Process planning/Operation planning which interconnects the design and the machining is lacked. This Discussion paper is the material to examine Data Model which is necessary for Operation planning which ties the machining to the design about only one product. We think Operation planning to be the reverse problem of Machining Operation, and the mathematical background is explained here with modeling of Machining Process and necessary Data Model. Also we show that this Data Model is available as Data Model of Operation planning.

2. Scope Machining Operation Information or List of Workingsteps should be inputted, and Machining Process Model until machining feature in the material is formed is made the target.

In Scope: i. Machining Process Model

291 ii. Cutting Tool Model iii. Functional Model of Machine Tools iv. Functional constraints Model and Workingtool v. Machining feature model Out of Scope: i. Process Plan ii. Geometric Processing for generating NC data iii. Machining technologies and Machine functions such as coolant and etc.

3. Why do we discuss a machining process model?

We showed the relations of the standard which relates to the relations of the input/output in Process planning or Operation planning and Machining feature being under consideration at present in ISO in Figure- 1. Our understanding is arranged as follows.

1) We understand that machining feature that it is defined with AP224, AP214 is the standard to express the input data of the Process planning/Operation planning system mainly. (Contain an output data by the case, too) 2) On the other hand, we understand that ISO 14649 (ISO/TCI84/SC 1/WG7 : CNC Data Model) is the standard to prescribe the type of the output of Process planning/Operation planning or the input of the CNC device.

We hopes for the discussion which clears the part of the Machining feature definition of AP224, AP214 and ISO 14649 first. We point out that the following examination is necessary in the case that if Machining Feature in each standard aims at the above-mentioned part.

1) You must be able to express the thing formed by given machine tools and tools and machining technologies with Machining feature in ISO 14649 which is the output expression standard of Process planning/Operation planning. 2) Machining feature of AP224,AP214 which is the input data of Process planning/Operation planning must be converted into ISO 14649 as an output of Process planning/Operation planning. If we say conversely, machining feature of AP224, AP214 must be converted into Machining feature of ISO 14649 as an output.

With this Paper, first, we pay attention to an examination item 1) and analyze the relations between shape of cutting edge,the functional model of machine tools and functional constraint

292 condition (constraint of rotational motion and translational motion) and volume surrounded by envelope, envelope of cutting edge due to the rotation/translation of tools, working edge mathematically, and then propose Machining Process Model. We explain potential Machining feature (Contain Machined Surface / Surface Texture) and the definition necessary condition by Shape of cutting edge (Contain a compound cutting edge) and the tool movement to use with this Machining Process Model . IS014649 CNC Data Model

Form Feature Machining Feature l for Process Planning Process planning Cutting Tool CNC AP224 or AP214 Operation planning Technology Machine Function , \___ Machining operation = Iworkingstep

Figure- 1. Roles of Machining Feature

293 4. Machining Process Model for 3axis milling

4.1 .Mathematical model of milling process

r0=A'{x)Ai(y)A3(z)A,(e)rT 4.1)

where, r0 : Working tool or position of cutting edge on workpiece coordinate system rT : Shape of cutting edge

Al(x)A 2(y)A3(z)A6(d): Functional model of milling machine ^(x): X-axis translation x : control parameter A2(y): Y-axis translation y: control parameter A3(z): Z-axis translation z: control parameter A6(0): Z-axis rotation 6: rotation control parameter

Control on motion of feed driving system: f(x,y,z) = 0 : Restriction equation between control parameters in Functional constraint If x , y, and z are give as follows, they become to Toolpath. x = x(f) y = y(t) 4.2) z = z(t)

Control on motion of main driving system: g |^(0: primary motion 4.3) [const.: primary motion stopped

Structure of milling process |------Shape of cutting edge r0 = Al(x)A 2(y)A3(z)A6(0)rT

------Control on motion of spindle system ------Information of motion of driving system (Functional constraint) ------Enveloping constraint

294 4.2.IDEF0 Model of milling process Volume Surface Surface Texture Removal feature Machined Abstract Machining workpiece workpiece workpiece r=>

of Tool

edge

Macro Macro

motion motion driving

Tool Tool Envelop system feed Swept

Function Swept Working Working

Primary Of Capable

* >

edge

Shaping

of Generate

Working Macro

Tool Form Envelop

Swept on

of

Tool

Swept Generate Envelop Macro based

Tool Swept Macro

motion

Tool

Feed Process Swept

Generate Macro

Tool motion Macro

Generate Feed

Tool

Machining

Generate Macro for

AAM motion motion driving

Cutting system of

Tool feed

Abstract of Functional Constraint Constraint Primary Capable Enveloping workingstep Shape

Figure-4. 1. AAM for Machining Process based on Form Shaping Function IDEFO description Capable motion of feed driving system 4 Generate Functional Constraint Feed Motion Feed Motion

Schematic Diagram

Functional Constraint

x = x(t') ' y = y(0 z = z(t)

Figure-4.2.

C ^ Rotational Motion

IDEFO description primary motion

* 111< Cutting Tool Generate macro tool

Z_axis rotatoin Schematic Diagram Z

Figure-4.3.

296 CT R°tati°nal Motion / ^— Translational Motion

IDEFO description Feed Motion I Macro Tool Generate Swept Macro Tool Swept macro tool

Figure-4.4.

Rotational Motion / ^— Translational Motion IDEFO description Enveloping constraint I Generate envelope of swept Swept macro tool envelope of swept ^ macro tool macro tool

Figure-4.5.

297 Figure-4.6.

Dt : Translational Motion ---- / Dn : Rotational Motion

Role of Envelope of Cutting Tool Macro Tool Swept Macro Tool Working Edge Cutting Edge Swept Macro Tool

Equation DTDnrT (^r) DTrM (®>zr) V0 — rsMT (^iZiS>Zt) rESMT (J-iZiZr) rWE C.ZT )

*

Schematic Diagram m ■m

11 1 ......

Related Primary Motion Feed Motion Envelope Constraint Feed Motion Information

Equation A(8) A(x,z) A(x,z)

Figure-4.7.

298 5. Model of Cutting Tool

rT = ATe4 5.1) e4 = [0 0 0 l]r

At (const.) : a single - point tool At = < At(u) : a blade tool At(u,v ) : a tool working surface

is the shape of cutting edge, At is the cutting edge shaping function. e4 is the reference point of the cutting tool. m is the number of the parameter of the cutting edge shape function.

0: a single - point tool m —< 1: a blade tool 2: a tool working surface

5.1 Single-Point Cutting Tool

5.1.1 Single-Point Tool

rT=Al(R)eA =[R 0 0 if 5.2) where, R is the radius of the tool.

Figure-5.1 . A Single-Point Tool

299 5.1.2 Multi Point Tool

Rcosa i R sin a, rT = A6(ai)Al(R)e4 = 5.3) 0 1 where, R is the radius of the tool and a{ is the angle of the cutting edge.

r Z

V Figure-5.2. A Multi-Point Tool

5.2 Blade Tool 5.2.1 Peripheral cutting edge 5.2.1.1 single blade tool

rT = rT(zT) = A3(zT)AL(R)e4 = [R 0 zT if 5.4) where R is the radius of the tool, 0

Figure-5.3. A Single blade Tool

300 5.2.1.2 multi blade tool

Rcosa i Rsinci; rT = rT(zT)= A^ajA3 (zT)Al (R)e4 5.5) zT 1 where R is the radius of the tool, 0 < zT < B, B is the height of cutting edge, and a\ is the angle of the cutting edge.

Figure -5.4. Multi-Blade Tool

5.2.1.3 Single helical Blade tool

j*?cos| 2it— P

rT ~ rT (?T ) — 2n— (zt)A'(rY = i?sin| 2it— 5.6) P P zT 1 where R is the radius of the tool, 0

301 Figure-5.5. Single-helical Tool

5.2.1.4 Multi-helical Blade tool

7? cos at+ 2n^- P rT =rr(zr) = A6(ai)At R sinj fly + 2n —— 5.7) V V zT 1 where R is the radius of the tool, 0

A R

Figure-5.6. Multi-Helical Blade Tool

302 5.2.1.5 taper blade tool

R + zt tan p 0 rT =rT(zT)= Al(zT tanP)A2(zt)A1 (R)e4 5.8) zT 1 where R is the radius of the tool, 0

Figure-5.7. Taper Blade Tool

5.2.2 End cutting edge 5.2.2.1 Square end cutting edge rT = rT (y) = Al(s)e4 = [s 0 0 if 5.9) where 0 < s < R, R is the radius of the tool.

Figure-5.8. Square end cutting edge

303 5.2.2.2 Drill end cutting edge

R-zt tan p 0 rT - rT(zT)= Al(-zT tanP)A3(- zt)A[(R)e4 = 5.10) -zT 1 where R is the radius of the tool, 0 < zT < B, B is the height of cutting edge, 2p is top angle.

Figure-5.9. Drill end cutting edge

5.2.2.S Ball end cutting edge R cos a0 cos (f> Rsina0 cos0 rT = rT (0) = A6 (a 0 )A5()Al (R)e4 5.11) -Rshuj) 1 where R is the radius of the tool, O<0

304 Figure-5 .10. Ball end cutting edge

5.2.2.4 Comer radius end cutting edge

Rs cos(f)+R L 0 rT — rT((j))— A1(Rl)A5()A (Rs)e4 - 5.12) -Rs sin (j> 1 where, Ri is large radius of the tool , and Rs is small radius of the tool.

Figure-5 .11. Comer radius end cutting edge

5.3 Tool working surface 5.3.1 Cylindrical Tool

305 R cos0 R sin0 rT = rT {)A3(zr )A{(R)e4 = 5.13) — ZT 1 where R is the radius of the tool, 0 < zT < B, B is the height of cutting edge.

Figure -5.12. Cylindrical Tool

5.3.2 Spherical Tool Rcosy/cos(f) Rsinif/ cos(f) rT = rT ((f) .y/) = A6(y/)A5 (^)A1 (R)e4 5.14) -Rsiruj) 1 where R is the radius of the tool

Figure-5 .13. Spherical Tool

306 6. Functional Model of Machine Tools 6.1 Model of 3-axis milling machine

6.1.1 Form-shaping function of 3-axis milling machine The model of 3-axis milling machine (as shown in figure 1) is equation (6.1).

AMT(x,y,z,0)= Al(x)A 2(y)A3(z)A6(0) 6.1)

Using the equation (6.1), form-shaping function of 3-axis milling machine is equation (6.2). rQ = A1 (x)A 2 (y)A3 (z )A6 (0 )rT 6.2) where, rT is the cutting edge vector shown later.

Y

Figure-6. 1. 3 -axis machine tool

6.1.2 Primary motion of 3-axis milling machine cos0 -sin# sin# cos# AP(e) = A‘(e) = 6.3) 0 0 0 0

307 6.1.3 Capable motion of feed driving system in 3-axis milling machine ACF{x,y,z)= A1 (x)A 2 (y)A3 (z) "1 0 0 X "1 0 0 o' "1 0 0 o' 0 1 0 0 0 1 0 y 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 z 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 x 0 1 0 y 6.4) 0 0 1 z 0 0 0 1

6.1.4 Feed motion of 3-axis milling machine

0 x 0 f(x) Af = 6.5) 1 z 0 1

6.2 Model of 5-axis milling machine

6.2.1 Form-shaping function of 5-axis milling machine

The model of 5-axis milling machine (as shown in figure 2) is equation (6.6).

AMT(x,y,z,a,/3,6)=A 4(a)A5(p)Al(x)A 3(z)A2(y)A6(0) 6.6)

Using the equation (6), form-shaping function of 5-axis milling machine is equation (6.7).

r0 = A4 (a)A5 (P)A' (x)A 1 (z)A2 (y )A ‘ (d )rT 6.7)

where, rT is the cutting edge vector shown later.

308 Spindle&Holder Z-table Y-table X-table_B X-table_A X-table

Figure-6.2. 5-axis machine tool

6.2.2 Primary motion of 5-axis milling machine

cos # -sin# 0 0 sin# cos# 0 0 Ap(e) = a 6 (e) = 6.8 ) 0 0 1 0 0 0 0 1

6.2.3 Capable motion of feed driving system in 5-axis milling machine

Acf (x,X, z,aj3) = A4 (a) A5 (j3 )Al (x)A 3 (z)A2 (y) 1 0 0 0 COS P 0 sin p 0 0 COS Of -sin Of 0 0 1 0 0 0 sin Of cos a 0 -sin p 0 COS P 0 0 0 0 1 0 0 0 1 1 0 0 X "1 0 0 o' 1 0 0 o' 0 1 0 0 0 1 0 0 0 1 0 y 0 0 1 0 0 0 1 z 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

COS P 0 sin p xcos P + zsinp sin Of sin p cos of -sin a cos p x sin a sin p + y cosof- zsinacos p 6.9) - cos Of sin P sin Of cos a cos p -x cos Of sin P + y sin Of + z cos Of cos P 0 0 0 1

309 6.2.4 Feed motion of 3-axis milling machine

x(u,v)cos P(u,v) cos P(u,v) sin P(u,v) + z(u,v)sin p(u,v)

x(u, v)sina(«, v)sin P(u,v)+ sina(w,v)sin/3(w,v) cos a(u,v) sina(w,v)cos/?(w,v) y(u,v)cosa(u,v)

- z(u, v)sin a(u, v)cos P(u, v - x(u, vjcos a(u, v)sin p (w, v -cosa(w,v)sin/?(«,v) sincr(w,v) cos a(u, v)cos p(u,v) + j>(w,v)sina(w,v)

+ zcosa(w, v)cos p(u,v) 0 1

6.10)

Model of Machine Tool Mechanism

Parts Coordinate code

____6 Feature Axis2_ placement_3d -n------rr

Kinematics_pair Relation

X-axis_ X-axis_ transformation rotation Cartesian_ transformation Y-axis_ Y-axis transformation rotation

Z-axis_ Z-axis transformation rotation

Figure-6.3. Model of Machine Tool Mechanism

310 6.3 Basic Notation

6.3.1 Coordinate transformation matrix

1 0 0 x 0 10 0 X-axis translation: Al(x) = 6.11) 0 0 10 0 0 0 1

10 0 0 0 1 0 y Y-axis translation: A2(y) = 6.12) 0 0 10 0 0 0 1

1 0 0 O' 0 1 0 0 Z-axis translation: A3 (z) = 6.13) 0 0 1 z 0 0 0 1

1 0 0 0 0 costp -sirup 0 X-axis rotation: A4 (

COS 0 0 1 0 0 Y-axis rotation: A5 (<}>) = 6.15) -siruf) 0 cos if) 0 0 0 0 1

cos# -sin# 0 0 sin# cos# 0 0 Z-axis rotation: A6(d) = 6.16) 0 0 1 0 0 0 0 1

311 7.1 Basic concept of machining feature based on form-shaping function 14649 Abstract S0

I Abstraction workingstep workingstep mapping

one Tool)

Tool to

Tool Macro Working one (*SMT:Swept

Working ZH D-i

SMT* edge

Working of Envelop

!

j ' 7 Swept Macro Macro

edge

Tool ...

/ of Tool

i Swept (JUf Macro Working Envelop

machining

feature Abstract

feature

AP224

concept

STEP feature Abstract machining machining Basic

312 7.2 A single cutting edge machining feature

Abstract workingstep . abstract machining feature, and workingstep Abstract workingstep

The number of links: /=4 Abstract Machining Operation 1 t 3 rri £ The number of parameters o * 1 1 11 m+1 --(2) of capable motion u 0 1 1| -Le J of feed driving system :/-1= 3

The number of parameters of feed motion :/-1-Lf=1 The number of Functional Constraint :Lf The number of Enveloping Constraint :Le One to one mapping Working Tool The number of parameters of Abstract machining feature Swept Macro Tool : m+/-Lf=3

The number of parameters of Working Edge :m+1-Le=1

Figure- 7.2

313 7.2.1 Type of a single cutting edge machining feature

,

2

1

3 by face 3

1

3

2 3

1 wheel = 7 by

m+1,

= = tool

=

=5 = = = =4

= =2 =

is

r Of r A a A Le

and Le m+1

m+1 7-1-Lf 7-1-Lf grinding Drilling (7) (15) surface Sculpture mounted

element 7-1-Lf,

ball 2

2 1 face

0 1 2 A

2 Le,

1 =

= =

mill

- = =2 = by =3 = =2

=

is =

+1 r a A a A y shaping +1

Le Drilling

Le end m

7-1-Lf m 7-1-Lf Tool

milling (6) (14) Unit Sculpture

1

3 2

3

4

4

Macro 0

1

=

= =

= =5 = =2

=4 =3 = =

=

-Lf Of A r Of A and Le

Le Internal

grinding m+1 m+1 7-1 grinding 7-1-Lf cylindrical surface,and Peripheral

(5) d3)r

motion,

2

2 1

3 by 3 3

=

0

=

= -2

=1 mill =4 = =1

= = =2

=

Machined Feed +1 r Of A r Of A

-Lf +1 Le

Le m Reaming end m 7-1-Lf milling 7-1 Peripheral (4) (12)

volume,

1

1 2 1

face

3 2 2 by 0

1 =

= =

= Constraint, point

= = =2 = =1 =0 =

=

-Lf +1

r r Of A Of A +1 Le Boring Le m m 7-1

7-1-Lf cutting Removal single

(3) workingstep (11) Sculpture of

2

3

Enveloping

1

5 =

=

of = =5 = =3

or A Face Le

m+1 0 grinding

3 7-1-Lf

parameter Tapping

0

=

(io)r =3 =3 =3 =

Abstract

the

-Lf

r

Le parameter of

m+1 2

2 7-1

4 4

respectively. 0

=

=

, = = =2 the =

milling

A grinding r

Of A of +1

Le mounted wheels

m 7-1-Lf ) number End related

2 and

by ( (9)

, Dwell

Of The

number

0

2

2

1 1 3 3

and 0

end — 0

= =

= = = = =2 =2 =2

=

milling cutting = respectively.

The

mill -Lf r r Of A +1 a A ball +1 Le

feature: Le

m

7-1 m 7-1-Lf by Tool Face (1) (8) Dwell

of of

machining workingstep:

Tool Tool Working Abstract Abstract Working operation operation machining machining Example Example workingstep workingstep Working Abstract Abstract

Figure- 7.3 7.2.2 Meaning of the parameter of Abstract workingstep

Number of feed directions: /— 1 —Lf => Type of feed direction

O-direction Feed direction 1 -direction 2-direction domain: (dwell cutting) 0S/-1-LfS2 Example of machining operation

Number of Macro Tool : m+1 => Type of Macro Tool

Cutting edge type Single point Blade Surface domain: 1^m-HS3 Example of machining operation

Number of Enveloping Constraint - Le => Type of machining process

1 or 2 Machining Surface milling Volumetric milling

Example of machining operation

Figure - 7.4.

315 7.2.3 Meaning of the parameter of Abstract workingtool

Characteristics of abstract machining feature model A : The number of parameters of Surface Texture

Parametric space

Real world

Surface Texture Groove Smooth Smooth surface surface surface

a : The number of parameters of Machined Surface

Parametric space

Real world

r : The number of parameters of Removal Volume

r 2 3 4 5 A Parametric *<► space )6#

Real world *9

Figure - 7.5.

316 7.3 Compound cutting edge machining feature 7.3.1 Compound cutting edge machining feature model model

Process Tolerance * »- d r

d Q Operation Machining Too/ function Machine Machine

context :?] i-| 2H S[1 ^

(Z) 3 Edge Motion

T Motion (Y)A (0) Surface r 2 Q 6 A Spindle (X)A Constraint Information Functional Table 1 Cutting Workingstep A Spindle

1 L. Blade -c ^

K Motion r

XZ xy drill point Single dwell sweep Spindle Toolpath Controlled Controlled Table -c JD_ Tool Macro feature(EXPRESS-G)

:?] Tool Tool

S[1 0 r Constraint Enveloping Single Compound Working Working

^ -oj T )r 0

( Tool tool-Machining Edge 6 Swept Macro

ofSMT Working Envelop WT1 WT2 WT3 WT4 WT5 (Z)A 3 inclusion mapping 1 5 4

MF3 MF MF MF2 MF (Y)A 2

Texture Volume Surface Surface Form Removal Machined -c -c Feature (X)A

L-C 1 =A 0 volume ASM

r 7srn?r Single Feature Feature Machining Machining Compound Delta Workinosteo-Working

Figure - 7.6. 7.3.2 Type of Compound cutting edge machining feature model ) 0 plane edge st) nst) 1 lling

(,y)= st) ting

' xv m

Co

cut \52ri,

— — = st,f(> Con,

rillinc II m* =Cor 3p n on i 2 c Without cutting

(z= t (x,y 4 Dwe (x,y, Swe< end (z=Cor Milling

) 0 — — — — milling

Fj Lf=1 (f(x,y)= Xz milling

Const)

(z#

J Le=1 lling — Const) rilling =Const) — — Volumetric Lf=2 D Dr 4 (x,y= 4 (x,y=

on

— — — — plane Lf=1

xy Milling (z=Const)

milling

(z=Const) milling

— — — — Lf=2 livX-XwA Surface Le=0 Sweep (z=Const,f(x,y)=0)

cutting Const) cutting

— — — II z=Const) ill Lf=3 z= Tool

Dw< (x,y, Owe ± (x,y,< i

— Lf=1 Lf=3 Lf=2 Lf=2 edge

cutting

Working

End milling of edge

edge Const)

Const)

Le=0 Le=1 milling Without peripheral Volumetric (x,y= (x,y# cutting Surface Type Peripheral^, cutting

Figure - 7.7. 7.4 Example of Machining feature

Primary Hole milling motion /— 1 —Lf=1

Abstract Planner face milling machining feature | Primary 3) Milling on xy plane - Ti=3 ^ j ^ motion

m+1=1

{ CD drilling Slot milling Abstract Abstract Abstract Abstract workingstep machining machining workingstep feature feature Primary Le=o r i=3 rt-3 Le=Q motion O M-Lf=2

m+1»Z m+1=1

dwell cutting^

Abstract Abstract Abstract Abstract workingstep machining machining workingstep feature feature r "2 ri=2 Le=0

O /-1-Lf*0

m+1=2 /—1—Lf=0 ( ® sweep milling ^

Abstract Abstract Abstract Abstract workingstep machining machining workingstep feature feature ---- T t~3 Le=0 ° M-Lf*1 m+1=2

/— 1 — Lf= 1

Figure- 7.8

319 8. Summary In this paper we limit it to the Process planning/Operation planning activities which are necessary for the information conversion to Machining Operation Information from the Design Information of the machine product, and we pointed out the need to examine about the part of Machining feature, especially the part of Machining feature of AP224, AP214, ISO 14649 which becomes the core of the input and output information about those activities. And, in this report, we pointed out that Machining feature should be defined based on the Machined Surface formed when a tool is driven, and we expressed the form of cutting edge, Functional Model of machine tools, generated Machining feature and those relations based on the mathematical model of Machining Process. We think that it is possible to use these Shape of cutting edge expressions, Functional Model of machine tools, generated Machining feature as Data Model in Operation planning.

320 ISO TC 184/SC4/WG3 N 870 Date: 2000-2-14 Supersedes ISO TC 184/SC4/WG3/N830 ISO TC 184/SC4/WG3/N831

ISO/ [ballot stage] [standard number] - [part number] - [ballot cycle] Document title: Need of Machining Process Data Model______ABSTRACT: This document is concerned with Machining Process Data Model for manufacturing mechanical parts. By considering the whole process for manufacturing, we point out the lack of important mechanical manufacturing process chain. From the point of view of manufacturing process, we point out the difference between Form Feature defined by AP224 and Manufacturing Feature defined by IS014649. And we point out the lack of data model to describe process plan data and the need for upgrade of Manufacturing Feature Model. We propose the need of New Machining Process Data Model for manufacturing mechanical parts.

KEYWORDS: AAM Machining Process Data Model Form Feature Machining Feature Machining Technology

COMMENTS TO READER: This document is a discussion paper for Data Model of Manufacturing Process. And this document was presented at Melbourne ISO meeting.

OWNER: Yasumasa Oku Editor: Chiaki Sakamoto Address: Japan STEP Promotion Center Komatsu Engineering Co.Ltd. TIME24BLG 10Fl.,2-45,Aomi,Kotoho, E-mail: chiaki [email protected] Tokyo 135-8073, Japan Editor: Takeshi Kishinami Hokkaido University TEL: +81-3-5500-0521 FAX: +81-3-5546-7810 FAX: +81-3-5500-0520 E-mail: [email protected]. hokudai .ac E-mail: [email protected]

321 i Database

Feature

Model Technology Model

Data Data

Data

Model Manufacturing

Model

Machining and

in Process Process

Process Data

Items

Feature

Feature

Data

Process

Machining Form

Machining

Machining Plan

Presentation New

Items Basic Feature

for New between

Machining to

Process

Manufacturing of

of of

New

of

Discussion Need

Differences Usage

Example Role Requirements Relationship Our Manufacturing

3.2 3.1 3.1 1. 5. 6. 3. 4. 2.

322 2 Product Manufactured Number: Tool A7 Requirements Assembly Equipment I Parts Assemble ► ► — ------Ba* Machined ------Tool

A6 Machine

Parts

Machine Model Product

M

► Resource Data Manufacturing ----- Mechanical

Material Engineering(l) —

-J Mold

aid Manufacture A5 for Die

and

Material Develop AM

Manufacture Database Technology Manufacturing A ^

System

______Model

[AP209] Analysis CAD/CAM Structural Data Material Integrated Raw Model

A1-A7.

[APXXX] Parametric Data AAM

Activities

this

of

diagram

Line for

Model Model

Geometry

for child

for

Data Data

of

model composed has

[AP223] [AP229] Prototyping

Model Machining Is

Model Title: Data

Configuration [APXXX] box

data

Forging Casting

A8

Data Rapid IAP283.AP214]

Data and Designed :This Model Existing

Product AD

Parts Ideas

Activity

Dab I

(*) -^required Design Design Mo* Components, Product Requirements Preliminary Standard Preceding Node:

323 3 4

for

Number: of Operation

Line

Data and Data

Requirements

Model Machining Tool Machining NCProgian Process Planning Technology Machining

for

System

CAM Database Manufacturing

Based

Data

Model Process

M Inspection Data

Manufacturing Feature Model Engineering^)

Machining

Model for Machining Design Design Resource System

Data

for Manufacturing CAM AAM

Model

Feature

Form Based +]

AAM

Integrated

this

Feature Model Feature

for

Capture Data Data Form Form [AP224,AP214, model

data

Line

of Machining +:required

Data Data

Title: Model Existing Model

A2 Product Node:

324 Requirements for New Machining Process Data Model

Q: has its own model □ : refers to the existing model [/] '• out of scope

Product Modeling Other Models by using CAD Data Models

Dimensional, Geometry Data tolerances and (STEP AP203) Geometric, I STEP AP224 tolerances Input Data for CAM Properties (Surface_roughness, etc) U) w Process Planning Dimensional, Ui by using CAM tolerances Machining and Geometric, Process tolerances Data Model (Simplified Model) Surface_noughness Process Data

CNC Data Tolerance for Length I Model Input Data for CMC (IS014649) Surface_roughness Parti 1

[*1] : Form Feature Model 1*2]: Manufacturing Feature Model Machining by using Machine Tool with CNC [*3] : Manufacturing Feature Model with Feature Relationship and Stock Removal [*4] : There is no international standard to be referred STEP AP213(NC Process Planning) Is a Data Model mainly for Management, not for Engineering.

4

5 3.0

0.5

=

=

true

O.Ssec

= bottom = side at_bottom Finishing, depth allowance, Dwell_time_ Spindle_stop_ Radial_cuttlng_

in

m/min m/min

m/m mm/rev

mm/rev mm/rev

Feedrate Feedrate Feedrate 62.8 0.1 0.3 Cutspeed Cutspeed Cutspeed 100.0 0.65

=40.0 = = = = = Technology Epilsi strategy i Database

: :

i I 3E V Boring Drilling X\N^xNX\\< o Contour_parallel [Oriented_spindle_stop] Machining

| j Two5D_milling]

Technology

for

Tool 8fratefly

UnidirecUon miling sink

tool Endmill Boring, Counter | [Operation_data_tables] (ABS)Two5D I

| [Machhfiing_strategy

Machining '

I l V

| in |

jinking Boring Dhltng Reaming Cenhr_dnNng MuSrtapjdriling Owrtf

| Operationjype d d d -C - - r % Side Feature rough Boring milling

sinking Counter I opention

10 05

Tapping ld BaeKJxxing ThraacLdnlhg SR_01 CS BR (ABS)Driling (ABSJBomg-operation

| 1 -d -C -c (ABS)OrilhgJype_opeiebon miling

ition of

Table

Id Manufacturing

BR.05 SR.01 CS_10 aideJinijhjniling 30mm Plane]

Data miling milng

Feature]

>= and»idejDugh of

ton frish rough table] conditions

Starting

Botanj«nd Botbom diam. of Precise

Sidejinetunillng SidejougluniUng (Materiall Cast Phne PSne Prejnachined [Hob_bottom_condition] [Surface_roughnessside] Ing

Usage Feature Nominal [Condition mi Through_bottom_cond

sequence Target_feature

Manufacturing Compoundjfeature Round_hole(Straight) Round_hole(Tapered) opemUon

of and*ide

type m#ng

+ Id (ABS)Side_milhg (ABSJPbnejnillng

(ABS)6otiom

Hole.CS Freefcnn.opemtjon JiokfTapered) ] C feature — Hole_Finlsh Hole_Rough Workingstep (*BS)TwfiD Feature

Compound, (ABS)MillngJype_opwation KZ RoundJiole^Straight) Round 1st 3rd 2nd Seq [Specification [Operationjype]

326 6

of Step. 1]

is 1]

1]

is

or composed

Feature

Feature.

and

are

Parti

Bottom Parti Parti

Boss

Boss

pocket Pocket. of attribute pocket

of

Feature.

of

a for

Model

another the one Solutions Model Model

not is Pocket Planar_face as as Open

Closed is Data

Data Manufacturing Data G

in -C — Round_holes.

(ABS) Cutout Boss Side_surface Top_surfece (Through_bottom_condition) Conditions Counterbore_hole Pocket, defined defined [CNC Compound_features Countersunk_hole of [CNC [CNC Feature(l)

as

view,

view

Plunge

portion of of

a composed of the a

is relationship

point as

strategy general, point Base_surface

closed. Straight_hole. need

in

Workingsteps

or

and Feature exact whether

and may

defined

same open only

Boss

have operations. Manufacturing machining be Form

is

a Target_features of technological

of "Countersunk_hole".

technological

know Side_surface. all

has Milling Countersunk_hole are and

simultaneously cannot to should

basically

on

Pocket

Issues Tapered_hole

Closed_pocket like of

has

holes.

machining before Page_5, machining

Pockets. Side_surface

example, Holes,

machined

would the

2 these Base_surface.

From

Cutout from .As Feature In For Workingstep Because of 1. boundary Drilling to Workingsteps 1 independent

Side_surface 2.Top_surface 2. other are of we

hole Form

surface cutout cutout

Top_surface Side_surface Base pocket Feature pocket

Top_surface)

Circular General + between Form

open Lo closed AP224[E2])

Countersunk of

-V*

Recess (STEP GeneraLpocket Pocket

(Side_surface

Examples Rectangular Rectangular (ABS)Cutout

Counterbore_hole (ABS) Boss -0 -0 -0 l-C Differences Feature]

of

of of Feature Feature Number Types Feature 1. 2.Combined S.Components [Categories

327 7

I

its Feature Axis

have

as before

should

Feature Model] the

Model]

and

to create other

feature.

should Stock.remove

into

Data to to Data

removal

Features feature its_stock_removal machined

Solutions

Feature Non_volumetric stock not

Process Manufacturing Process Planar_face

its or

categorized in

Each of .Basically Relationship Features. Planar.face

1 [New be Non_volumetric has attribute. 2.Each Volumetric of [New

Step Round_hole. Feature(2)

machined

Planar_face Profile_feature is for

Revolved_feature

Round.hole. its

Information

.hole.

view

d c c c needed of and

1

— — — from — need Feature. is (ABS)Non_volumetric_feature

Feature machining Round

Feature.

Plane_angle_measure to

point

We

1 machining of 2.Planar_face Workingsteps Workingsteps for of Shape each

Feature Feature of its

Features

difficult of

machining is

Manufacturing Form

it Removal

for of

removal

technological but Pocket Groove between

Workingsteps

Round_hole]

RouncLhole Stock and Geometry

of stock

Issues on

has

machining (ABS)Volumetric_feature determine Rart Workingsteps

Relationship 1. Base_shape, 2. calculate depend Feature. [Example to Planar_face Round.hole Feature

.

Form

Feature

of representaion representation

lmplicit_base_

1 B-rep_form representation Feature between

Relationship (ABS) shape shape ExpliciLbase_shape.

analysis Block_base_shape

get between

__C Form by

Brep

AP224[E2]) of to

------Relationship

(STEP Cylindrical_base_shape no Features practical

is Examples

not

is

There base_shape_defmition Features. (It Geometries.) between physical_form Differences (ABS)Base_shape Feature]

of

of ship Stock

(Delta between 4. Volume Removal Features Feature) 5.Relation, [Attributes

328 8 ) 1 ,+ 0 Ato. ,

Jude ►(0,0,-i) [Ommteeboee (E)

pkmdJI*! Planning

Process

, for

[Coantert*mJ*ol» Workpiece

Example (AorB)

PldeJL] Q«n*«LpHliid»profib

329 9 profile profile]

Position

and and and and and Center (Y_axis) (X_axis) (Y_axis)

Hole_107 Hole_107 Hole_107 outside Side_planes Side_planes Side_planes Side_planes Upper_plane outside Side.planes Center Bottom.plane

Planar.face Planarface Clamping GeneraLoutside.profile General Machining General

| Machining

1 1 1 1 1

with with | Index Index Table Table VMC VMC HMC HMC VMC Machine

1 101 104 102 103

milling milling HMC:Horizontal VMC:Vertical milling milling Side

Side Side. Side Side

Workingstep

|

finish finish rough rough

Woikingsteps Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps

Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps Workingsteps E D A A A All All All All All All All All All All All All All All All All All All All All All All All Side Side Side Side

Assigned re re

Boss)

profile ______

feature feature feature feature feature feature featu feature featu face face face face

pocket

IS014649

Slot Slot Slot Slot Slot Data of Workpiece

pocket(with Planar Planar Planar.face Planar Planar

mpound mpound

Closed Compound Compound Compound Compound.feature Compound Compound Compound Co Compound Compound.feature Co Plan GeneraLoutside.profile General.outside.profile GeneraLoutside GeneraLoutside.profile Open

HeadJZ) Features

1 1 1 1 1 1 1 1 1 1 1 1 in 1 1 1 1 1 1 2 4 2 2 2 2 2 2 2 Boss)

hole(Straight)]

1

1 2 3 101 102 1 Example 2 3 4 Closed_pocket

107 101 103 102 104 105 106 101 103 108 109 104 102 | | 110 101 103

included

Process

Round_hole(Straight)] is Round

+ + Slot Slot

Slot Slot

Head Jhole] Head re Head for Side Hole Hole Hole Side Side. Side.

Hole Hole Hole Hole Hole Hole Hole.111 Side Side Hole Manufacturing Tee-slot, | Pocket Pocket

1 Boss_1 1

Round

Open_pocket(with

of

B of A E A C D

A Gr

|

1

Data | hole(Straight)

st nd attribute

1 3rd Compound_feature Compound_featu 5th 4th 2 Pocket_102 Process (Top.surface [Round [An [Round_hole(Tapered)

| | | Plan

i Manufacturing_feature]

► ► ► ► Pocket_101 to

|

------— ------pocket profile hole hole hole

hole hole hole hole hole hole Process

feature feature boss face cutout face face

open

Form_feature Slot Slot Slot Slot Slot Step

outside AP224 Thread Thread Thread

pocket

hole hole boss

Planar Planar Planar of

Group General General,

from cutout

Counterbore Countersunk Countersunk Countersunk Countersunk open Countersunk Countersunk Countersunk Countersunk Compound Compound

Rectangular General Thread 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 4 2 2 2 2 Features

General Rectangular, Counterbore Countersunk Feature Features 1

1 1 Rectangular 3

2 2

1 2 1 3 1 1 7 3 5 1 2 4 6 8

9

2 3 4 11 10 Form of

1 1 1 Slot SloM Slot Slot Hole Hole Hole Hole Hole Hole Hole Hole Hole Step Side Boss Head Head Head Form Hole, Hole, Pocket, Pocket Thread, Thread Thread Tee-slot 1

2 1

B E A D Q Gr Boss Pocket, Pocket 1 3 6 7 8 2 5 9 4 Transformation 11 13 14 10 12 15 16 17 18 19 20 22 24 27 21 23 25 26

330 Operation Plan Data of the 3rd Process for Example Workpiece

This Process is composed of the following 46 Workingsteps. Seq Workingstep ID Target Feature Operation type, ID of Data Table s«i | Workingstep ID | Target Feature | Operation-type, ID of Data Table 1 Head 2 Rough Head 2 Plane rough milling PR 01 Table Is Idexed 2 Step 1 Plane Rough Step 1 Plane rough milling PR 02 28 Head3 Rough Head-3 Plane rough milling PR-02 3 Side 101 Rough Side 101 Side rough milling SR-01 29 Hole 109-Drilling Hole-109 Drilling DR.08 C 4 Side 103 Rough Side 103 Side nough milling SR-01 30 Hole 109 Counter sinking Hole-109 Countersinking CS-07 5 Step 1 Side Rough Step 1 Side rough milling SR-01 31 Head3 Finish Head-3 Plane-finish-milling PF 01 6 Pocket 102 Plunge Drilling PockeL102 Drilling DR 02 Table Is Idexed 7 SloL2 Plunge Drilling Slot-2 Drilling DR-03 32 Hole 108 Center drilling Hole-108 Centerdrilling CD 01 8 Pocket 101 .Rough Pocket 101 Bottom_and_side_rough_milling BSR 01 33 Hole 108 Drilling Hote-108 Drilling DR 01 9 Pocket 102 Rough PockeL102 Bottom and side rough milling BSR.02 34 Hole 108 Counter sinking Hole-108 Countersinking CS 08 10 SbL2 Rough SloL2 Bottom and side rough milling BSR.03 35 Pocket-101 -Finish Pocket 101 Bottom and side finish milling BSF-01 11 Sk>L1 Rough SloL1 Bottom and side rough milling BSR 04 36 Pocket-102-Finish Pocket-102 Bottom and side finish milling BSF-02 12 Tee-sloL1 SloLRough Tee-slot 1 Bottom and side rough milling BSR 05 37 Step 1-Side-Finish Step-1 Botlom and side finish milling BSF-03 13 Tee-ekrt 1 T ee-6krt Rough Tee-sloL1 Bottom and side rough milling BSR 06 38 Slot 1 Finish Slot-1 Bottom and side finish milling BSF 04 14 Hole 102 Drilling Hole 102 A Drilling DR 04 39 Sk>t 2 Finish Sk>t-2 A Bottom and side finish milling BSF-05 15 Hole 103 Drilling Hole 103 Drilling DR 04 40 Tee-sloLI -Slot-Finish Tee-sloL1 Bottom and side finish m illing BSF-06 16 Hole 104 Drilling Hole 104 Drilling DR-05 41 Tee-slct 1 Tee-sloLFinish Tee-s lot-1 Bottom and side finish milling BSF-07 17 Hole 105 Drilling Hole 105 Drilling DR-06 42 Hote-105 Tapping Hole-105 Tapping TA-01 18 Hole 106 Drilling Hole 106 Drilling DR-07 43 Head2 Finish Head-2 Plane finish-milling PF-02 19 Hole 101 Rough Boring Hole 101 Boring BR-01 44 Step-1-Plane-Finish Step-1 Plane finish milling PF-03 20 Hole 102 Boring Hole 102 Boring BR 02 45 Hote-101-Finish-Boring Hole-101 Boring BF-01 21 Hole 103 Boring Hole 103 Boring BR-02 46 Hote-106-Reaming Hole-106 Reaming RE-01 22 Hole 101 Counter 3inking Hole 101 Countersinking CS 01 23 Hole 102 Counter sinking Hole 102 Countersinking CS-02 24 Hole 103 Counter sinking Hole 103 Countersinking CS 03 The contents of Operation Data Table as shown in the Page3 are included in Operation Plan Data, but they are omitted in this page. In this table, 25 Hole 104 Counter 3inking Hole 104 Countersinking CS-04 only ID's of Operation Data Table are shown. 26 Hole 105 Counter sinking Hole 105 Countersinking CS 05 27 Hole 106 Counter sinking Hole 106 Countersinking CS-06

[Definition of Operation Planning]

1. To set the contents of Operation Data Table for Workingsteps

2. To determine the sequence of Workingsteps in a Process

10

li

have

is

will

Kishinami

for

and follows.

which

Prof. as

by

database

Model) theoretically feature. Workingstep.

Model Model_B

a

presented

and

for

technology was

(Application Model_B Process

Table

by

which future.

Model_A manufacturing

a Data Model

near

Data, manufacturing Model

in

Data

Machining expressed

of

Operation

machining

Data Process Process

Basic

Process of

for

for to contents

automatically

the

Process

Contents

Models Machining

Machining

create the

Features analyze

to Two

Workingsteps

Basic New Relationship

today can

have

Orleans create generate

we

To To possibility possibility

New

(2) (1) (1) Model_A introduced Manufacturing Model_B in the Model_A Now

332 12 ?

?

Model

?

Tool Feature

SCI

or

Machine SC4

in for

Manufacturing

and Items

Standard

developed

be

Feature

Discussion

Model

Form

International

Our of

Data the

Process

develop Definitions

are will

New

Who Shall What

1. 3. 2.

333 tbht'Vto

®if°r*sitTT$o 0 TEL : 03 - 3987 - 9389 Fax : 03 - 3987 - 9394