What is the relationship between productivity and species richness? A critical review and meta- analysis

JarrodCusens

AthesissubmittedtoAucklandUniversityofTechnology inpartialfulfilmentoftherequirementsforthedegreeof MastersofAppliedScience(MAppSc)

2011

SchoolofAppliedScience

PrimarySupervisor:Dr.LenGillman

CONTENTS

LIST OF FIGURES ...... v

LIST OF TABLES ...... x

ATTESTATION OF AUTHORSHIP ...... xi

ACKNOWLEDGEMENTS ...... xii

ABSTRACT ...... 1

1. INTRODUCTION ...... 3

1.1Patternsofdiversity...... 3

1.2.Energyandspeciesrichness...... 4

1.3ReviewsofthePSRR...... 6

1.4.CriticalanalysisofPSRRreviews...... 7 1.4.1.Scale...... 7 1.4.2Useofproductivitysurrogates...... 8 1.4.3Statisticalissues...... 14

1.5Reanalysisoftheplant–PSRR(Gillman&Wright2006)...... 16

1.6Theoreticalexplanationsfortheobservedpatternsofspeciesrichness.....17 1.6.1Species–energytheory...... 18 1.6.2Physiologicaltolerancehypothesis...... 19 1.6.3Evolutionaryspeedhypothesis...... 21 1.6.4Nicheconservatism...... 22

1.7Theanimal–productivityspeciesrichnessrelationship...... 24

2. INTRODUCTION TO META -ANALYSIS ...... 28

2.1Votecounting...... 29

2.2Metaanalysis...... 30

2.3Studyselection...... 31

2.4Publicationbias...... 33

i 2.5Conclusionandsummary...... 35

3. METHODS ...... 37

3.1Collectingthememberstudies...... 37 3.1.1Keywordsearch...... 37 3.1.2Studygroupingandselectioncriteria...... 38

3.2Justificationofselectioncriteria...... 39 3.2.1Unequalsamplingorvariablearea...... 39 3.2.2Anthropogenicinfluence...... 40 3.2.3Introducedspeciesinfluence...... 41 3.2.4Appropriateuseofproductivitysurrogates...... 42 3.2.5Dataduplication...... 45 3.2.6Taxonomicrestriction...... 46 3.2.7Samplesize≥10...... 47

3.2Collectingthedata...... 48

3.4Classifyingtheformoftherelationships...... 49

3.5Votecount...... 50 3.5.1Theinfluenceofscale...... 51 3.5.2Theinfluenceofecosystemtype...... 51 3.5.3Patternsinhomeothermsandpoikilotherms...... 52

3.6Metaanalysis...... 52 3.6.1Calculatingeffectsizes...... 52 3.6.2Checkingforpublicationbias...... 53

4. RESULTS ...... 55

4.1Votecount...... 55

4.2Theinfluenceofscale...... 60 4.2.1Geographicextent...... 60 4.2.2Grain...... 63

4.3Theinfluenceofecosystemtype...... 65

4.4Patternsinhomeothermsandpoikilotherms...... 67

4.5Metaanalysis...... 69

ii 4.6Effectsizesacrossscales...... 71 4.6.1Geographicextent...... 71

4.6.2Grain...... 73

4.7Effectsizeacrossdifferentecosystemtypes...... 74

4.8Effectsizesinhomeothermsandpoikilotherms...... 75

4.9Assessingpublicationbias...... 76

5. DISCUSSION ...... 77

5.1Anoteonnegativeandushapedrelationships...... 80

5.2Datasetdescription...... 81

5.3ExplainingthecontrastwithMittelbachetal(2001)...... 82 5.3.1Datasetsize...... 83 5.3.2Theinfluenceofmacroscalestudies...... 85 5.3.3Theinfluenceofselectioncriteria...... 87 5.3.4Theinfluenceofrelationshipclassification...... 90 5.3.5Examplesofinappropriaterelationshipclassification...... 96

5.4Conclusionsonexplanationsforcontrastingresults...... 104

5.5Theinfluenceofscale...... 105 5.5.1Geographicextent...... 105 5.5.2Grain...... 109

5.6Theinfluenceofecosystemtype...... 112 5.6.1Terrestrial...... 112 5.6.2Freshwater...... 113 5.6.3Marine...... 116

5.7Relationshipsinhomeothermsandpoikilotherms...... 121 5.7.1Homeotherms...... 121 5.7.2Poikilotherms...... 123

5.8TheoriestoexplaintheobservedA–PSRRs...... 124 5.8.1Competitiveexclusion...... 124 5.8.2Speciespoolhypothesis...... 125 5.8.3Moreindividualshypothesis...... 126 5.8.4Metabolictheoryofecology...... 127 iii 5.8.5Evolutionaryspeedhypothesis...... 128

CONCLUSION ...... 130

6. REFERENCES ...... 132

APPENDICES ...... 143

Appendix1...... 143

Appendix2...... 167

REFERENCES FOR APPENDICES ...... 177

iv LIST OF FIGURES

Figure1.Thehypothesisedunimodalorhumpshapedrelationshipbetweenproductivity andspeciesrichness....... 5 Figure2.Thenumberofstudieswith“metaanalysis”asatopicperyearbetween1991 and2010inecologicalresearchin ISIWebofScience. ...... 29 Figure3.Anexampleofasimulatedfunnelplotofanunbiasedmetaanalysiswitha symmetricalfunnelform....... 34 Figure4.Anexampleofasimulatedfunnelplotofametaanalysiswithbiasagainst studieswithsmalleffectsizes,indicatedbytheskewed,nonsymmetricalform...34 Figure5.TheproportionofdifferentA–PSR(Animalproductivityspeciesrichness) relationshipswithintheentiredatasetpriortoapplyinganystudyselectioncriteria andforwhichthePSRrelationshipcouldbereasonablyidentified(n=286).P, positive;N,negative;UM,unimodal;US,ushaped;NS,nonsignificant....... 58 Figure6.TheproportionofdifferentA–PSRrelationshipsafterapplyingthenine selectioncriteria,includingstudiesforwhichnorawdatawereavailableforre analysis(n=141).RelationshipcodesasinFigure5....... 58 Figure7.TheproportionofdifferentAPSRstudiesafterapplyingthenineselection criteria,andforwhichrawdatawereavailableforreanalysis(n=112). RelationshipcodesasinFigure5...... 59 Figure8.TheproportionofdifferentA–PSRrelationships,separatedintoaccelerating anddecelerating,quadraticrelationshipsforwhichrawdatawereavailable(n= 112).P,positive;AcP,acceleratingpositive;DcP,deceleratingpositive;N, negative;DcN,deceleratingnegative;UM,unimodal;US,ushaped;NS,non significant....... 59 Figure9.TheproportionofdifferentA–PSRrelationshipsatthethreegeographicscales (continentaltoglobal,n=36;Regional,n=46;Localtolandscape,n=23). RelationshipcodesasinFigure5...... 61 Figure10.TheproportionofdifferentA–PSRrelationshipsatthethreespatialextents, separatedintotheirrespectiveacceleratinganddecelerating,quadratic relationships.(A)Continentaltoglobal(n=36);(B)regional(n=46);(C)local tolandscape(n=23).RelationshipcodesasinFigure8....... 62 Figure11.TheproportionofdifferentA–PSRrelationshipsatthetwosamplinggrains (coarse,n=69;fine,n=29).RelationshipcodesasinFigure5....... 63

v Figure12.TheproportionofdifferentA–PSRrelationshipsatthecoarsesampling grain,separatedintotheirrespectiveacceleratinganddecelerating,quadratic relationships(n=69).RelationshipcodesasinFigure8....... 64 Figure13.TheproportionofdifferentA–PSRrelationshipsatthefinesamplinggrain, separatedintotheirrespectiveacceleratinganddecelerating,quadratic relationships(n=29).RelationshipcodesasinFigure8....... 64 Figure14.TheproportionofdifferentA–PSRrelationshipsindifferentecosystemtypes (terrestrial,n=54;freshwater,n=23;marine,n=21).Relationshipcodesasin Figure5....... 65 Figure15.TheproportionofdifferentA–PSRrelationshipsindifferentecosystems, separatedintotheirrespectiveacceleratinganddecelerating,quadratic relationships.(A)Terrestrial(n=54);(B)freshwater(n=23);(C)marine(n=21). RelationshipcodesasinFigure8...... 66 Figure16.TheproportionofdifferentA–PSRrelationshipsinhomeothermsand poikilotherms(homeotherms,n=34;poikilothermsn=78).Relationshipcodesas inFigure5....... 67 Figure17.TheproportionofdifferentA–PSRrelationshipsinhomeotherms,separated intotheirrespectiveacceleratinganddecelerating,quadraticrelationships(n=34). RelationshipcodesasinFigure8...... 68 Figure18.TheproportionofdifferentA–PSRrelationshipsinpoikilothermic organisms,separatedintotheirrespectiveacceleratinganddecelerating,quadratic relationships(n=78).RelationshipcodesasinFigure8....... 68 Figure19.Meaneffectsizes(with95%confidenceintervals)ofdifferentA–PSR relationships(n=112).RelationshipcodesasinFigure5....... 70 Figure20.Meaneffectsizes(with95%confidenceintervals)ofdifferentA–PSR relationships,separatedintotheirrespectiveacceleratinganddecelerating, quadraticrelationships(n=111).RelationshipcodesasinFigure5....... 70 Figure21.Themeaneffectsizes(with95%confidenceintervals)ofdifferentA–PSR relationshipsacrossdifferentgeographicalscales(●,continentaltoglobal,n=36; ♦,regional,n=46;■,localtolandscape,n=22).RelationshipcodesasinFigure 5....... 72 Figure22.Themeaneffectsizes(with95%confidenceintervals)ofdifferentA–PSR relationshipsatdifferentsamplinggrains(●,coarse,n=69;♦,fine,n=28). RelationshipcodesasinFigure5...... 73

vi Figure23.Themeaneffectsizes(with95%confidenceintervals)ofdifferentA–PSR relationshipsacrossdifferentecosystemtypes(●,terrestrial,n=54;♦,freshwater, n=22;■,marine,n=19).RelationshipcodesasinFigure5....... 74 Figure24.Themeaneffectsizes(with95%confidenceintervals)ofdifferentA–PSR relationshipsofhomeothermsandpoikilotherms(●,homeotherms,n=33;♦, poikilotherms,n=78).RelationshipcodesasinFigure5....... 75 Figure25.Afunnelploteffectsizeplottedagainstsamplesize(logtransformed)(n= 112).(●,studieswithsignificantrelationships;○,studieswithnonsignificant relationships)...... 76 Figure26.TheproportionsofdifferentA–PSRrelationshipsacrossgeographicalextents reportedbyMittelbachetal.(2001)(continentaltoglobal,n=25;regional,n=26, localtolandscape,n=14).RelationshipcodesasinFigure5....... 78 Figure27.TheproportionofdifferentA–PSRrelationshipsatthethreegeographic extentsreportedinthepresentstudy(continentaltoglobal,n=36;Regional,n= 46;Localtolandscape,n=23).RelationshipcodesasinFigure5....... 78 Figure28.TheproportionofdifferentA–PSRrelationshipsindifferentecosystemtypes reportedbyMittelbachetal.(2001)(terrestrial,n=43;aquaticn=38). RelationshipcodesasinFigure5...... 79 Figure29.TheproportionofdifferentA–PSRrelationshipsindifferentecosystemtypes reportedinthepresentstudy(terrestrial,n=54;aquaticn=44).Relationship codesasinFigure5....... 79 Figure30.TheproportionofdifferentA–PSRrelationshipsaftercollapsingnegative intounimodalrelationships,andcollapsingushapedintononsignificant relationships(n=112)....... 81 Figure31.TherelativeproportionsofA–PSRrelationshipsreportedbyMittelbachetal. (2001)(blackbars,n=88)andinthepresentstudy(n=112).Relationshipcodes asinFigure5....... 84 Figure32.TherelativeproportionsofA–PSRRsfromtheMittelbachetal.(2001) subsetincludedinthisstudyandreclassifiedusingOLSregression,LOWESSline fittingandAICcmodelselection(blackareas),and‘new’studies(Mittelbachetal. subset,n=36,‘new’subset,n=76).RelationshipcodesasinFigure5....... 85 Figure33.TheproportionsofstudiesatdifferentgeographicalextentsintheMittelbach etal.(2001)datasetandthedatasetusedinthisstudy(M2001(blackbars),n=65; presentstudy,n=105).C,continentalglobal;R,regional;L,localtolandscape.86

vii Figure34.TheproportionofdifferentformsofA–PSRRsdeemedinadmissibleforthe presentstudyfromtheMittelbachetal.(2001)dataset(asclassifiedbyMittelbach etal.usingGLMregressionandtheMOStest)(blackbars,n=51),andfromthe ‘new’dataset(n=132).RelationshipcodesasisFigure5....... 89 Figure35.TheproportionofdifferentformsoftheA–PSRRsfromtheMittelbachetal. (2001)datasetbefore(blackbars,n=88)andafterapplyingselectioncriteria(grey bars,n=36)andafterreclassifyingtherelationshipsusingOLSregression,

LOWESSlinefittingandAIC cmodelselection(n=36).Relationshipcodesasin Figure5....... 89 Figure36.TheproportionofdifferentA–PSRRsfromMittelbachetal.(2001)using GLMregression(blackbars,n=80);Mittelbachetal.(2001)usingunreported OLSregression(greybars,n=88);andthesubsetofstudiesfromMittelbachetal.

(2001)usedinthisstudyusingOLSregression,LOWESSlinefitandAIC cmodel testing(C,n=36)....... 93 Figure37.AnexampleofdataclassifiedasunimodalbyMittelbachetal.(2001)using GLIMregressionandtheMOStest.Thelargegapinthedatabetween15and55 g/lPinvalidatestheuseofregressionandinterpolatingahumpishighly questionable.DataobtainedfromthedatatablepublishedinPalomäkiand Paasavirta(1993)(n=11)....... 98 Figure38.Therelationshipbetweenspeciesrichnessandbiomasspresentedby PalomäkiandPaasavirta(1993).Thepositiverelationshipcontrastswiththe ‘unimodal’relationshipreportedbyMittelbachetal.(2001)usingphosphorousas asurrogate(Figure33)(n=11)....... 98 Figure39.(A)AdemonstrationofarelationshipclassifiedbyMittelbachetal.(2001) thatwasreclassifiedasdeceleratingpositiveinthepresentstudygiventhelackof evidenceofdownturnofafittedLOWESSline.(B)Aquadraticfitted(with95% confidenceinterval)tothesamedataas(A)todemonstratetheincreasing uncertaintyofthedownwardcurveoftherelationship(B).Thedataweredigitised fromthefigurepresentedinDeathandWinterbourne(1995)(n=53)....... 100 Figure40.(A)AdemonstrationofarelationshipclassifiedbyMittelbachetal.(2001) asushapedthatafittedLOWESSlineshowsnoevidenceofanupturninthedata athighlevelsofproductivity.(B)Athirdorderpolynomialfitted(with95% confidenceintervals)tothesamedataas(A)suggestingadownturninspecies richnessathighlevelsofproductivityrefutingtheclaimedushapebyMittelbach

viii etal.(2001).ThedataweredigitisedfromthefigurepresentedbyOwen(1988)(n =171)....... 102 Figure41.ArelationshipclassifiedbyMittelbachetal.(2001)asunimodalusingGLIM regressionandtheMOStest(P=0.016)despitethelackofrelationshipindicated bythescatterplotandOLSregression( R2=12.9%,quadraticmodel, P =0.110; term, P=0.095).DatadigitisedfromGoughetal.(1994)(n=35)....... 103 Figure42.TheproportionofdifferentAPSRrelationshipsatdifferentgeographical extents,beforeandafter(blackbars)hypotheticallycollapsingdecelerating positivesintounimodalrelationships.(A)Continentaltoglobal(n=36);(B) regional(n=46);(C)localtolandscape(n=23).RelationshipcodesasinFigure 5....... 107 Figure43.TheproportionofdifferentAPSRrelationshipsatcoarse(A,n=69)and fine(B,n=29)grainsbeforeandafter(blackbars)hypotheticallycollapsing deceleratingpositivesintounimodalrelationships.RelationshipcodesasinFigure 5....... 111 Figure44.TheproportionofdifferentA–PSRrelationshipsinfreshwatersystems,at threegeographicalextents.Continentaltoglobal,n=6;regional,n=8;localto landscape,n=9.RelationshipcodesasinFigure5....... 116

ix LIST OF TABLES

Table1.Thedifferentaspectsofscale,andtheputativeprocessesinfluencing speciesrichness.AdaptedfromWhittakeratal.(2001)andWillisand Whittaker(2002)....... 9 Table2.Thenumberofcitationsperyear(in ISIWebofScience )ofthethree PSRRreviews,includingthecriticalanalysisbyWhittakerandHeegaard (2003)....... 25 Table3.Thenumberofstudiesrejectedundereachselectioncriterion...... 57 Table4.Thereasonsforexcludingnonsignificantstudiesfromthefinalvote countandmetaanalysis...... 57 Table5.Thereclassificationofrelationshipsinthepresentstudythatwere includedinMittelbachetal.(2001).(n=17)...... 91

x ATTESTATION OF AUTHORSHIP

Iherebydeclarethatthissubmissionismyownworkandthat,tothebestofmy knowledgeandbelief,itcontainsnomaterialpreviouslypublishedorwrittenbyanother person(exceptwhereexplicitlydefinedintheacknowledgements),normaterialwhich toasubstantialextenthasbeensubmittedfortheawardofanyotherdegreeordiploma ofauniversityorotherinstitutionofhigherlearning.

Signed...... Date......

xi ACKNOWLEDGEMENTS

IthankLenGillmanandShaneWright;myprimaryandsecondarysupervisors respectively,forprovidingmetheopportunitytocontributetoabodyofworkthathas broadreachingimpactinthefieldofecology.IthankLenforhisguidanceoverthe year,andparticularlyforhisinputandencouragementtowardstheend.

Iacknowledgetheconstantpresenceofallthestudentsinthe‘carpark’building whohavemademytimeworkingonthisprojectinterestingandfulfilling.Iextend specialthankstoPete,Shabana,Tim,andRodforallthedelicious,andnotsodelicious beveragessharedwhilstdiscussingimportantsciencestuff.Finally,IthankPaulforthe actualimportantsciencediscussionswehavehad.Youhavereallychallengedmeand havepushedmetopursuetheanswers.

LastbutnotleastbyanystretchoftheimaginationIthankmyfamily.Mum, thankyouforbeingalittlebit‘sciency’;itlaidthefoundationsforatleastoneofusto beasciencegeek.Dad,Imissyou.Thanksforbeingascepticandargumentative,both areattributesthathavecomeinhandyrecently.BurtonandNerice,thanksforbeing awesomesoIamchallengedtobemoreawesome.Finally,Ithankmyamazingwife

Demelzaforyourconstantencouragementandsupport.Ihopethatmyachievements canonedaystackuptoyours.

xii ABSTRACT

Understandingspatialpatternsofspeciesdiversityisacentralgoalinecology.Species richnesshasoftenbeenshowntocorrelatestronglywithambientenergy,available energyorprimaryproductivity.Theoriesthatinvokeenergyasanunderlyingfactor drivingspeciesrichnesshavereceivedmuchattention.However,therelationship betweenspeciesrichnessandenergyisnotalwayslinearandcanvarywithscale.HereI presenttheresultsofametaanalysisofpublishedanimal–productivityspeciesrichness relationships(A–PSRRs).Initially,387separatecasesfrom267publishedstudieswere identifiedaspotentialtestsoftheA–PSRR.Aftercriticallyassessingeachstudy,141 separatecaseswereacceptedasrobusttestsoftheA–PSRR,ofwhich112haddata availableforreanalysis.PositiveA–PSRRswerefoundtopredominateatallscales

(geographicalextentsandgrains),interrestrialandfreshwaterecosystemsandhomeo andpoikilotherms.Marineecosystemscontrastedwiththegeneralpatternswith unimodalrelationshipsbeingthemostcommonformoftheA–PSRR.

Theresultsreportedinthepresentstudycontrastwithpredictionsthatthetrue formofPSRRisunimodal,andwithapreviousreviewthatfoundthatnoparticular formoftheA–PSRRwasdominant.Importantly,thepreviousreviewhasbeen criticisedforitstreatmentofscale,surrogatesformeasuringproductivity,relaxed criteriaforincludingstudiesintheanalysesandstatisticalmethods.Thepresentstudy addressestheseissuesandfindsthecontrastwiththepreviousreviewoftheA–PSRRis relatedlargelytothestatisticalmethodsusedforclassifyingrelationshipsand,toa lesserdegree,theuseofstrictstudyselectioncriteriainthepresentstudy.The predominanceofpositiveA–PSRRsfoundinthepresentstudycompareswitharecent reviewoftheplant–PSRRwhichalsoreportedthatpositiverelationshipspredominate afteraddressingtheissuesofscale,surrogates,selectioncriteriaandstatisticalmethods.

1 Theresultsoftheplant–PSRRandA–PSRRareconsistentwithevidencethatanumber oftaxa(poikilothermsandhomeotherms)havefasterratesofmolecularevolutionin warmerandmoreproductiveenvironments.

2 1. INTRODUCTION

1.1 Patterns of diversity

BiologicaldiversityisnonrandomlydistributedacrosstheEarth.Notablepatternsare thedeclineisspeciesrichnesswithincreasinglatitude,altitudeanddecreasingocean depth.Thegradientofspeciesrichnesswithlatitudeisanubiquitouspatternacrossa broadrangeoftaxa,scalesandhabitats,withfewexceptions(Hillebrand,2004).

However,latitude,altitudeordepththemselvescannotbethedeterminantsofdiversity andtheunderlyingmechanismsdrivingorconstrainingspeciesrichnessneedtobe identified(Hawkins&DinizFilho,2004).Thechangeinprominentenvironmental variablesissharedacrosslatitude,altitudeanddepth,andthismightprovideinsightinto thepotentialmechanismsinvolvedindeterminingdiversity.Temperaturedeclinesalong allthreegradientssuggestingthattemperatureplaysaroleindiversitypatternswith highertemperaturesdrivingdiversity,coldertemperaturesconstrainingdiversityora combinationofthetwo.AlexandervonHumboldt(1808)recognisedthepotentialrole ofclimateovertwocenturiesagowhenhefirstdescribedthelatitudinaldiversity gradient(LDG)suggestingthattropicalregionshavehigherdiversitybecausehigher latitudesarecoldandcanbeconsideredharsh.However,someofthehottestplaceson

Eartharedeserts,whichareoftendepauperateoflifesuggestingthattemperaturecannot bethesoledeterminantofspeciesrichness.Biologicallyavailableenergyontheother handcorrelateswithspeciesrichnessmoregenerallyandtheinteractionbetweenwater andenergy,eitherdirectlyorindirectly,“isalikelycandidateforashortlistof explanations”(Hawkins,Fieldetal.,2003,p.3106).

3 1.2. Energy and species richness

Availableenergyorproductivityhaslongbeenrecognisedtorelatestronglywith speciesrichnessacrossbroadscales(Evans,Warren,&Gaston,2005;Hawkins,Fieldet al.,2003).Thespecies–energyrelationshipholdsforarangeoftaxafromlocaltoglobal scales(Abramsky&Rosenzweig,1984;Brown,1973;Currie,1991;Hawkins,Porter,

&DinizFilho,2003)pointingtoenergyasaprominentfactorindeterminingspecies richness.However,twoissuescanbeidentifiedwiththespecies–energyrelationship:

(1)therelationshipbetweenspeciesrichnessisnotalwayslinear,andcanvarywith scale(Chase&Leibold,2002;Currieetal.,2004;Gillman&Wright,2006;Mittelbach etal.,2001;Waideetal.,1999);and(2)arelationshipdoesnotprovecausality;a mechanisticdriverrelatedtoenergyneedstobedetermined.

Hutchinson(1959)firstproposedtheideathatavailableenergy/productivity controlsspatialpatternsofdiversitythroughtrophiccascadingsuggestingthat moreenergycansupportlongerfoodchainsandthusmorespecies.However,the formoftherelationshipbetweenspeciesrichnessandproductivityisnotalways positive,andsomearguethataunimodal,humpshapedrelationship(Figure1)is the‘true’(Rosenzweig,1992)or‘ubiquitous’(Huston&DeAngelis,1994)form ofthePSRR.Theformoftheproductivity–speciesrichnessrelationship(PSRR) isscaledependent,withunimodalrelationshipsbeingmorecommonatsmall scales,andpositiverelationshipspredominatingacrosslargerscales(Chase&

Leibold,2002).Scaledependencyindicatesthatthemechanismsdrivingspecies richnesspatternsatdifferentscalesmaynotbethesame.

AnumberofreviewsofthePSRRhavepresentedcontrastingresults.

GillmanandWright(2006)findthatpositiverelationshipspredominateforplants atallbutthesmallestscaleswhileMittelbachetal.(2001)findthatthe

4 relationshipiscommonlyunimodalandscaledependent.Inordertounderstand theunderlyingmechanismsshapingthePSRR,itisimportanttofirstdetermine whatthepredominantformisandwhethertheformisindeeddictatedbyscale.

Below,IdiscussthereviewsofthePSRR,highlightingtheirstrengthsand shortcomings.Theresultsoftheaforementionedreviewsarethenplacedin contextoftheoriesthatmightexplaintheobservedrelationships.

Speciesrichness

Productivity Figure1.Thehypothesisedunimodalorhumpshapedrelationshipbetweenproductivity andspeciesrichness.

5 1.3 Reviews of the PSRR

ReviewsandmetaanalysesofthePSRRhavecontrastedwiththepredictionsofa unimodalrelationshipmadebyRosenzweig(1992)andHustonandDeAngelis(1994), insteadreportingthatthePSRRisnotalwaysunimodal,butcanbevariableandscale dependent(Gillman&Wright,2006;Mittelbachetal.,2001;Waideetal.,1999).

However,asidefromshowingthattheformofthePSRRisvariable,thesereviewsshare littlesimilarityintheirconclusionsaboutwhichpatternpredominates.Theearliestof thesereviewswasanarrativereviewandcanbeviewedaslessformalthanlater reviews(Waideetal.,1999).Thesecondreview(Mittelbachetal.,2001)waslargely undertakenbythesameworkinggroupasWaideetal.(1999)followingmoreformal protocolsincludingareanalysisofrawdatawherepossible.TheworkofMittelbachet al.(2001)focussedonplantsandinterrestrialandaquatic(marineand freshwater)ecosystems.Theirresultssuggestedthatunimodalrelationshipswerethe mostcommonformoftheplant–PSRRatallexceptthelargestscalescales—positive andunimodalrelationshipswereequallycommonatthelargestgeographicextent.For animals,nosingleformpredominated,exceptatthelargestscalewhereunimodal relationshipsweremostcommon.

AsubsequentcommentandcriticalanalysisofMittelbachetal.(2001)by

WhittakerandHeegaard(2003)raisedsomeimportantissues(discussedbelow) regardingtheinclusionofstudiesthatwerenotrobusttestsofthePSRR,andthat potentiallycontributedtoadisproportionatenumberofunimodalrelationshipsinthe dataset.ThecriticalanalysisofMittelbachetal.(2001)promptedacomplete reassessmentofthePSRRofterrestrialplants(Gillman&Wright,2006).Theresults presentedbyGillmanandWright(2006)contrastedwiththoseofMittelbachetal.

(2001),withpositiverelationshipsbeingpredominantacrossthewholedataset,at

6 coarseandfinegrainsand,atcontinentaltoglobalandregionalgeographicextents(see

1.4.1Scale below).ThereviewofMittelbachetal.(2001),thecommentbyWhittaker andHeegaard(2003)andthereanalysisbyGillmanandWright(2006)arediscussedin detailbelow.AnadditionalstudybyPärtel,LaanistoandZobel(2007)isalsodiscussed inlightofarecentforumin Ecology onmetaanalysesofthePSRR;allthreereviews, includingthecriticalanalysisbyWhittakerandHeegaard(2003)werepublishedin

Ecology .

1.4. Critical analysis of PSRR reviews

Literaturesynthesisisausefultoolforaddressingcommonquestionsinafieldof interest.Furthermore,metaanalysesallowthecombinationofnumerousstudiestotest thegeneralityofaphenomenon.However,metaanalysesaresensitivetothemethods employedforselectingstudiesforinclusioninthefinalanalysis(Cooper,Hedges,&

Valentine,2009;Gurevitch&Hedges,2001;Whittaker,2010b).Thesemethodsfor assemblingandanalysingstudiescanthereforeleadtoerroneousconclusions.The reviewsbyMittelbachetal.(2001)andPärteletal.(2007)werecriticisedbyWhittaker andHeegaard(2003)andWhittaker(2010b)respectivelyonthreemainissues;(1)their treatmentofscale;(2)theiruseofproductivitysurrogates;and(3)themethodsusedfor classifyingtheformofthePSRR.Theseissuesarediscussedbelow.

1.4.1.Scale

Scaleconsistsofmultiplecomponents,andtheprocessesthatactatdifferentscales,and thedifferentaspectsofscale(Table1)caninfluencetheformofspeciesrichness relationships(Whittaker,Willis,&Field,2001;Willis&Whittaker,2002).Studiesthat

7 haveusedthesamedata,butaggregateditatdifferentgrainshavefoundthattheform ofthePSRRispositiveatcoarsegrains,andunimodalatfinegrains(Braschleretal.,

2004;Chase&Leibold,2002).Similarly,thePSRRispredictedtobeunimodalatsmall geographicalextents(Rosenzweig&Abramsky,1993)andpositiveacrossmacroscales

(Currie,1991;Wright,Currie,&Maurer,1993).

Mittelbachetal.(2001)onlyconsideredoneaspectofscale(extent),andignored anotherimportantaspectofscale(grain).Pärteletal.(2007)madenodistinction betweenstudiesofdifferentextentsorgrains.Incontrasttothepredictionsaboutextent,

Mittelbachetal.(2001)reportedunimodalrelationshipsaspredominantatallbutthe largestgeographicextentwherepositiveandunimodalrelationshipswereequally common.Ontheotherhand,aftercategorisingstudiesbygeographicextentandgrain,

GillmanandWright(2006) foundthatpositiveterrestrialplant–PSRRrelationships werepredominantinbothcoarseandfinegrainstudies,andallbutthesmallestextent.

1.4.2Useofproductivitysurrogates

Productivityisameasureofbiomassaccumulationperunitareaperunittime(e.g. g/m 2/yr).However,measuringbiomassaccumulationisoftendifficultand/or impractical.Forexample,forestsconsistoflargeslowgrowingindividuals.Therefore, removingthecurrentbiomassandmeasuringtherateofnewbiomassaccumulation wouldbetimeconsuming,nottomentiontheobviousdamagesuchmethodswould haveontheareaofinterest.Biomassturnovercanhoweverbemeasuredusingother methodssuchasleaflitteraccumulation(Keeling&Phillips,2007).However,across broadscalesthismethodislabourintensive.Ecologiststhereforerelyonvariablesto representproductivityandthesesurrogatescanvarydependingontheecosystembeing studied.Thesurrogatescommonlyusedinterrestrialecosystemsarerainfallandactual 8 evapotranspiration(AET),infreshwaterecosystemstheyarenutrientandchlorophyll a concentrations,andinmarinesystemsdepthismostcommon.Importantly,however, somesurrogatesdonotalwayshavealinearrelationshipwithproductivity.Mittelbach etal.(2001)andPärteletal.(2007)commonlyconsideredrainfallandbiomassas surrogatesforproductivity,yetneitherhasauniformlypositiverelationshipwith productivity.Additionally,Pärteletal.(2007)usedthe“numberofsoilresources”(p.

1093)torepresentproductivity.Thesethreesurrogatesandtheirpitfallsarediscussed belowforgeneralapplicability.

Table1.Thedifferentaspectsofscale,andtheputativeprocessesinfluencingspecies richness.AdaptedfromWhittakeratal.(2001)andWillisandWhittaker(2002). Scale Definition Extent Thetotalgeographicalareacoveredbyastudyorthegreatestdistance betweensiteswithinastudy. Grain Thesizeofthesamplingunitusedforcomparisons.Itmaytaketheform oftransects,quadratsorgridsquares.Itisimportantforgraintoheld constantwithinstudiestoallowformeaningfulcomparisonsand,forthe grainsizetobeappropriateforthetargettaxa.Forexample,Evansetal. (2005)suggestgrainshouldscalewithbodysizegiventhatforaging rangetendstoincreasewithbodysize.Thusfinescaleforonetaxon mightbecoarsescaleforanother(e.g.birdsandants).

Localtolandscape Withinorbetweencommunitiesoverasmallareacontainingasingleor extent fewhabitattypes(i.e.<200km).Mostlikelytobeinfluencedbyspecies interactions,disturbanceanddispersalovershorttimeperiods~11000 years. Betweencommunitiesacrosslargegeographicalareasbutsmallerthan Regionalextent wholecontinentssuchasacountrycoveringmultipleecosystemtypes (i.e.200–4000km).Influencedbylargescaleclimaticconditionsorarea overthelast10,000years. Continentalto AcrossentirecontinentsorthewholeEarthspanningmultiplebiomesor globalextent bioregions(i.e.>4000km).Influencedbyspeciation,extinction, glaciationsandcontinentaldrift.

Finegrain Pointoralphadiversity,reflectingwithincommunitydiversityandlocal interactions. Coarsegrain Largerthantheabovecapturingmoreofthespeciespoolinasingle samplingunitreflectingbetagammadiversity,orcrosscommunity diversity.

9 (i)Rainfall

Inaridregions,rainfallisagoodsurrogateforproductivitybecausewateristhelimiting factorforgrowth.Inmesictowetregionswaterisnotalimitingfactorandasrainfall increasesproductivitycandecline(Kay,Madden,VanSchaik,&Higdon,1997;

Keeling&Phillips,2007)indicatingthatrainfallcannotbeusedasasurrogatefor productivityintheseenvironments.Rainfallcanalsobeconfoundedbyelevation.As elevationincreases,cloudcoverandtemperaturegenerallydecrease.Underthese conditionsenergyisthelimitingfactorforgrowth(Scurlock&Olson,2002),and productivitycandeclinewithincreasingrainfallandelevationmakingrainfallan unsuitableproxyforproductivity(Kayetal.,1997;Whittaker&Heegaard,2003).

Hence,rainfallonlyapproximatesproductivityincertaincircumstancesandshouldbe appliedwithcaution.

WhittakerandHeegaard(2003)highlightastudyMittelbachetal.(2001) classifiedasaunimodalplant–PSRRusingrainfallasasurrogate.Thestudyinquestion

(Kayetal.,1997)reportedanonlinear,unimodalrelationshipbetweenrainfalland productivityinthesamehabitattype.Thus,ratherthanbeingaunimodalresponseto productivity,thereismostlikelyanunderlyingpositiveplant–PSRR(Whittaker&

Heegaard,2003).Usingannualrainfallasasurrogate,Pärteletal.(2007)includedfour studiesintheiranalysisfromregionswithlowmeanannualtemperatures(<10°C).

AlthoughacutoffoftendegreesCelsiusissomewhatarbitrary,itisusedto demonstratethepointthattheuseofrainfallasasurrogateforproductivityis inappropriateincoldclimates.Plantactivityisdependentonaninteractionbetween waterandenergy(O'Brien,1993).Athighlevelsofrainfall,waterisnolongera limitingfactorforplantgrowthandenergybecomesmoreimportant(Scurlock&Olson,

2002).

10 AninterestingexampleisthestudybyPhillipsetal.(1994).Mittelbachetal.

(2001)andPärteletal.(2007)usedrainfallandspeciesrichnessdatafromPhillipsetal.

(1994).Pärteletal.(2007)classifieditaspositive,andMittelbachetal.(2001) classifieditasunimodal.ThepositiverelationshipreportedbyPärteletal.(2007)using rainfallisdifficulttounderstandgiventhatboththecorrelationreportedbyPhillipset al.(1994)( r=0.33, P=0.103),andareanalysisusingOLSregressionindicatesthat therelationshipisnonsignificant(lin., R2=11.1%, P=0.103;quad.model,R2=

21.2%,model, P=0.072,quad.term, P=0.107).WhittakerandHeegaard(2003) analysedPhillipsetal.(1994)intheircommentanddeemeditinadmissibleonthebasis thattherangeofrainfallinthestudyreached4000mm/yr.At~4000mm/yrproductivity beginstoleveloff,ordecline,andlessofthevariabilityisexplainedbyrainfall(Kayet al.,1997;Scurlock&Olson,2002).Furthermore,GillmanandWright(2006)concluded thattherainfalldatainPhillipsetal.(1994)wereconfoundedbyelevationandlatitude.

Importantlyhowever,GillmanandWright(2006)reanalysedthedatausingthetree turnovermetricreportedbyPhillipsetal.(1994),amoredirectmeasureofproductivity, andfoundapositivetree–PSRR.

(ii)Biomass

Biomassgrowth/turnoverprovidesagoodmeasureofproductivityintropicaland temperateforests(Keeling&Phillips,2007).However,inborealforests,firemodifies therelationshipbetweenbiomassturnoverandproductivity(Keeling&Phillips,2007).

Disturbancessuchasherbivoryarealsolikelytoinfluencetherelationshipbetween biomassaccumulationandproductivityandcancounteractotherdriversofproductivity

(McNaughton,1985;McNaughton,Banyikwa,&McNaughton,1998).Moreover,using biomasscanonlybeacceptableasasurrogateforproductivitythereislittlevariationin

11 habitattypeandsizeofindividualsbecauseafewlargeindividualscancontribute disproportionatelytobiomass.Standingbiomassontheotherhand,doesnotnecessarily equatetotheproductivityofahabitatandifgenerationtimesdifferbetweenhabitats careshouldbetakeninusingitasasurrogateforproductivity(Gillman&Wright,

2006).Temperateforestscanhavehigherbiomassthantropicalforests,buttropical forestsaremoreproductivebecausetherateofbiomassturnoverisgreater(Keeling&

Phillips,2007).Furthermore,KeelingandPhillips(2007)reportedthatathighlevelsof productivity,biomasslevelsoffwithincreasingproductivity,orevendeclinesdueto lowerwooddensitiesintropicalforests.Thus,giventhatbiomassexplainslessvariation inplantspeciesrichness,andoftenhasanonlinearrelationshipwithproductivity, usingstandingbiomassasasurrogateforproductivityisinappropriate.Pärteletal.

(2007)usedstandingbiomassmoreoften(33.1%ofstudies)thananyoftheother surrogatestheyconsidered(precipitation,29.4%;biomassgrowth,14.7%;‘soil resources’,12.9%;other,9.8%).Usingstandingbiomassasasurrogate,Pärteletal.

(2007)reportedunimodalandnonsignificantrelationshipstooccurinsimilar frequencies(40.7and37.0%respectively).Mittelbachetal.(2001)includedasimilar proportionofstudieswithbiomassasasurrogate(32.1%)findingthatunimodal relationshipswerepredominant(51.9%).

(iii)Soilresources

Thenumber,oramount,of‘soilresources’cannotbeappliedasasurrogatefor productivityinageneralsense.Plantproductivityiscomplexandplantactivityrelieson waterandenergyinputinadditiontonutrients(O'Brien,1993).Therefore,ifsitesdiffer intheirenergyandrainfallregimes,theinfluenceofsoilnutrientsmightbeconfounded.

HustonandWolverton(2009)arguethattheconcentrationofexchangeablebases(K,

12 Ca,Mg,Na)and,nitrogenandphosphorousinthesoilhavehighimportancefor productivity.Theabovesuggestionreveals,anapparent‘paradox’becausesoil exchangeablebaseconcentrationincreaseswithlatitude;thisiscontrarytotheviewthat productivitydecreaseswithlatitude(Keeling&Phillips,2007).However,analternative interpretationispossible.Lowsoilnutrientconcentrationsintropicalregionsaredueto rapidbiomassturnover,andthemajorityofnutrientsarelockedinplantsratherthanin thesoilasinhigherlatitudes.HustonandWolverton(2009)arguethatecologically relevantproductivityishigherintemperatethantropicalzones.However,their hypothesisrequiresasystematicglobalsamplingefforttoprovidesupport,whichasof yethasnotoccurred.

Intheirstudy,Pärteletal.(2007)providenoexplicitdescriptionofhowthey classified‘soilresources’otherthan‘theamountofdifferentsoilnutrients.’Pärteletal.

(2007)alsodidnotstatewhethertheyconsideredterrestrialoraquaticenvironments,or both.Basedontheclassificationof‘soilresources’,itmightbeassumedthatthey focusedontheterrestrialenvironments.However,anexaminationoftheironline appendixrevealsastudythatexaminedtheinfluenceofnitrogenandphosphorouson algalspeciesrichnessinfreshwaterponds(Leibold,1999).Pärteletal.(2007)conclude ahumpshapedrelationship,butitisunclearwhethertheybasedtheirconclusionson thenitrogenorphosphorousdata.Importantly,Leibold(1999)concludesthatthe relationshipswere“decreasingor(morelikely)humped”,butregardlessofwhetherthe relationshipswereunimodalornegative,Pärteletal.(2007)wouldhaveclassifiedthe relationshipasunimodal(see 1.4.3Statisticalissues fordiscussiononreclassificationof negativerelationships).Whittaker(2010b)addressestwostudiesincludedinPärteletal.

(2007)inwhich‘soilresources’areusedasasurrogateforproductivity.Pärteletal.

(2007)classifiedbothstudiesasunimodal.Oneofthestudies(Monk,1965)(alsoused byMittelbachetal.(2001)andclassifiedasnegative)usedameasureofsoilmoisture. 13 HighsoilmoistureleadstowaterloggingandMonk(1965)suggeststhatthesaturation ofthesoillimitsdiversity.TheotherstudyWhittaker(2010b)addresses(Stevens,Dise,

Mountford,&Gowing,2004)wasincludedonlybyPärteletal.(2007).Pärteletal.

(2007)classifiedtherelationshipasunimodal(reclassifiedfromnegative)using nitrogenconcentrationasasurrogateforproductivity.However,Whittaker(2010b) identifiedthatnitrogenconcentrationcorrelatedwithhighacidityandclimaticvariables werenotcontrolledfor:bothofthesefactorsmayhaveconfoundedtheinfluenceof nitrogen.

1.4.3Statisticalissues

Usingeitherdataobtainedfromauthors,ordigitisedfigures,Mittelbachetal(2001) determinedtheformofthePSRRusingbothordinaryleastsquares(OLS)regression andgeneralisedlinearmodel(GLM)regression(withaPoissondistributionandalog linkfunction).Intheirfinalanalyses,Mittelbachetal.(2001)presentedtheresultsfrom theGLMregressions(usinga10%significancelevel)inpreferencetotheOLSresults.

WhittakerandHeegaard(2003)however,identifiedtwoissueswiththisapproach.The firstissuerelatestothelevelofsignificance.Mittelbachetal.(2001)arguethatusinga

10%levelofsignificanceissuitablebecauseitisliberalindetectingapattern.

However,usingthislevelofsignificanceislikelytobiastowardcomplexrelationships

(i.e.quadratichumpandushapes)andisanatypicalpracticeforspeciesrichness patterns(Whittaker&Heegaard,2003).Thesecondissueraisedrelatestotheuseof

GLMregressionandtheassumptionofaPoissondistribution.IfaPoissondistribution isassumedthevariancemustequalthemean.However,thisisrarelythecasein ecologicaldata;variancesarefrequentlyhigherthanmeans,resultinginoverdispersion.

WhileitispossibletocorrectforoverdispersioninGLMregressionifthedegreeof

14 overdispersionissmall,Mittelbachetal.(2001)madenocorrectionforoverdispersion.

Furthermore,speciesrichnessdataislesslikelytoviolateassumptionsofnormalityand symmetryoferrorsrequiredbyOLSregression,thanitistheassumptionofaPoisson distribution(Gillman&Wright,2006).Importantly,byrunningsimulationsWhittaker andHeegaard(2003)demonstratedthatfailingtocorrectforoverdispersioncanbias towardsacceptingunimodalrelationships.

Pärteletal.(2007)providenomethodsforhowstudieswereclassified.Whether theyreliedontheclassificationbytheprimaryauthors,Mittelbachetal.(2001)or

GillmanandWright(2006)isunclearand/orvaries(Whittaker,2010b).Unlikeother studiesonthePSRR,Pärteletal.(2007)consideredonlypositive,unimodalandnon significantrelationship.Negativerelationshipswereclassifiedasunimodal,andu shapedrelationshipswereclassifiedasnonsignificant.Pärteletal.(2007)arguedthat nolifecanexistinzeroproductivityandallPSRRsmustbeginfromanoriginofzero.

However,thiscannotbeapplieduniversallybecause,asWhittaker(2010b)pointsout,a negativerelationshipacrossanentirerangeofproductivitiesforaparticularhabitattype cannotberepresentedasunimodal.Ushapedrelationshipswereclassifiedasnon significantbecauseushapedrelationshipshavenotheoreticalexplanation(Pärteletal.,

2007).Thisisnotconsistentwiththeclassificationofnegativerelationshipsas unimodal.Followingtheirreasoningforclassifyingnegativerelationships,ushaped relationshipsshouldhavebeenclassifiedaspositive,orbimodal.Moreover,despite theirassertionthattherearenoexplanationsforushapedrelationships,thereare reasonstoexpectushapedPSRRsinsomecases.ScheinerandJones(2002)reporteda ushapedplant–PSRRsuggestingitmaybeduetothetransitionalnatureofthehabitats ofthehighandlowproductivitysitesintheirstudy.Atecotonesspeciesrichnessis predictedtobehighbecauseofamixingofspeciesfrommorethanonespeciespool

(Chiba,2007).Thusiflowproductivitysitescoincidewithanecotone,speciesrichness 15 mightbeuncharacteristicallyhigh.GillmanandWright(2006)retainedthisstudyand theclassificationmadebyScheinerandJones(2002),butPärteletal.(2007) reclassifieditasnonsignificantdespitethepossibleexplanationprovidedbythe primaryauthorsfortheushape.

WhittakerandHeegaard(2003)tookasampleofeightterrestrialtreestudies measuredatthecontinentaltoglobal(i.e.>4,000km)orregional(i.e.200–4,000km) scaleclassifiedashump,ushapedornegative(fromadatasetof62studies)by

Mittelbachetal.(2001).Oftheseeightstudies,sevenwereclassifiedbyMittelbachet al.(2001)asunimodal,oneasushapedandnoneasnegative.Afteracriticalanalysisof thesestudies,WhittakerandHeegaard(2003)foundtheformsoftheserelationships wereincorrectlyclassifiedinallcases.Furthermore,fiveofthestudieswere inadmissibleasrobusttestsoftheplant–PSRRbecauseMittelbachetal.(2001) consideredannualrainfallasasurrogateforproductivityinenvironmentswherethis wasinappropriate.Finally,allthreestudiesthatwereacceptedasrobusttestsofthe plant–PSRRwerereclassifiedbyWhittakerandHeegaard(2003)aspositivemonotonic relationships.WhittakerandHeegaard(2003)concludedwitha“callforcautionin citing[Mittelbachetal.(2001)’s]findingsandforareexaminationofothersectionsof themetaanalysis.”

1.5 Re-analysis of the plant–PSRR (Gillman & Wright 2006)

Todate,onlythesecondofthetwo‘calls’madebyWhittakerandHeegaard(2003)has beenpartiallyanswered.GillmanandWright(2006)undertookacompletereviewofthe plant–PSRRspresentedbyMittelbachetal.(2001)aswellasadditionalstudieseither missedbyMittelbachetal.(2001)orpublishedafter2000.Followingthecriticisms madebyWhittakerandHeegaard(2003)strictcriteriawereusedforincludingonly 16 studiesthatwererobusttestsoftheplant–PSRR.Fromthe131potentialmember studies,GillmanandWright(2006)accepted60casesasappropriatetestsoftheplant–

PSRRand18astestsofabiomass–plantspeciesrichnessrelationship.Acceptingless thanhalftheoriginalpotentialplant–PSRRshighlightstheimportanceofselection criteriaformetaanalyses,giventhatGillmanandWright(2006)reportedthatpositive relationshipsweremorecommonthanotherformsoftheplant–PSRRacrossthewhole dataset.Furthermore,positiverelationshipspredominatedatcontinentaltoglobaland regionalextentsandatbothcoarseandfinegrains.Atthelocaltolandscapescale however,therelationshipsweremorevariablewithpositiveandunimodalbothbeing relativelycommon.Similarresultswerefoundforbiomass–speciesrichness relationshipsatregionalandlocaltolandscapeextents;therewerenocontinentalto globalbiomass–speciesrichnessstudies.However,GillmanandWright(2006)reported thatbiomassexplainedlessvariabilityinspeciesrichnessthanothersurrogates(20.8 and52.6%respectively)indicatingthatbiomassisnotagoodpredictorofspecies richness.TheseresultscontrastwiththeworkpresentedbyMittelbachetal.(2001)who foundthathumpshapedrelationshipsoccurredmostfrequentlyacrossthewhole dataset,andatallbutthebroadestextent—positiveandhumpshapescodominatedat continentaltoglobalextents.GiventhecriticismbyWhittakerandHeegaard(2003), andthesubsequentreanalysisbyGillmanandWright(2006)usingstrictstudy selectioncriteria,theresultspresentedbyMittelbachetal.(2001)areunreliable.

Therefore,giventhatGillmanandWright(2006)consideredonlyterrestrialplant–

PSRRs,thereisaneedforareassessmentoftheanimal–PSRR.

1.6 Theoretical explanations for the observed patterns of species richness

17 Theoriestoexplainspatialpatternsofspeciesrichnesscanbeclassifiedbythe mechanismsproposedtogeneratethem.Theseareecological,evolutionary,and historical.Thefollowingdiscussessomeprominenttheories,theirpredictionsand supportthattheyhavereceived.Thetheoriesdiscussedarenotanexhaustivelistandare restrictedtothosethatinvokeenergy.Thefirsttwotheoriesareecologicalintheir mechanismsandthethirdisevolutionaryinitsmechanism.Afourththeoryispresented thatoperatessomewhatindependentlyofenergy,ishistoricalinnatureandispresented duetherecentattentionithasreceivedintheliterature.

1.6.1Species–energytheory

Theabovediscussionaboutproductivityandspeciesrichnesshighlightstheinterestthat availableenergyhasreceivedasapotentialdriverofspeciesrichness.Thisinterest beganwithHutchinson(1959)whenheproposedthatplacesofhigherproductivitycan supportmorespeciesbysupportinglongerfoodchains.Wright(1983)laterformalised thisideaintospecies–energytheory.Species–energytheoryasproposedbyWright

(1983)soughttoextendspecies–areatheory(i.e.moreareaequalsmorespecies)by suggestingthatlargerareascontainmorespeciesbecausetheycontainmoreenergy.

However,speciesrichnessincreasesatafasterratewithenergythanwitharea(Hurlbert

&Jetz,2010;Wylie&Currie,1993).Nonetheless,thefundamentalpropertyofthe theoryremainsthesame:moreenergycansupportagreaternumberofindividuals

(moreindividualshypothesis,Srivastava&Lawton,1998),allowingformoreviable populations,reducingtheprobabilityofstochasticextinction.Thespecies–energy hypothesisthereforeassumesthatproductive,speciesrichplacesareinhabitedbymore individuals.

18 Empiricalsupportforthe‘moreindividualshypothesis’(MIH)isequivocal.

Kasparietal.(2000)foundsupportfortheMIHinantswherebothspeciesrichnessand abundanceincreasedalongagradientofincreasingenergy.Ontheotherhand,Terborgh etal.(1990)foundthatthenumbersofindividualsinbirdcommunitiesweresimilarin tropicalandtemperateregions,butspeciesrichnesswasfourtofivetimeshigherinthe tropics.Interestingly,Mönkkönen,Forsman,&Bokma(2006)foundresidentbird speciesincreasedinabundanceandrichnesswithenergywhereasmigrantbirdsdidnot.

However,forahypothesistobeappliedtoageneralpattern,itmustbeobserved generally.Currieetal.(2004)foundlittlesupportfortheMIHasageneralexplanation fordiversitypatternsacrossbroadscales.Usingtreeandbreedingbirddata,Currieetal.

(2004)demonstratedthatspeciesrichnessshowedastrongerrelationshipwithAETthan totaldensity.Therefore,theMIHcannotbeusedasageneralexplanationforthebroad scalepatternsofspeciesrichness.

1.6.2Physiologicaltolerancehypothesis

The‘physiologicaltolerancehypothesis’firstproposedbyvonHumboldt(1808;cited inHawkins,2001),statesthatcoldand/ordryplacescontainfewerspeciesthanwarm, wetplacesbecauseonlyafewspeciescanphysiologicallytolerate,orsurvivethe

‘harsh’conditions.Somearguethatthephysiologicaltolerancehypothesisiscircular reasoning:highlatitudesandhot,dryplacesareonlyconsideredasharshbecauseofthe lowdiversityandabundanceoflifeintheseregionsrelativetothetropics(Rohde,

1992).However,thisisnotentirelysubstantiated.Lifeisdependentonwater,indicating thathotdryplacesareindeedharshasarecoldplaceswherewatercanbefrozenfor extendedperiods.Biochemicalreactionsaredependentonliquidwaterandkinetic energythusconstraininglife(particularlypoikilotherms)incoldplaces.Moreover,it

19 couldbearguedthattherearefewersuccessfulformsfoundinharshclimatesandthat specificadaptationsarerequiredtotoleratetheconditionsinthem.Schemske(2002) suggeststhattemperatespecieshavean“optimumphenotype....bestcharacterisedasa fixedtarget”(p.170)andthatevenisolatedpopulationswould“evolvesimilar adaptationstocopewiththeclimaticstress”(p.170).Apredictionunderthe

‘physiologicaltolerancehypothesis’mightbethatclimaticselectionpressuresare higherintemperatezonesresultinginpurifyingselectionpurgingagreaterproportion ofmutationsintemperatepopulationsthanintropicalspecies.Therefore,speciesmight retaingreatergeneticdiversityinthetropicsandthisgeneticdiversitymightprovidethe rawmaterialforgreaterspeciation.Indeed,Chek,AustinandLougheed(2003)provide somesupportforthisideawithafindingthattropicalbirdshavehighergeneticdiversity thantemperatebirds.Furthermore,tropicalbirdshavehighersubspecificdiversitythan temperatebirdspecies(Martin&Tewksbury,2008).Withinspecies,geneticdivergence appearstobegreaterinlowerlatitudepopulationsamong60vertebratespecies(Martin

&McKay,2004),withinplants(Eo,Wares,&Carroll,2008),withinaflyspeciesinan

Australiantropicalrainforest(Schiffer,Kennington,Hoffmann,&Blacket,2007)andat lowerelevationsinaspeciesofshrew(Ehinger,Fontanillas,Petit,&Perrin,2002).

Nonetheless,inareviewofclimatebasedtheoriestoexplaintheLDG,Currieetal.

(2004)foundthatthe‘physiologicaltolerancehypothesis’cannotbeappliedasa universalexplanationforspatialpatternsofspeciesrichness.Theydemonstratedthat despitetheabsenceofobviousdispersalbarriersspecieswereabsentfromregionswith suitableclimaticconditions(Currieetal.,2004).However,Currieetal.(2004)conclude thatdirecttestsofthe‘climatetolerancehypothesis’arefewandthatfurtherdirecttests arenecessarytobeconclusive.

20 1.6.3Evolutionaryspeedhypothesis

Acrossbroadscales,invokingevolutionaryexplanationsareappropriate,giventhattotal diversityistheconsequenceofabalancebetweenspeciationandextinction(i.e. diversificationrate)(Mittelbachetal.,2007).Rensch(1959)proposedthatthesolar radiationismoreintenseinthetropicsresultinginmoremutationsandthusmoreraw materialonwhichselectioncanactresultinginmoreadaptiveradiations.Therefore, morespeciesaccumulateinthetropicsbecausetheyevolvefaster.Rohde(1978,1992) suggeststhatevolutionary‘speed’isfasterinthetropicsbecausetropicalspecieshave greatereffectiveevolutionarytime.Rohde’s(1978,1992)greatereffectiveevolutionary timehypothesisofelevatedevolutionaryratesinwarmenvironmentsispredicatedon threefactors:(1)highertemperaturesmightcausehigherratesofmutagenesis;(2) generationtimeareshorterintropicalregions;and(3)rateofselectionwillbehigher basedonthetwopreviousfactors.Thistheoryisconsistentwithobservedpositive species–energyrelationshipsoverbroadscales.Warmertemperaturescontributeto highermetabolicrates(Gillooly,Brown,West,Savage,&Charnov,2001),whichin turnmaycauseelevatedmutagenesisthroughproductionofreactiveoxygenspeciesthat damagemitochondrialDNAand/orfastercelldivisionincreasingthechanceof replicationerroringermcells(Martin&Palumbi,1993).However,Lanfearetal.

(2007)demonstrated,for12differentgenesandover300metazoanspecies,thatafter controllingforbodysize,DNAsubstitutionrateisnotinfluencedbyrestingmetabolic rate.Therefore,themodifyingmechanismoftemperatureonmicroevolutiondoesnot appeartobedrivenbyrestingmetabolicrates.DNAsubstitutioncouldhoweverbe influencedbyannualmetabolicrates(Gillman,Keeling,Ross,&Wright,2009;Gillman

&Wright,2007).Speciesintemperateandcoolerregionsoftenundergoperiodsof torporand/orhibernationwhichslowsannualmetabolicrates(Song,Körtner,&Geiser,

1995)althoughthispropositionremainstobetested.Nonetheless,shortergeneration 21 timesandhighermutationratesmightincreasetherateofselectionthusincreasingthe rateofmicroevolution(Rohde,1992).Importantlyhowever,thelinkbetween temperatureandDNAsubstitutionrequiresanexplanation.

Theevolutionaryspeedhypothesis(ESH)hasreceivedempiricalsupportinboth endoandectothermswithstudiesfindingelevatedratesofmicroevolutionintaxa occupyingwarmerthermalregimesincluding:marineForamifera(Allen,Gillooly,

Savage,&Brown,2006);terrestrialplants(Gillman,Keeling,Gardner,&Wright,2010;

Wright,Keeling,&Gillman,2006);amphibians(Wright,Gillman,Ross,&Keeling,

2010);hummingbirds(Bleiweiss,1998);mammals(Gillmanetal.,2009)andfish

(Wright,Ross,Keeling,McBride,&Gillman,2011).GillmanandWright(2006;2007) proposedthattheESHmightpotentiallyexplainpositiverelationshipsbetweenspecies richnessandproductivityifthetheoryismodifiedsuchthatevolutionaryspeedis mediatedbybothenergyandwateravailability;thesebeingthekeyfactorsdetermining productivityonland.ThispredictionisconsistentwiththeresultspresentedbyWright etal.(2006)whofoundhigherratesofmicroevolutioninplantslivingatlower latitudes.Furthermore,Goldie,Gillman,CrispandWright(2010)recentlydemonstrated thatthetempoofmicroevolutioninwoodyplantsinAustraliaismediatedbywater availability.Plantsinthedrycentralregionswerefoundtoevolvemoreslowlythan sisterspeciesinwarm,wet,moreproductiveregions.Thisfurthersupportstheideathat highproductivityandnottemperaturealoneisthedriverofelevatedratesofmicro evolution.

1.6.4Nicheconservatism

Moderntechniquesinphylogenetics,molecularbiologyand,theavailabilityof paleontologicalandbiogeographicaldatameansthatresearchershavebecome 22 increasinglyinterestedinexploringevolutionaryandhistoricalexplanationsfor diversitypatterns(Mittelbachetal.,2007).Historicalandevolutionaryexplanationsfor broadscalediversitypatternsarenotnew(e.g.Dobzhansky,1950)andrecentworkhas generatedsomepromisingresults.Fromahistorical,biogeographicalpointofview,

LathamandRicklefs(1993)concludedthatangiospermdiversityisgreaterinthetropics sincemostangiospermfamiliesoriginatedinthelateCretaceous,atimewhenglobal climateswerepredominantlytropical.Therefore,cladesthatoriginatedintropical climateshavehadlonger‘effective’timetodiversifyinahistoricallylargergeographic arearesultinginhigherdiversityinthetropics.Thisconcepthasbecomeknownasthe

‘tropicalnicheconservatismhypothesis’(Wiens&Donoghue,2004)andisdependent ontheassumptionthatcloselyrelatedspecieshavemoresimilarnicherequirements thandistantlyrelatedspecies.Inparticular,itispositedthatcladesthatoriginateinthe tropicsorwarmplacesdonoteasilyevolvetheabilitytotoleratefreezingtemperatures andfrost(Ricklefs&Schluter,1993).

Nicheconservatismhasbeentestedforanumberoftaxaincluding:mammals

(Buckleyetal.,2010);butterflies(Hawkins,2010;Hawkins&DeVries,2009);birds

(Hawkins,DinizFilho,Jaramillo,&Soeller,2006);frogs(Wiens,Graham,Moen,

Smith,&Reeder,2006;Wiens,Sukumaran,Pyron,&Brown,2009);reptiles(Morales

Castillaetal.,inpress);andangiosperms(Hawkins,Rodríguez,&Weller,inpress).

Wiensetal.(2006,2009)testedthetropicalnicheconservatismhypothesisintwofrog families(NewWorldHylidaeandOldWorldRanidae).Theydemonstratedthatbothof thefamiliesoriginatedintropicalregionsandsubsequentlysomecladeswithinthe familieshaveinvadedhigherlatitudes.Furthermore,theoldertropicalcladesweremore diversethantheyoungertemperateclades.Theyhypothesisethatthehistoricallygreater areaofthetropicsexplainswhythecladesoriginatedthere,andthatitisdifficultfor speciestoevolvecoldtoleranceswhichpreventsthemfromfrequentlyinvadingcolder 23 regions.Therefore,cladesinthetropicsaremorediversebecausetheyhavehada longertimetodiversifyintheirancestralnichecomparedtocladesthathaverecently movedintotemperatezones.HawkinsandDeVries(2009)andHawkinsetal.(inpress) havedemonstratedsimilarpatternsinNorthAmericanbutterfliesandangiosperms respectively.Nicheconservatismhasalsobeenshowntoexplainotherpatternsof diversityacrossdifferentgradients.MoralesCastillaetal.(inpress)foundthatreptile groupsineasternandsouthernAfricaweremorediverseintheclimatichabitatsthat mostresembletheconditionsinwhichtheyoriginated.Therefore,nicheconservatism hasthepotentialtoexplaingradientsincontemporaryspeciesrichness.Importantly, however,nicheconservatismdoesnotneedtobeconsideredasmutuallyexclusiveof othermechanismsthatmightcontroldiversity.TheLDGhasbeenshowntohave existedforatleast260Myrs(Crame,2001)anduntilrelativelyrecently(~30–40Myrs ago)thetropicscoveredthelargestgeographicalextentonEarth.However,evenafter theexpansionofthetemperatezone,originationrateshaveremainedhigherintropical regionsthantemperateregions(Jablonski,Roy,&Valentine,2006).Therefore,the

LDGappearstohave,atleastinpart,arisenindependentoftropicalnicheconservatism andsomeothermechanismmightexplainitsoriginationsuchasfasterevolutionary speedandhigherdiversificationrates.Nonetheless,nicheconservatismmaintainsand strengthenstheLDG.

1.7 The animal–productivity species richness relationship

Understandingtherelationshipbetweenproductivityandspeciesrichnessisakeyfactor indeterminingwhysomeplaceshavemorespeciesthanothers.Yet,despitethe attentionthatPSRRshavereceived,thereisstilldisagreementintheliteratureregarding theinfluenceofscaleandtheformofthePSRR(Gillman&Wright,2006;Mittelbachet

24 al.,2001;Waideetal.,1999;Whittaker&Heegaard,2003).Muchofthedisagreement hascomefrominconsistentmethodsforevaluatingtherelationship,butalsothewayin whichscalehasbeentreated(Gillman&Wright,2006;Whittaker,2010b;Whittaker&

Heegaard,2003).AmongthereviewsofthePSRRthereisagaincontroversy.The analysisbyGillmanandWright(2006)isthemostsystematicandcritical,suggesting thattheresultspresentedbythemarerobust.However,despitethecriticismsandre analysis,Mittelbachetal.(2001)remainspreferentiallycited(45.8citations/yr)in contrasttoWhitakerandHeegaard(2003)andGillmanandWright(2006)(8.3and11 citations/yrrespectively)(Table2).WhilecitationfrequencyforGillmanandWright

(2006)isincreasing,thesamecanbeobservedofPärteletal.(2007).Theincreasing citationfrequencyofPärteletal.(2007)issomewhattroublinggiventheshortcomings ofthestudydiscussedabove(see 1.4.CriticalanalysisofPSRRreviews ).Therobust natureoftheanalysisbyGillmanandWright(2006)isasentimentgenerallyendorsed byWhittaker(2010b)“[GillmanandWright(2006)]isinsubstanceaworthyand criticalreanalysis”(p.2523).However,thereweresmallinconsistenciesintheoutcome betweenasampleofstudies(n=68)analysedbyWhittaker(2010b)andtheresultsof

GillmanandWright(2006).Nonetheless,theoverallpatternremainsunchangedifthese inconsistenciesarereconciled(i.e.positiverelationshipspredominante)(Gillman&

Wright,2010).Theissueraisedregardingmetaanalysesandtheplant–PSRRis thereforesomewhatresolved,buttherelationshipbetweenanimalspeciesrichnessand productivityremainsunclear.

25 Table2.Thenumberofcitationsperyear(in ISIWebofScience )ofthethreePSRR reviews,includingthecriticalanalysisbyWhittakerandHeegaard(2003). Paper Year M2001 † WH2003 § GW2006 ‡ P2007 * 2001 0 na na na 2002 16 na na na 2003 51 1 na na 2004 45 3 na na 2005 54 15 na na 2006 61 10 1 na 2007 60 9 9 0 2008 50 8 12 9 2009 68 7 11 6 2010 63 13 22 13 Totalcitations 468 66 55 28 Citationsperyear 46.8 8.25 11 7 †Mittelbachetal.(2001);§WhittakerandHeegaard(2003);‡GillmanandWright (2006);*Pärteletal.(2007)

Hereametaanalysisofallanimal–productivityspeciesrichnessrelationships(A–

PSRR)publishedupto2010ispresented.Thisincludesareanalysisoftheanimal datasetusedbyMittelbachetal.(2001)(88independentcasesoftheA–PSRRfrom58 studies),aswellasadditionalstudiespublishedafterSeptember1999(298independent casesoftheA–PSRRfrom233studies),andstudiesmissedbyMittelbachetal.(2001)

(19independentcasesoftheA–PSRRfrom12studies).Thisreanalysisbuildsonthe workofWhittakerandHeegaard(2003)andGillmanandWright(2006)inanattempt tocriticallyassestheA–PSRR.Theissuesofscaledependency,productivitysurrogates andstatisticalmethodsdiscussedaboveareaddressed.Additionally,strictcriteriaare usedforselectingstudiesthatarerobusttestsoftheA–PSRR.Ofthepreviousreviews, onlyMittelbachetal.(2001)usedformalmetaanalyticaltechniques,albeitinalimted way.Therefore,inthisstudy,additionalmetaanalyticalmethodsareemployedtotest thecomparativestrengthsofdifferentrelationshipsacrossthewholedataset,different scales(grainandextent),differentecosystems(terrestrial,freshwaterandmarine),and homeoandpoikilotherms.Theresultsoftheseanalysesarethencomparedtothe

26 resultspresentedbyMittelbachetal.(2001)and,anyinconsistenciesorsimilaritiesare explainedintermsofthedifferenceinsizeandcompositionofthedatasets,selection criteria,andthemethodsforclassifyingrelationships.Finally,potentialexplanationsare discussedthatmightaccountfortheobservedpatternsintheA–PSRRs.

27 2. INTRODUCTION TO META -ANALYSIS

Thescientificliteratureisfilledwithstudiesaskingthesameorsimilarquestionsand oftentheconclusionsfromthesestudieswillnotbeinagreement,particularlyinhighly researchedfieldsthatcanhavehundredsofbroadlysimilarstudies.Thiscanleadto uncertaintyaboutthegeneralityofobservedphenomenaandwhetherresponseschange acrossvariousconditions.Therearenumerousreasonswhyresearchersreplicatestudies andalthoughthekeyreasonistotestthegeneralityofphenomena,otherreasons include:anunawarenessofsimilarwork,adissatisfactionwiththemethodsusedby others,oranattempttoexpandcurrentknowledgeintheirareaofinterest(Cooper&

Hedges,2009).Literaturereviewsareacommonwaytoassessbroadquestionsand whilenarrativereviewscanprovidesomeinsighttowardgeneralisinganswerstothese questions,theylackaformalstatisticalframeworktomakerobustinferences.Meta analysis,thequantitativesummaryandanalysesofanumberofindependentstudies

(Hedges&Olkin,1985)ontheotherhandprovidesthestatisticalframeworktodoso.

Althoughmetaanalyseshavebeenwidelyusedinsomefieldsofscience,particularly medicineandepidemiology,thetechniqueisrelativelynewtoecologicalresearch.

Metaanalyseswerefirstusedinecologyintheearly1990s(Gurevitch&Hedges,2001) andhavebecomeincreasinglycommon(Hillebrand,2008).Using“metaanalysis”asa topic keywordin ISIWebofScience ,626articlesinecologywereidentifiedbetween

1990and2010,withacleartrendofincreasingannualfrequency(Figure2).Thistrend isundoubtedlymirroredbythenumberofindividualstudiesinecology,particularly thoseaddressingcontroversialtopicssuchasthedriversofspeciesdiversitypatterns.It isthereforeevermoreimportanttoattempttosynthesiseresultstoinvestigatewhether ornotgeneralpatternscanbederivedfromtheseindividualstudies.

28 90

80

70

60

50

40 No.ofstudies 30

20

10

0 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 1 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 Year Figure2.Thenumberofstudieswith“metaanalysis”asatopicperyearbetween1991 and2010inecologicalresearchin ISIWebofScience.

2.1 Vote-counting

Votecountingwasinitiallythemostcommonlyusedmethodforecologicalresearch synthesis(Gurevitch&Hedges,1999)wherebyindividualstudiesaretalliedwithequal strengthaccordingtotheirresponsetoaparticular“treatment”.Forexample,ameta analysthasagroupof20studiesthatstudiedtheresponseoforganismAtofactorB.In

11ofthestudiesorganism Adisplayedanincreasedgrowthrate,insevenofthestudies organism Adisplayedadecreasedgrowthrateand,intwoofthestudiestherewasno differencebetweenthegrowthratesofthetreatmentandcontrolgroups.Giventhese results,avotecountwouldconcludethatingeneral,organism Ahasafastergrowthrate whenexposedtofactorB.Inrealitythedifferencebetweenpositiveandnegative responsesissmallandnoaccountistakenofthestrengthoftheeffect.Largestudies tendtohavesignificantresults,aresultofsamplesizeregardlessofthesizeofthe

29 effect.Smallstudiesontheotherhandaremorelikelytobenonsignificant,againan artefactofsamplesize.ThiscanleadtoaninflationoftypeIIerrors(i.e.failingtoreject anullhypothesiswhenitisfalse),oneofthemaincriticismsaimedatvotecounting

(e.g.Friedman,2001;Gurevitch&Hedges,1999).Itthereforemakessensetouseother methodsthataccountforstrengthandsamplesizesofmemberstudies.However,there aretwoimportantconsiderationstomake.Firstly,asBushmanandWang(2009)point out,“notallvotecountsarecreatedequal”,andusingvotecountsinconjunctionwith effectsizes(see 2.2Metaanalysis fordescriptionofeffectsize)canaddrobustnessto ananalysis,particularlywhereeffectsizescannotbecalculatedforallmemberstudies.

Secondly,votecountingcanbeinformativeifaconsistentresponseisreportedacrossa rangeofdifferentconditions(e.g.scales)orasanexplorationoftheoverallpatternsin thedataset(Gurevitch&Mengersen,2010).

2.2 Meta-analysis

Thealternativetovotecountingisaformalmetaanalysisinwhichstudiesareweighted bytheireffectsize.Aneffectsizeisastatisticalmeasureoftheresponsethatthe dependentvariablehasinrelationtochangeintheindependentvariable(Cooperetal.,

2009),whichcanbestandardisedorweightedbysamplesizeformetaanalyses.Effect sizescanbecalculatedfromtraditionalstatisticalresults(e.g.correlations).Harrison

(2011)elegantlyreferstoeffectsizesasthe Pvaluesandthecornerstoneofmeta analysisandwhileitisindeedtruethataweightedmetaanalysisisthegoldstandardto whichliteraturesynthesesshouldbeheld,itisnotwithoutitsdifficulties.Oneofthe maindifficultiestoovercomerelatestodataavailability.Theoptimumapproachwould bereanalysingrawdatafromeachstudyinastandardisedwaythataddressesthe questionbeingasked,allowingdirectcomparisonsbetweenstudies.Generallyhowever,

30 journalshavelimitsonarticlelength,makingitimpossibletopublishrawdatatables.

Therefore,itisonlypracticaltopublishsmalldatasetsinthebodyofanarticle.

Fortunately,publishingrawdatahasbecomemorecommoninecologicalresearchwith theuseofonlinedatasupplements,butwholedatasetsarerareanditisanontrivialand timeconsumingendeavourtoreanalysethedatafromallmemberstudies.Dataforre analysiscanalsobeobtainedbydigitisingpublishedfiguresusingsoftwaresuchas

DataThief(Tummers,2006)althoughsomeerrorscanoccurduetooverplotteddata

(Whittaker&Heegaard,2003).Finally,ifdatacannotbereanalysed,coefficientscan beextractedfromtheresultspublishedinthepaper.Thedrawbackofthisapproachis thatauthorsarenotalwaysexplicitaboutthemethodsusedforanalysesor,important statisticsfromwhichappropriateeffectsizescanbecalculated(e.g.samplesizes, correlationsetc.)arenotreported.Therefore,studiesfromwhicheffectsizescannotbe calculated,ornomeaningfulresponsecanbedetermined,mustbeexcludedfromthe finalmetaanalysis.Thiscanunfortunatelyreducetheeventualnumberofstudiesinthe dataset,potentiallyinfluencingthefinaloutcome.Inextremecases,thegeneralnature oftheconclusionscanbebroughtintoquestionasaresultofthehighnumberofstudies thatarerejectedduetounavailabledata.

2.3 Study selection

Whilestudysynthesesaregreatlystrengthenedbysoundmetaanalyticalmethods,ifthe dataissubstandardthefinaloutcomemaybemisleading.Therefore,judgingthequality andappropriatenessofpotentialmemberstudiesisanimportantpartofthesystematic reviewprocess.Includingstudiesthatareinappropriatetothequestionbeingaskedis likelytointroduceerrorandleadtoerroneousconclusions(Harrison,2011).However, howdoesoneassesstheappropriatenessofastudy?Thekeyelementofmemberstudies

31 iswhethertheysuitablyaddresstheunderlyingquestionthemetaanalystisasking.

Studiesarerarelyexactlythesameinaimandmethodology;makingitimportantto carefullyreadeachmemberstudytoidentifyanydifference,andtodetermineifthe studiesareindeedcomparable.Moreover,theremaybeconfoundingvariablesthathave astronginfluenceonthedependentvariable,downplayingordistortingtheimportance ofthevariablethemetaanalystisinterestedin.Therefore,afteridentifyingpotential memberstudies,eachstudyneedstobecriticallyassessedforinclusionusingasetof predetermined,scientificallydefensiblecriteria(Englund,Sarnelle,&Cooper,1999;

Gurevitch&Hedges,2001).Intheecologydiscipline,thispointhasbeenhighlighted byaforumin Ecology regardingmetaanalysisoftherelationshipbetweenproductivity andspeciesrichness(e.g.Gillman&Wright,2010;Hillebrand&Cardinale,2010;

Whittaker,2010b).InthecaseofthePSRR,twometaanalyses(Gillman&Wright,

2006;Mittelbachetal.,2001)hadcontrastingresults,inpartduetoinappropriateor morelaxstudyselectioncriteria,onthepartofMittelbachetal(2001)(Gillman&

Wright,2006;Whittaker,2010b;Whittaker&Heegaard,2003).Aninterestingstudy

(Werenkraut&Ruggiero,2011)addressedtheissuesofselectioncriteriaapplicationin speciesrichnessgradients;ametaanalysisofthespeciesrichness–altituderelationship usingstringent,intermediateandlaxselectioncriteriatocomparehowselectioncriteria influencethefinaloutcome.Theresultsfromthevaryingdegreesofrelaxationin selectioncriteriawereincontrasttoeachother,furthercementingtheassertioninusing appropriateselectioncriteria.

32 2.4 Publication bias

Publicationbiasistheselectivepublicationofstudieswithcertainresults(Begg,1994) andisofconcernformetaanalysts(Hillebrand,2008).Asmentionedwithregardto votecounting,studieswithnonsignificantresponsesarerarelypublishedwhichcan introducepublicationbias(Greenhouse&Iyengar,2009).Rosenthal(1969)referredto thisasthe‘filedrawer’ problem ,imaginingthatauthorsfiledthesenonsignificant studiesawayratherthanpublishingthem.Inadditiontofilingthesestudiesaway,many studiesmaytesttheinfluenceofanumberofvariablesbutonlyreporttheresultsofthe significantor“best”(i.e.strongestinfluence)variables.Forexample,Hawkinsetal

(2003)testedtheinfluenceofanumberofclimaticvariablesonbirdspeciesrichness butonlyreportedeithertheresultsofthebestmultiplevariableregressionmodelsor, theresultsofthebestsinglevariableregression.Publicationbiastosomedegreeis generallyunavoidable.Therefore,themetaanalystneedstoolstoassessthepresenceof publicationbias.Therearetwosuggestedmethodstoassessthepresenceofpublication bias,(1)agraphicalrepresentationofthedatacalledafunnelplotand,(2)astatistical analysiscalledthefailsafemeasure.Afunnelplotisascatterplotofsamplesizeverses effectsize,namedafterthesymmetricalfunnelformanunbiasedmetaanalysisshould show(Sutton,2009).Thefunnelformisanartefactofstudieswithlargesamplesizes typicallybeinglessnumerousandhavinglessvariableeffectsizescomparedtostudies withsmallsamplesizes(Figure3).Nonsignificantstudiestypicallyhavesmalleffect sizes,thusametaanalysiswithpublicationbiasagainstsmalleffectsizewillhave missingdataatthelowerendoftheeffectsize(Figure4)(Greenhouse&Iyengar,

2009).

33 200

150

100 Samplesize

50

0 0.00 0.05 0.10 0.15 0.20 Effectsize Figure3.Anexampleofasimulatedfunnelplotofanunbiasedmetaanalysiswitha symmetricalfunnelform.

200

150

100 Samplesize

50

0 0.00 0.05 0.10 0.15 0.20 Effectsize Figure4.Anexampleofasimulatedfunnelplotofametaanalysiswithbiasagainst studieswithsmalleffectsizes,indicatedbytheskewed,nonsymmetricalform.

34 Themostcommonlyusedmethodfordeterminingthepresenceofpublicationbias intheformofthefiledrawerproblemisbycalculatingafailsafenumber(Rosenberg,

Adams,&Gurevitch,2000).Failsafenumbersreflectthepotentialnumberof unpublishedornonsignificantstudiesthatwouldberequiredtochangetheresultsof themetaanalysis(Greenhouse&Iyengar,2009).Alargefailsafenumber,relativeto thenumberofmemberstudies,wouldthereforemeanthatthemetaanalystcanbe confidentthattheobtainedresultsarerepresentativeofthetruepopulationeffectsize.

2.5 Conclusion and summary

Researchsynthesisusingsystematicreviewtechniquescanberegardedasan independentscientificdisciplinesinceitfollowsthegeneralscientificmethod(Cooper etal.,2009).Aquestionorhypothesisisdefined,dataiscollected(memberstudies),the dataisanalysedinanacceptedmannerandtheresultsareinterpretedandframedin referencetothetestedhypothesis.Importantly,aswithotherresearchprojects,studies needtohavetheaddedelementofbeingrepeatable.Therefore,asoundandexplicit protocolformetaanalysisshouldbefollowed.Thefollowingaregeneralstepsthat shouldbefollowedwhenundertakingasystematicreviewandmetaanalysistomeetthe criteriaofarobustandrepeatablescientificstudy(modifiedfromHarrison,2011):

1. Executeanextensiveliteraturesearchforpotentialmemberstudiesusing

appropriatekeywords.Wherepossible,toavoidthefiledrawerproblem,itis

advisabletoattempttoobtainunpublishednonsignificantresultsbecauseof

thetendencyofauthorstonotsubmit,orforjournalstorejectnonsignificant

results(Csada,James,&Espie,1996;Rosenthal,1969).

2. Enterthestudiesintoamasterdatabase,recordingimportantinformation(e.g.

taxaorhabitattype).Criticallyscrutiniseeachmemberstudyfor 35 appropriatenessinansweringtheinitialresearchquestionusing apriori

criteria.Rejectthosethatfailtomeetthecriterianotingthereasonsfornon

inclusion.Noteanyinterestingfeaturesofacceptedstudies.

3. Determinetheappropriateeffectsizestatisticandcalculateitwherepossible.

4. Performmetaanalyticaltechniquesonthecalculatedeffectsizestodetermine

ifthehypothesisissupportedornot.Identifyanyinterestinganomaliesor

similaritiesacrossthedatasetandattempttoexplainthem.

5. Assesstherobustnessoftheanalysischeckingforpublicationbias,something

whichcanarisefromtheaforementioned‘filedrawer’problem.Techniques

suchasfunnelplotsandfailsafesamplesizescanbeused.

Inordertomoveforwardinanyscientificdisciplineresearchersneedtobuildon theworkofthepastandwhileundertakingthesameorsimilarstudiesoverandover maybesomewhatinformative,therecomesatimewhereconductingmoreresearch aroundaparticularquestionaddslittletotheoverallunderstanding.Theexcitingpart however,isthateachofthosestudiesprovidesrawdatathatcanbesynthesisedintoa generalpicture.Thestrengthofawellframedandexecutedliteraturesynthesisand metaanalysisisundoubtedlyapromisingoptionformovingforwardandcanbehighly informativewithinthefieldofinterest.ThissentimentisechoedbyHillebrandand

Cardinale(2010,p.2546)intheirstatementaboutthestateofresearchsynthesisin ecology,thatthey“aregenerallyenthusiasticthatecologyasadisciplinehasmoved beyondthecasestudiesandcontingenciesofindividualsystemstoseekgenerality.”

36 3. METHODS

TwomethodswereusedtoassesswhatthemostcommonandstrongestformoftheA–

PSRRis.Thefirstmethodsinvolvedavotecount(see 2.1Votecounting )todetermine whichformoftheA–PSRRismostcommonamongdifferentgeographicextents, samplinggrains,ecosystemtypesandhomeoandpoikilotherms.Then,withinthesame categoriesasthevotecount,thestrength(effectsize)ofthedifferentformsoftheA–

PSRRwereassessedusingmetaanalyticaltechniques(see 2.2Metaanalysis ).

3.1 Collecting the member studies

3.1.1Keywordsearch

Thestudiesforinclusioninthemetaanalysiswerecollectedfromtwosources.First,all theanimal–productivityspeciesrichness(A–PSR)studiesreportedinMittelbachetal.

(2001)wereobtained.Secondly,publishedA–PSRstudieswereassembledfromthe literatureusinganelectronickeywordsearchin ISIWebofScience :“speciesrichness”

OR“speciesdiversity”ANDeachofthefollowing,productivity,energy,“actual evapotranspiration”,rainfall,precipitation,biomassandelevation.Additionalstudies werealsoidentifiedfromcitationsinpublishedstudies.Studieswhereproductivitywas artificiallymanipulatedwerenotincludedinthedataset.Thekeywordsusedwerealso likelytofindpapersthatdidnotspecificallytesttheA–PSRR,ortestedarangeofother variables(e.g.rainfall–speciesrichness)but,wheredatawereavailable;thesestudies werepreliminarilyaccepted.

37 3.1.2Studygroupingandselectioncriteria

Studieswereclassifiedintobroadcategoriesrelatingtoscale,taxonandareaofstudy.

Scalewasdefinedintwoways:(1)extentaslocaltolandscape(0–200km),regional

(200–4000km)orcontinentaltoglobal(>4000km)and,(2)samplinggrainaseitherfine

(alphaorpointdiversity)orcoarse(betadiversityorwholecommunities).Animals werefirstplacedinbroadtaxonomicgroups(e.g.birdsormammalsetc.),andthen classifiedaccordingtothermalphysiology(homeoorpoikilothermic)andskeletal structure(invertorvertebrate).Eachstudywascriticallyassessedforinclusioninthe finalanalysesusingthefollowingselectioncriteria:(1)aconstantsamplingregimewas maintainedacrossthestudy;(2)studysiteswerenotsubstantiallyinfluencedby anthropogenicdisturbance;(3)studysiteswerenotsubstantiallyalteredbyintroduced species;(4)thesurrogateforproductivityisappropriateforthesystembeingstudied, andnotliabletodistortionfromotherfactors;(5)thestudydesignwasnotlikelyto influencetheperceivedA–PSRR;(6)theentiredataset,orpartthereof,wasnot includedmorethanonce;(7)nootherstudyassessingtheA–PSRRhasbeenincluded thatcoversthesametaxonacrossthesamespatialarea;(8)thetargettaxawerenot phylogeneticallyrestricted;and;(9)thesamplesizeofthestudywasgreaterthan10;

Additionally,studiescouldnotbeincludedinthefinalmetaanalysiswheredatawere notavailable.Thejustificationforthechoiceofselectioncriteriaisdiscussedbelow includingexampleswhereavailable.Afulldiscussionofallstudiesthatwererejectedis includedin Appendix1 .Itshouldbenoted,however,thatrejectionofastudyforthis metaanalysisdoesnotinferthatthestudyinquestionwasfaulty;onlythatitwasnot suitableforthequestionsbeingaddressedhere.Criterionfive,relatingtostudydesignis notdiscussedbecauseitisageneralcriterionthatisembeddedwithinmanyoftheother criteria.Forexample,unequalsamplingeffortorvariableareaisacomponentofstudy designthatcaninfluencetheformoftheobservedrelationship. 38 3.2 Justification of selection criteria

3.2.1Unequalsamplingorvariablearea

Anincreaseinspeciesrichnesswithanincreaseinarea,calledthespecies–areacurve,is awelldocumentedphenomenoninecology(Lomolino,Riddle,&Brown,2005;

Rosenzweig,1995),somuchsothatithasbeendescribedas“oneofcommunity ecology’sfewlaws”(Schoener,1976).Indeedtheincreaseindiversitywithareaisa foundationprincipleofoneofthefirstunifyingtheoriesisecology;thetheoryofisland biogeography(MacArthur&Wilson,1967).Therearetworeasonsfortheincreaseof speciesrichnesswitharea:(1)asmoreareaissampled,moreindividualsaresampled, increasingthechanceofencountering‘new’speciesand,(2)largerareasarelikelytobe moreenvironmentallyheterogeneous,thussupportingmorespeciesthatdifferintheir nicherequirements(Hill,Curran,&Foody,1994;Scheiner,2003).Generallytheform ofthespecies–areacurveisassumedtobeanincreasingpowerfunctionbutthisisnot alwaystrue(Scheineretal.,2011),andthereare~20differentproposedmodelsto describethespecies–areacurveincludingasymptoticandnonasymptoticcurves

(Tjørve,2009).Nonetheless,itisclearthatareainfluencesspeciesrichnesspositively, andwhenattemptingtoidentifyecologicalreasonsfordifferencesinspeciesrichness, bothsamplingeffortandareaofsamplingsitesneedstobeheldconstanttoavoidthe confoundingeffectofarea.Anumberofstudieswereexcludedfromthedatasetdueto unequalsamplingeffortandvariationintheareaofsamplingsites.Forexample,

Bacheletetal.(1996)sampledmarinesedimentsacrossdifferentdepthsusingthree coringdevicesthatdifferedinsize.Thesmallestdevice(0.0216m 2)wasusedinthe shallowerwaters(27m)withfinegrainsizedsediments,theintermediatelysizeddevice

(0.04m 2)inshallowwaterwithcoarsesedimentsandthelargestdevice(0.1m 2)in deeperwater(≥10m).Giventhatanequalnumberofreplicatesweretakenwitheach

39 deviceatthedifferentdepthandsediments,thesampleareaatdeepersiteswasover fourandahalftimesgreaterthanshallow,finesedimentsites.Therefore,thereisthe potentialforinflatedspeciesrichnessatthedeepersitesduetothelevelofsampling effort.Indeedtherewasanincreaseindiversitywithdepthsuggestingthatsampling effortmayhaveinfluencedtheresult.

3.2.2Anthropogenicinfluence

Patternsofbiodiversityhaveuntilmoderntimesbeenshapedbynaturalprocesses includingspeciation,extinction,dispersalandspeciesinteractions.However,asthe humanpopulationgrows,anthropogenicactivitiesarehavingincreasingeffectson naturalsystemsandprocesses(Vitousek,Mooney,Lubchenco,&Melillo,1997).The typesofactivitiescanbeconspicuousanddramatic,suchastheclearingofaforest,or theycanbemoresubtleandseeminglybenign,suchasagriculturalrunoffenteringa lakeviaalargecatchment.TheaimofthisworkwastoclassifytheformoftheA–

PSRRunderconditionsrelativelyfreefromanthropogenicinfluence.Thus,species richnessdatainfluencedbyanthropogenicactivityneededtobeexcludedoratleast minimised.Fiftysixstudieswereexcludedfromthedatasetduetoanthropogenic activity.Inparticular,studiesoftheA–PSRRinfreshwatersystemswereexcludeddue eithertopollutantsthatweredischargeddirectlyintothewaterway(e.g.Rebelo,1992) or,waterwaysthathadnutrientenrichmentfromdevelopment(Dodson,Arnott,&

Cottingham,2000)oragriculture(Leibold,1999).Itissurprisingthatdespitehavingthe criterionofexcludingstudiesthatweresubjecttosevereanthropogenicdisturbance,

Mittelbachetal.(2001)chosetonotexcludeRebelo(1992)giventheexplicitassertion that“[t]hesubstantialdevelopmentofindustriesandpopulationinthewatershed,with onlyminoreffluenttreatment,coupledwithintenseactivitiesoftheindustrialand

40 fishingport,aretheprinciplesourcesofpollutiontothelagoon”(Rebelo,1992,p.404).

Furthermore,thepollutantsdischargedundoubtedlyhadaninfluenceonbiodiversity andinclude:organicandchemicalpollutionfrompaperpulpfactories,mercury pollutionfromindustrialactivitiesand,humanandcattleeffluent(Rebelo,1992).

Anotherstudy,excludedherebutnotavailabletoMittelbachetal.(2001),wasDodson etal.(2000).Dodsonetal.(2000)foundaunimodalrelationshipforthreeaquatic invertebrategroups.However,someofthelakeshadwatershedsthatcontained anthropogenicdevelopment.Importantly,HoffmanandDodson(2005)showedthat therewasadifferenceintheA–PSRRinzooplanktonbetweenpristinelakesandlakes withdevelopedwatersheds;pristinelakeshadpositiverelationships,developedlakes hadnegativerelationships,andwhenthetwowerecombinedtherewasaunimodal relationship.Thus,theappearanceofunimodalrelationshipsinDodsonetal.(2000) cannotbeinterpretedasanaturalA–PSRR.

3.2.3Introducedspeciesinfluence

Introducedspeciescaninfluencenaturalcommunities,andsometimestheeffectscanbe substantiallynegative(i.e.reductioninthediversityofnative/endemicspecies).Exotic speciesinfluenceinvadedareasthroughcompetitionforresourcesorpredation(Shea&

Chesson,2002).Themagnitudeofinfluenceaninvaderhasonthecommunityis dependentonpopulationgrowthrateanddensity,whichinturnisregulatedbyniche opportunity.Nicheopportunityisthepotentialthatanareahastosupportagiven invaderandisrelatedtoresourceavailability,enemiesorcompetitorsand,thephysical conditionsoftheinvadedenvironment(Davis,Grime,&Thompson,2000;Shea&

Chesson,2002).Thus,whenaninvaderisintroducedtoanareawithsufficiently abundantresources,fewenemiesorcompetitorsandsuitableenvironmentalconditions,

41 itislikelytobesuccessfulandhavesomeinfluenceontheexistingnaturalcommunity.

Inthedataset,onestudythatwasrejectedduetosubstantialinfluencefroman introducedspecies—amongstotherreasonssuchas,suburbanrunoff—wasHobæket al.(2002).Manyofthelakesusedinthestudycontainedintroducedpike( Esoxlucius ), avoraciouspredatornativetomuchofEurope;thestudywasundertakeninNorway.

Therefore,giventhattheenvironmentalconditionsweremostlikelysuitabledueto beinginthepike’spotentialnativerange,andthepike’sdominanceoverother predatoryfishintheregion(e.g.browntrout, Salmotrutta ),itisunsurprisingthat populationsofnativefishwereeithergreatlyreducedorlocallyextinct(Hobæketal.,

2002).

3.2.4Appropriateuseofproductivitysurrogates

Fundamentally,productivityisthebiomassaccumulationperunitareaperunittime

(e.g.g/m 2/yr)ortherateatwhichenergyflowsthroughasystem(e.g.kj/m 2/yr).

Practicallyhowever,theabovemeasuresaredifficulttoquantify.Forexample,to measurebiomassaccumulationrequiresremovalofallthepresentbiomassfollowedby ameasurementofbiomassafteragiventimeperiod.Forsometaxonomicgroupsthis maybepossiblesuchas,annualplants,buteventhenconfoundingfactorssuchas browsing/grazingneedtobeaccountedfororcontrolled.However,theremovalofthe entirebiomass(i.e.reductionindiversity)fromanareawillinvariablyaffectthe potentialofthatareatoproducebiomass(Cardinale,Bennett,Nelson,&Gross,2009).

Inanimals,biomassiscommonlymeasuredindryweight,butthisistimeconsuming, andclearlyimpracticalandexcessivelydestructiveforlargebodiedtaxa.Therefore, proxiesorsurrogatesareusedtomakeestimationofproductivitymorepracticalfor ecologicalresearch(Rosenzweig&Abramsky,1993).Interrestrialecosystems,actual

42 evapotranspiration(AET)iscommonlyusedasasurrogateforproductivity.AETisa balancebetweenwaterandenergythatiscloselyrelatedtonetprimaryproductivityina rangeofclimaticregimes(Rosenzweig,1968).AETismeasuredastheamountofwater transferredtotheatmospherethroughtheprocessofevaporationandtranspiration,thus reflectingtheproductiveactivityofplantsinthegivenwaterandenergyregime.Other proxiesforproductivityusedintheliteratureinclude,rainfallandpotential evapotranspiration(PET),butunlikeAET,neithercanbeappliedgenerally.Rainfallis onlyappropriateinaridorsemiaridenvironmentswherewateristhelimitingfactorfor growth(Rosenzweig&Abramsky,1993),andconverselyPETisonlyappropriate wherewaterisnotthelimitingfactorforgrowth(Hawkins,Porteretal.,2003).

Inaquaticecosystems,thesurrogatesaredifferentfromthoseusedinterrestrial ecosystems.Surrogatesusedinfreshwaterecosystemsdifferfromthoseusedinmarine systemswhichprobablyreflectthepracticalityofmeasurementduetoaccessandscale.

Nutrientcontent(e.g.nitrogenandphosphorous)andchlorophyll aconcentrationare commonlyusedsurrogatesinfreshwatersystems.Indeedanincreaseinlimiting nutrientssuchasnitrogenandphosphorousdoescontributetoproductivityinfreshwater systems.However,nutrientconcentrationmaynothavealinearrelationshipwith productivity;asproductivityincreasesalgalandphytoplanktonconcentrationsincrease, reducingwatertransparency.Sinceproductivityreliesonlightforphotosynthesis, decreasingtransparencycanleadtoselfshadingresultinginadeceleratingcurvewith productivitylevellingoffwithincreasingnutrientconcentrations(Smith,1979).

Excessnutrientsinwaterwayscancauseeutrophication,potentiallyleadingto hypoxiaandacidification,whichcankillaquaticanimalssuchasfishandzooplankton

(Camargo&Alonso,2006).Althougheutrophicandhypereutrophicwaterbodies theoreticallyhavehighalgalbiomassproduction,anoverabundanceofnutrientscan

43 haveadverseeffectsonbiodiversity(Smith,2003).Additionally,eutrophicationcan causethecompositionofthephytoplanktontoshiftandcanincludetoxic,bloom formingcyanobacteria(Smith,2003).Importantly,thesourceofexcessnutrientsin aquaticecosystemsmustbeconsidered,duethestrongcorrelationbetweennitrogenand nitrateexportandhumanpopulationdensity( 3.2.2 Anthropogenicinfluence )(Vitousek,

Aberetal.,1997).Therefore,itwasimportanttodetermineifthesourceofnutrient enrichmentwassubstantiallyanthropogenicinstudiesusingnutrientsasasurrogatefor productivity.Moreover,studiesthathadwaterwayswithhighnutrientconcentrations relatedtoeutrophicationwereexcludedtoavoidtheconfoundinginfluenceoftoxicity.

Anexamplethatwasexcludedherefortheaforementionedcombinationof anthropogenic–nutrientsource,butincludedbyMittelbachetal.(2001),isLeibold

(1999).Leibold(1999)foundaunimodalrelationshipbetweenspeciesrichnessof zooplanktonandphosphorousconcentrationinaseriesofponds.However,fourofthe pondswereartificial,includingeutrophic,disuseddiaryeffluentsettlementponds.

Despitetheassertionthattheartificialpondshadbeenundisturbedforatleasteight years,dairyeffluentpondsrepresentextremecasesofanthropogeniceutrophicationthat wouldlikelybetoxicenvironments.Therefore,lowdiversityinthepondswithhigh phosphorousconcentration(i.e.thedownwardturnofthecurve)couldreflecttwo mechanismsotherthanproductivity;(1)hightoxicity;(2)eightyearsisunlikelytobe sufficienttimeforcompleterecolonisation.

Inmarinestudies,depthisacommonlyusedsurrogateforproductivity;the underlyingassumptionisthatanincreaseindepthrepresentsadeclineinproductivity

(Rosenzweig&Abramsky,1993).Ingeneralthisclineholdstruefortwolinked reasons.Firstly,lightpenetrationdecreaseswithdepth,andsincelightisessentialfor primaryproduction,deeperwaterhaslowerproductivitythanshallowerwater.

44 Secondly,sincethereisnoprimaryproductionintheeuphoticzone,lifeisdependenton theexportoforganicmatterfromthephoticzoneforanenergysource.Importantly, bothbiomassandtheamountandqualityofparticulateorganicmatterthatreachesthe seafloordeclinewithdepth(Pace,Knauer,Karl,&Martin,1987;Weietal.,2010) indicatingagradientinproductivity.However,depthcannotbeuniversallyappliedasa surrogateforproductivity.Incoastalwaters,despitehavingapotentialforhigher productivity,shallowerwatercanbehighlystressedenvironmentsexposedtoconstant waveaction,periodicstormsandsiltation(Loya,1972,1976).Fourstudieswere excludedfromthedatasetforthisreason,allofwhichcomparedcoralspeciesrichness withdepth(Huston,1985;Loya,1972;Porter,1972;Sheppard,1980).

3.2.5Dataduplication

Includingthesamedataorasubsetofthesamedatainasinglemetaanalysisis intuitivelyproblematicsimilartowithinstudydatareplication.Nonetheless,itcanbea simplemistaketomake,particularlywhenauthorshavenotbeenclearaboutdata sources.Theliteraturecancontainnumerousstudiesthatanalysethesametaxonomic groupacrossthesamespatialscaleandcanbedonefordifferentreasons.Forexample, modernonlinedatabasessuchastheWildFinderdatabase(WWF,2006)andthe

InternationalUnionforConservationofNatureRedListhavemadecollectionof speciesdistributiondatarelativelystraightforward.Therefore,researchersmight undertakethesameorbroadlysimilarstudiestothosethathavebeendoneinthepast becauseofthehigherquality,greatercoverageandeasilyaccessiblemoderndatasets.

Modernspatialanalysistechniquesallowrapidandthoroughanalysestobeundertaken.

Therefore,differentstudiesmightincludedifferentvariables,butalsothesameor similarvariables(e.g.productivityrepresentedbyAETorNormalisedDigital

45 VegetationIndex(NDVI)mightbeincludedtotesttheirrelativeexplanatorypoweror, tobuildmultivariablepredictormodels.Forexample,using apriori knowledgethat speciesrichnessisrelatedtoAET(Currieetal.,2004;Hawkins,Fieldetal.,2003),

Storchetal.(2006)testedthemiddomaineffect(MDE)againstproductivity(AET)at predictingglobalbirdspeciesrichness—AETwasfirsttestedagainstameasureofnet primaryproductivityandNDVItodeterminethebest‘productivity’predictor.

Previouslyhowever,Hawkinsetal.(2003)hadalsoexaminedtherelationshipbetween

AET(andotherclimatevariables)andglobalbirdspeciesrichness.Therefore,itwas inappropriatetoincludebothstudies.Herethemostrecentstudy(Storchetal.,2006), assumedtohavethemostuptodatedataset,wasusedpreferentially.Furthermore,raw datawereavailableforthechosenstudy,makingreanalysisuncomplicatedandreliable withouthavingtodigitisethefigurefromHawkinsetal.(2003),whichcanintroduce error(Whittaker&Heegaard,2003).Afurthertwostudieswereexcludedthatcovered thesametaxonandgeographicscale.Inaddition,15studieswereexcludedthatused eithertheidenticaldatatoansweraslightlydifferentquestion,orusedthesamedata sourceforspeciesdistributions.

3.2.6Taxonomicrestriction

Speciesdifferintheirnicherequirementsandacomponentofthatnichewillcertainly includeclimaticconditionsrelatedtoproductivity.Furthermore,derivedspeciestendto retaincharacteristicsofthefundamentalnicheoftheirancestralspeciesovertime

(Wiens&Graham,2005)andbeecologicallysimilar(Burns&Strauss,2011).That meansthatovertime,asagroupradiates,speciesaremorelikelytoremaininthe environmentinwhichthegrouporiginated.Forexample,ineasternandsouthern

Africa,MoralesCastillaetal.(inpress)foundthatthecontemporarydiversityof

46 squamatereptilegroupsiselevatedinclimaticconditionsthataresimilartothe conditionsinwhichthegroup/soriginated/radiated.Inthiscaseoldergroupsoriginated inpredominantlyaridclimateswhereastheyoungergroupsoriginatedinequatorial climates.Inthedataset18caseswereexcludedduetotaxonomicrestriction.Elevenof thecaseswerefromasinglestudy(Terribileetal.,2009)aimedatinvestigatingthe influenceofhistoryandecologyondiversitypatternsoftwosnakefamilies.Mittelbach etal.(2001)includedDavidowitzandRosenzweig(1998)and,usinglatitudeasa surrogateforproductivity,classifiedtheformoftherelationshipasunimodal.However, thetaxonusedfortheanalysiswasrestrictedtothreesubfamiliesofacridid grasshoppers.Theimportancehereliesintheexplicitsuggestionmadebytheauthors regardingthehabitatspecificityofacrididgrasshoppersandhowitrelatedtothe observedpatternofspeciesrichness.Twoofthesubfamiliesliveinprairiehabitatsand rarelyoccurinforests.Giventhatthelowerrangeoflatitudescoveredinthestudywere tropicalforest,andthemidlatituderangeswerepredominantlyprairie,aunimodalform isunsurprisinganddoesnotreflecttheinfluenceofproductivitybutrathertaxonomic habitatpreference.Thisstudyalsosufferedfromunequalsamplingeffort.

3.2.7Samplesize≥10

Thepowertodetectastatisticallysignificantpatternisrelatedtothesamplesize.

Therefore,followingMittelbachetal.(2001)andGillmanandWright(2006)for consistency,aminimumsamplesizeof10wasemployed.HillebrandandCardinale

(2010)arguethatexcludingstudieswithsmallsamplesizesfrommetaanalysesis unnecessarygiventhatmetaanalyticaltechniquesweighteffectssizesbysamplesize.

Ontheotherhand,studieswithsmallsamplesizesintroducenoisetotheoveralldataset andreducethepowerofthemetaanalysis(Harrison,2011).Apotentialmethodfor

47 dealingwithstudieswithsmallsamplesizemightbetoconducttheanalysisfirst includingallstudies,andthenexcludingthestudieswithsmallsamplesizesinorderto examinetheinfluenceofsamplesize(Harrison,2011).Usingthecutoffof10alarge numberofstudies(83)wereexcludedfromthedataset;thisconstitutesasubstantial amountofworkthatwouldhavebeenexcessivelytimeconsuming,andtheirlikely minimalcontributiontothefinalmetaanalysis.Furthermore,theprocessoffitting eitheralinearorcurvilinearlinethroughfiveorsixpointsisproblematicwhentheform oftherelationshipisthecriticalpointofinterest(Whittaker,2010a).

3.2 Collecting the data

AfterdeterminingwhichstudieswererobusttestsoftheA–PSRR,theformofthe relationship(i.e.positive,negative,unimodal,ushapedornonsignificant)fromeach individualmemberstudywasdetermined.Bestpracticeformetaanalysisistore analyseprimarydatafromeachstudytohavestandardizedandcomparableresults betweenstudies(Gurevitch&Mengersen,2010).Therefore,studieswerefirstexamined foreitheradatatableoranonlinesupplementcontainingrelevantrawdata.Whereno rawdatawerepublished,eitherwithinthebodyofthepaperorinanonlinesupplement, anattemptwasmadetocontactcorrespondingauthorstorequestthedatatoreanalyse.

Thereweretwosituationsinwhichdatacouldnotbeobtained,(1)thestudieswere relativelyoldanddatawerenolongeravailableor,(2)authorscouldnotbecontactedor wouldnotsharedata.Inthesesituationsthestudiesweresearchedforpublishedfigures oftherelationshipbetweenspeciesrichness/diversityandtheproductivitysurrogate.

FigureswerethencarefullydigitizedusingDataThief(Tummers,2006).Ifnofigure waspublished,butsimpleordinaryleastsquares(OLS)regressionresultswere published(i.e.rsquareandsignificancelevels)andauthorsexplicitlystatedtheformof

48 therelationship,theseresultswereaccepted.WherenosimpleregressionOLS regressionresultswerepublished(e.g.partialregressioncoefficients,GLMorspatial regressioncoefficients)andarelationshipwasexplicitlyreported,thefinalrelationship wasaccepted.However,althoughthesestudiescouldbeincludedintheinitialvote count,theresultscouldnotbeusedforfinalstatisticalmetaanalysesduetoalackof consistencyinthemethodsofanalysis.

3.4 Classifying the form of the relationships

AfterdeterminingwhichstudieswererobusttestsoftheA–PSRR,anddatawere obtained,theformoftherelationship(i.e.positive,negative,unimodal,ushapedor nonsignificant)wasdeterminedusingOLSregression.OLSregressionwasusedin favourofgeneralisedlinearmodels(GLM)usedbyMittelbachetal.(2001).GLM assumesPoissondistributionsofthedata,whichiscommoninecologicaldata.

However,aPoissondistributionalsoassumesthatthevariancedoesnotexceedthe mean(i.e.overdispersion);anassumptioncommonlyviolatedinecologicaldatathatcan leadtoexcessivelyliberaltests(Crawley,1993).WhittakerandHeegaard(2003) demonstratedthatGLManalysiscanartificiallyincreasetheproportionofstudies classifiedasunimodal.

Aftertestingforasignificantquadraticrelationship,Mittelbachetal.(2001) appliedanadditionaltestofunimodality,commonlycalledtheMOStest(MitchellOlds

&Shaw,1987).TheMOStesttestswhetherthe95%confidenceintervalofthepeak(or trough)inthedatafallswithintheobservedrangeofvalues.Thishowever,is‘almost alwaysthecase’evenwhenthequadratictermisnonsignificant(Murtaugh,2003,p.

613)suggestingthatregardlessofwhetherarelationshipistrulyunimodal,theMOS testwillinvariablyconcludeahumporushapeforcurvilinearrelationships. 49 TheaboveissuesrelatingtothestatisticalmethodsusedbyMittelbachetal.

(2001)suggestthatadifferentapproachisrequired.Firstly,datawerevisually examinedtogetabasicformoftherelationshippriortoperformingtheregression analyses.Thenregressionanalyseswereperformedusingafittedlineplot,initially usingalinear,andthenusingaquadraticfit.Studiesthatreportedasignificantquadratic component( P<0.05)werethencheckedforahumporuformusinglocallyweighted sumsofsquaresplots(LOWESS)todeterminetheoveralltrendinthedata.Some studiesdisplayedcurvilinearrelationshipswithsignificantquadratictermsbutwere neitherunimodalnorushaped(i.e.deceleratingpositive,acceleratingpositive, deceleratingnegativeoracceleratingnegative).Therefore,todeterminethemost parsimoniousmodel,correctedAkiakeInformationCriterion(AICc;Burnham&

Anderson,2002)werecalculatedforlinearandcurvilinearmodelswherealowervalue correspondstoabetterfit.Thisprocesswasimportantsincethehistoricalassumptionof ubiquitywithregardtounimodalPSRRs(see 1.2Energyandspeciesrichness )(e.g.

Rosenzweig,1992;Rosenzweig&Abramsky,1993)mayhaveledauthorstoconclude thatdeceleratingpositiverelationshipsmustbeunimodal,andthatawiderproductivity rangewouldresultinadownturnindiversityathigherproductivitylevels.

3.5 Vote-count

Oncetheformoftherelationshipsofeachmemberstudyhadbeendeterminedan examinationofthedatawasperformedusingavotecount.Inametaanalysisofthe altitude–speciesrichnessrelationship,WerenkrautandRuggiero(2011)showedthatthe proportionsofdifferentrelationshipsvariedinrelationtothestrictnessofselection criteria.Therefore,thedatawasexaminedbeforeandafterapplyingtheselection criteria(discussedabove).TheproportionsofdifferentA–PSRRs(i.e.positive,

50 negative,unimodal,ushapedornonsignificant)werecompared:(1)acrosstheentire datasetusingallthestudiesforwhichtheformoftherelationshipcouldberoughly determined(i.e.priortoapplyingtheselectioncriteriadiscussedabove);(2)after applyingthenineselectioncriteria;and(3)afterapplyingthefinalcriterionofdata availability.Usingonlythefinaldataset(i.e.meetingtheselectioncriteriaandhaving dataavailable),positiveandnegativerelationshipswerefurtherseparatedintotheir respectiveacceleratinganddeceleratingcategories.

3.5.1Theinfluenceofscale

TheformofthePSRRisoftenpresumedtobescaledependent,withunimodal relationshipsbeingmorecommonatsmallerscalesandpositiverelationshipsbeing morecommonatlargerscales(Chase&Leibold,2002;Waideetal.,1999).Therefore, thedatawereexaminedattwodifferentsamplinggrains(fineandcourse)andatthree geographicalextents;(continentaltoglobal,regionaland,localtolandscape).Positive andnegativerelationshipswereagainseparatedintoacceleratinganddecelerating relationshipsforeachscaleexamined.

3.5.2Theinfluenceofecosystemtype

ThePSRRmightbesubjecttodifferentunderlyingmechanismsindifferentecosystems types(Waideetal.,1999).Mittelbachetal.(2001)foundthattherelativefrequenciesof differentA–PSRRsdifferedforaquaticandterrestrialecosystemtypes.Also,the surrogatesusedforproductivityvaryacrossdifferentecosystemtypes.Forexample,in terrestrialsystemsclimaticvariablesarecommon,infreshwateraquaticsystems nutrientvariablesarecommon,andinmarinesystemsdepthiscommonlyusedasa

51 surrogatefordecreasingproductivity.Therefore,thedatawereexaminedandpresented separatelyfordifferentecosystemtypes(i.e.terrestrial,freshwaterandmarine).

3.5.3Patternsinhomeothermsandpoikilotherms

Homeothermshavefastermetabolicratestomaintaintheirconstantbodytemperature.

Thereforehomeothermshavegreaterenergyrequirementsthanpoikilotherms, suggestingthatproductivitymayinfluencepoikilothermsdifferentlytohomeotherms.In ordertotestforanydifferencebetweentheresponseofspeciesrichnessof homeothermsandpoikilothermstodifferencesinproductivity,thedatawerepresented separatelyforpoikilothermsandhomeotherms.

3.6 Meta-analysis

3.6.1Calculatingeffectsizes

Aformalmetaanalysisreliesoneffectsizes . Effectsizesarefirstcalculatedforeach study,weightedbysamplesizeandthen,usingtheseeffectsizes,agrandmeaneffect size,weightedbytheinverseofthesamplevariance,canbecalculated.Therefore, studieswithgreaterreplicationorlessvariationintheirresponsehaveastronger influenceonthegrandmean(Cooperetal.,2009;Rosenbergetal.,2000).Giventhe continuousstructureofboththeindependentanddependentvariables,aneffectsizewas calculatedfromthecorrelationcoefficient.Thus,thecoefficientsofdetermination( R2) foreachstudyweresquareroottransformedtoobtainthecorrelationcoefficient( r).

52 Thecorrelationcoefficientsforeachmemberstudywerethenconvertedtoeffectsizes usingFisher’s ztransformation(Hedges&Olkin,1985):

1 1 2 1

Aftercalculatingindividualeffectsizesforeachstudy,ameaneffectsize(witha bootstrapped95%confidenceinterval)foreachrelationshiptype(i.e.positive,negative, unimodal,ushapedornonsignificant)wascalculated,weightedbytheirsampling variance:

1 3

Whenconductingametaanalysisonregressionanalyses,allstudiesmustbefitted withthesamenumberofterms(Werenkraut&Ruggiero,2011).Therefore,giventhat somestudieswerelinearrelationshipswithasinglelineartermandotherswere curvilinear,withbothlinearandquadraticterms,meaneffectsizes(withbootstrapped

95%confidence)werecalculatedseparatelyforeachrelationshiptype.Confidence intervalsthatincludezeroindicatethattheeffectsizedoesnotdiffersignificantlyfrom zero.Effectsizesofthedifferentrelationshipswerethencomparedacrossthedifferent categoriesasin 2.3 Votecount .Meaneffectsizes(withbootstrapped95%confidence) werealsocalculatedforcurvilinearpositiveandnegativerelationships.Allweighted meaneffectsizeswerecalculatedusingMetaWin(Rosenbergetal.,2000).

3.6.2Checkingforpublicationbias

Publicationbiasislikelytobepresentinallmetaanalysestosomedegree.Thus,after comparingtheeffectsizeofthedifferentrelationshipsacrossthevariousgrouping variables(e.g.scalesandgrains),thedatawereassessedforthepresenceofpublication 53 bias.Thiswasfirstdoneusingafunnelplot(i.e.plottingeffectsizeofeachstudy againstsamplesize)todetectanysystematicbiasofloweffectsizes,particularlystudies withnonsignificantresponses,whichwouldsuggestthepresenceofthe‘filedrawer’ problem(see 2.4Publicationbias )(Greenhouse&Iyengar,2009).Samplesizewaslog transformedbecausetherewerethreestudieswithparticularlylargesamplesizeswhich madetheplotdifficulttoexaminevisually.

54 4. RESULTS

Afterexcludingstudieswithsmallsamplesizes(i.e.<10,n=82),387separatecases from267publishedstudieswereidentifiedaspotentialtestsoftheA–PSRR.This included88separatecasesfrom58publishedstudiesreportedinMittelbachetal.

(2001).TheformoftheA–PSRRcouldbereasonablyidentifiedin286cases.After applyingtheselectioncriteria,141separatecaseswereacceptedasrobusttestsofthe

A–PSRRofwhich112(see Appendix2forthestudiesincludedinthefinalanalyses) haddataavailableforreanalysis.Themostcommonreasonfortherejectionofstudies wassmallsamplesizefollowedbyanthropogenicdisturbanceofthestudysystem

(Table3).Similarnumbersofstudieswererejectedduetounequalsampling effort/variablearea,inappropriateproductivitysurrogate,dataduplication(including thosewithdifferentdatasourcesbutthesametaxonoverthesamegeographical location)andunavailabledata(Table3;see Appendix1fordetailedrationaleforthe exclusionofstudiesfromtheseanalyses).Importantly,exclusionisnotacriticismofthe qualityofthestudies,butrathertheydonotfitthecriteriaforansweringthequestion posedbythisresearch.

4.1 Vote-count

Priortoapplyingtheselectioncriteria,anexplorationoftheentiredataset,forwhichthe formoftheA–PSRRcouldbedetermined(286cases),indicatedthatpositive relationshipsweremorecommonintheliterature(55.2%)thanallotherrelationships combined(44.7%)(proportiontest, P=0.007).Positiverelationshipswerefollowedby similarproportionsofnonsignificantandunimodalrelationships(19.2%and18.2% respectively)(Figure5).Afterapplyingtheselectioncriteria,thepredominanceof positiverelationshipswashigher(66.9%)thanpriortoapplyingtheselectioncriteria 55 (Figure6).Similarly,positiverelationshipsweremorecommonthanallother relationshipscombined(33.1%)(proportiontest, P<0.0005).Bycontrast,the proportionofnonsignificant(9.4%)and,toalesserdegreeunimodalrelationships

(15.1%),waslowerthanpriortoapplyingtheselectioncriteria(Figure6).Themain reasonsforrejectingnonsignificantstudiesincludedanthropogenicdisturbance, variationinareaorsamplingregime,oracombinationofthetwo(Table4).After selectingonlythe112casesforwhichrawdatawereavailable,positiverelationships wereagainmorecommon(63.4%)thanallotherrelationshipscombined(36.6%)

(proportiontest, P<0.0005)(Figure7).Again,positiverelationshipswerefollowedby unimodal(17.9%)andnonsignificantrelationships(8.9%)(Figure7).Separatingthe positiveandnegativerelationshipsintotheirmonotonic,deceleratingandaccelerating categoriesrevealedthatmonotonicpositiverelationshipswerepredominant(33.0%), followedbyequalproportionsofdeceleratingpositiveandunimodalrelationships(both

17.9%),andacceleratingpositiverelationships(12.5%)(Figure8).

56 Table3.Thenumberofstudiesrejectedundereachselectioncriterion(see Appendix1 formoredetaileddescriptionsofstudiesnotincludedinthepresentstudy) Criterion n Unequalsamplingeffort/variablearea 41 Anthropogenicdisturbance 56 Introducedspeciesinfluence 2 Inappropriateproductivitysurrogate 38 Studydesign 10 Dataduplication 40 Taxonomicallyrestrictive 16 Samplesize<10 82 Dataorfigurenotreported § 34 Other ‡ 9 §StudiesthatdidnotreportOLSregressionorcorrelationcoefficients,ornofigurewas availabletodeterminetheformofthePSRrelationship ‡Includesstudiescontainingaconfoundingvariableoraninappropriatediversity measure(e.g.taxonomicallytoohigh)

Table4.Thereasonsforexcludingnonsignificantstudiesfromthefinalvotecountand metaanalysis. Reason for rejection n Unevensamplingregime/variablearea 10 Anthropogenicinfluence 4 Inappropriateproductivitysurrogate 2 Samplesize<10 7 Areavariedamongsamplingsites/anthropogenic 15 influence § Other 6 §Bothcriteriaappliedtothesamestudy

57 100

80

60

40

20 PercentageofAPSRrelationships

0 P N UM US NS Figure5.TheproportionofdifferentA–PSR(Animalproductivityspeciesrichness) relationshipswithintheentiredatasetpriortoapplyinganystudyselectioncriteriaand forwhichthePSRrelationshipcouldbereasonablyidentified(n=286).P,positive;N, negative;UM,unimodal;US,ushaped;NS,nonsignificant.

100

80

60

40

20 PercentageofAPSRrelationships

0 P N UM US NS Figure6.TheproportionofdifferentA–PSRrelationshipsafterapplyingthenine selectioncriteria,includingstudiesforwhichnorawdatawereavailableforreanalysis (n=141).RelationshipcodesasinFigure5.

58 100

80

60

40

20 PercentageofAPSRrelationships

0 P N UM US NS Figure7.TheproportionofdifferentAPSRstudiesafterapplyingthenineselection criteria,andforwhichrawdatawereavailableforreanalysis(n=112).Relationship codesasinFigure5.

100

80

60

40

20 PercentageofAPSRrelationships

0 P AcP DcP N DcN UM US NS Figure8.TheproportionofdifferentA–PSRrelationships,separatedintoaccelerating anddecelerating,quadraticrelationshipsforwhichrawdatawereavailable(n=112).P, positive;AcP,acceleratingpositive;DcP,deceleratingpositive;N,negative;DcN, deceleratingnegative;UM,unimodal;US,ushaped;NS,nonsignificant.

59 4.2 The influence of scale

4.2.1Geographicextent

Theproportionsofrelationshipformsdidnotdiffersignificantlybetweengeographic extents(χ 2 =13.38,df=8, P=0.099).PositiveA–PSRrelationships(i.e.monotonic, acceleratinganddeceleratingcombined)werepredominantatallthreegeographic extents(i.e.continentaltoglobal,regionalandlocaltolandscape;86.1%,58.7%and

56.5%respectively)(Figure9).Atthecontinentaltoglobalextentpositiverelationships

(86.1%)weremorecommonthanallotherrelationshipscombined(i.e.unimodalandu shaped;13.9%)(proportiontest, P <0.0005).Again,attheregionalandlocalto landscapeextentspositiverelationshipsweremorecommon(58.7%and56.5% respectively)thanallotherrelationshipscombined(41.2%,regional;43.5%,localto landscape),butthesedifferenceswerenotstatisticallysignificant(proportiontest, P=

0.09forregionaland P=0.372forlocaltolandscape).Differencesbetweenlocalto landscapeandregionalextentshadlittleinfluenceontheproportionsofrelationship types(Figure9).

Afterseparatingpositiveandnegativerelationshipsintomonotonic,accelerating anddeceleratingrelationships,monotonicrelationshipswerepredominantwithsimilar proportionsatallthreegeographicalextents(continentaltoglobal,36.1%;regional,

37.0%;localtolandscape,30.4%)(Figure10).Theproportionofacceleratingpositive relationshipsincreasedwithgeographicextent.Whereas,theproportionsofdecelerating positiverelationshipsweresimilaratcontinentaltoglobalandlocaltolandscape extents(22.2%and26.1%respectively)andlowerattheregionalextent(13.0%).

Deceleratingnegativerelationshipswereonlypresentattheregionalextent(2.2%).

60 100

80

60

40

20 PercentageofAPSRrelationships

0 P N UM US NS P N UM US NS P N UM US NS Continentaltoglobal Regional Localtolandscape Figure9.TheproportionofdifferentA–PSRrelationshipsatthethreegeographicscales (continentaltoglobal,n=36;Regional,n=46;Localtolandscape,n=23). RelationshipcodesasinFigure5.

61 A)

50

40

30

20

10

0 P AcP DcP N DcN UM US NS

B)

50

40

30

20

10

0 P AcP DcP N DcN UM US NS PercentageofAPSRrelationships

C)

50

40

30

20

10

0 P AcP DcP N DcN UM US NS Figure10.TheproportionofdifferentA–PSRrelationshipsatthethreespatialextents, separatedintotheirrespectiveacceleratinganddecelerating,quadraticrelationships.(A) Continentaltoglobal(n=36);(B)regional(n=46);(C)localtolandscape(n=23). RelationshipcodesasinFigure8.

62 4.2.2Grain

Theproportionsofrelationshipformsdifferedaccordingtothesamplinggrains employed,butthedifferencewasmarginallynonsignificant(χ 2 =8.60,df=4, P=

0.072).Atboththecoarseandfinegrain,positiverelationshipswerepredominant

(73.9%and50.0%respectively)(Figure11)and,atthecoarsegrainpositive relationshipsweremorecommonthanallotherrelationshipscombined(proportiontest,

P<0.0005).Unimodalrelationshipswerethesecondmostcommonatbothfineand coarsegrains(23.3%and8.7%respectively).

Afterseparatingthepositiveandnegativerelationshipsintoacceleratingand decelerating,quadraticrelationships,positivemonotonicrelationshipspredominateat boththecoarse(34.8%)andfine(33.3%)samplinggrainswithsimilarproportions

(Figure12and13),butthereweregreaterproportionsofacceleratinganddecelerating positiverelationshipsfromcoarsegrainstudiesthanfromfinegrainstudies.

100

80

60

40

20 PercentageofAPSRrelationships

0 P N UM US NS P N UM US NS Coarse Fine Figure11.TheproportionofdifferentA–PSRrelationshipsatthetwosamplinggrains (coarse,n=69;fine,n=29).RelationshipcodesasinFigure5.

63 100

80

60

40

20 PercentageofAPSRrelationships

0 P AcP DcP N DcN UM US NS Figure12.TheproportionofdifferentA–PSRrelationshipsatthecoarsesampling grain,separatedintotheirrespectiveacceleratinganddecelerating,quadratic relationships(n=69).RelationshipcodesasinFigure8.

100

80

60

40

20 PercentageofAPSRrelationships

0 P AcP DcP N DcN UM US NS Figure13.TheproportionofdifferentA–PSRrelationshipsatthefinesamplinggrain, separatedintotheirrespectiveacceleratinganddecelerating,quadraticrelationships(n= 29).RelationshipcodesasinFigure8.

64 4.3 The influence of ecosystem type

Positiverelationshipspredominatedinstudieswithinterrestrialandfreshwateraquatic ecosystems,whereasunimodalrelationshipspredominatedwithinmarineecosystems

(42.9%)(Figure14).Additionally,interrestrialecosystems,positiverelationshipswere morecommonthanallotherrelationshipscombined(proportiontest, P<0.0005).

Unimodalrelationshipswerealsomorecommoninfreshwateraquaticsystemsthanin terrestrialsystems.

Afterseparatingthepositiveandnegativerelationshipsintoacceleratingand deceleratingrelationships,positivemonotonicrelationshipswerepredominantin terrestrialsystems(42.6%)(Figure15A)andunimodalrelationshipswerepredominant inmarinesystems(42.9%)(Figure15C).However,infreshwateraquaticsystems, positivemonotonic(26.1%),deceleratingpositive(21.7%)andunimodal(21.7%) relationshipsoccurredinsimilarproportions(Figure15B).

100

80

60

40

20 PercentageofAPSRrelationships

0 P N UM US NS P N UM US NS P N UM US NS Terrestrial Freshw ater Marine

Figure14.TheproportionofdifferentA–PSRrelationshipsindifferentecosystemtypes (terrestrial,n=54;freshwater,n=23;marine,n=21).RelationshipcodesasinFigure 5.

65 A)

50

40

30

20

10

0 P AcP DcP N DcN UM US NS

B)

50

40

30

20

10

0

PercentageofAPSRrelationships P AcP DcP N DcN UM US NS

C)

50

40

30

20

10

0 P AcP DcP N DcN UM US NS Figure15.TheproportionofdifferentA–PSRrelationshipsindifferentecosystems, separatedintotheirrespectiveacceleratinganddecelerating,quadraticrelationships.(A) Terrestrial(n=54);(B)freshwater(n=23);(C)marine(n=21).Relationshipcodesas inFigure8.

66 4.4 Patterns in homeotherms and poikilotherms

TherewasnostatisticaldifferenceintheproportionsofdifferentformsoftheA–PSRR relationshipinhomeoandpoikilotherms(χ 2 =4.33,df=4, P=0.363).PositiveA–

PSRRswerepredominantinbothpoikiloandhomeotherms(57.7%and76.5% respectively)(Figure16)andinhomeotherms,positiveA–PSRRsweremorecommon thanallotherrelationshipscombined(23.5%)(proportiontest, P<0.0005).Therewere moreunimodalrelationshipsamongpoikilotherms(21.8%)thanhomeotherms(8.8%).

Afterseparatingpositiveandnegativerelationshipsinacceleratinganddecelerating forms,positivemonotonicA–PSRRswerepredominantforbothpoikiloand homeotherms(32.1%and35.3%respectively)(Figure17and18).Forpoikilotherms therewereequalproportionsofacceleratinganddeceleratingpositiverelationships

(12.8%),butinhomeothermsthereweremoredeceleratingpositives(29.4%)than acceleratingpositives(11.8%).

100

80

60

40

20 PercentageofAPSRrelationships

0 P N UM US NS P N UM US NS Homeotherms Poikilotherms Figure16.TheproportionofdifferentA–PSRrelationshipsinhomeothermsand poikilotherms(homeotherms,n=34;poikilothermsn=78).Relationshipcodesasin Figure5.

67 100

80

60

40

20 PercentageofAPSRrelationships

0 P AcP DcP N DcN UM US NS Figure17.TheproportionofdifferentA–PSRrelationshipsinhomeotherms,separated intotheirrespectiveacceleratinganddecelerating,quadraticrelationships(n=34). RelationshipcodesasinFigure8.

100

80

60

40

20 PercentageofAPSRrelationships

0 P AcP DcP N DcN UM US NS Figure18.TheproportionofdifferentA–PSRrelationshipsinpoikilothermic organisms,separatedintotheirrespectiveacceleratinganddecelerating,quadratic relationships(n=78).RelationshipcodesasinFigure8.

68 4.5 Meta-analysis

Acrossthewholedatasetpositiveandnegativerelationshipshadthehighesteffectsize

(0.9737and0.9324respectively)followedbyunimodalandushapedrelationships

(0.7216and0.6512respectively)(Figure19).Thewideconfidenceintervalofthe negativerelationshipsreflectsthelowfrequencyatwhichtheyoccurred(4.5%)(see

Figure7).

Whenseparatingpositiveandnegativerelationshipsintoacceleratingand deceleratingrelationships,acceleratingpositiverelationshipshadthehighestmean effectsize(1.1203)followedbynegative(0.9443),monotonicpositive(0.9269)and deceleratingpositive(0.9256)relationships(Figure20).Nomeaneffectsizecouldbe calculatedfordeceleratingnegativerelationshipssincetherewasonlyasingle deceleratingnegativerelationship(Rosenbergetal.,2000)presentinthedataset.

Furthermore,acceleratingpositiverelationshipshadhighereffectsizes(withnon overlappingconfidenceintervals)thanunimodal,ushapedandnonsignificant relationships.

69 1.6

1.4

1.2 )

Zr 1

0.8

0.6 Meaneffectsize( 0.4

0.2

0 P N UM US NS Figure19.Meaneffectsizes(with95%confidenceintervals)ofdifferentA–PSR relationships(n=112).RelationshipcodesasinFigure5.

1.6

1.4

1.2 )

Zr 1

0.8

0.6 Meaneffectsize( 0.4

0.2

0 P AcP DcP N DcN UM US NS Figure20.Meaneffectsizes(with95%confidenceintervals)ofdifferentA–PSR relationships,separatedintotheirrespectiveacceleratinganddecelerating,quadratic relationships(n=111).RelationshipcodesasinFigure5.

70 4.6 Effect sizes across scales

4.6.1Geographicextent

Positiverelationshipshadthehighesteffectsizeatthecontinentaltoglobal(1.0266) andthelocaltolandscape(1.0215)extentsandnegativerelationshipshadthehighest effectsizeattheregionalextent(0.8871)(Figure21).Atthecontinentaltoglobalscale positiverelationshipshadahighermeaneffectsize(withnonoverlappingconfidence intervals)thanushapedrelationships.Attheregionalandlandscapescalestherewasno cleardifferencesineffectsizeamongthedifferentrelationshiptypesexceptthat,as wouldbeexpectedbytheirintrinsicnature,nonsignificantrelationshipshadloweffect sizes.Positiverelationshipshadthesecondhighestmeaneffectsizeattheregionalscale

(0.8802)withanarrowerconfidenceintervalthannegativerelationships,reflectingthe greaterfrequencyatwhichtheyoccurredrelativetonegativerelationships(see

Figure9).Atthelocaltolandscapescalepositiverelationshipshadahighermeaneffect size(withnonoverlappingconfidenceintervals)thanunimodalrelationships.In addition,thewidelevelsofconfidencearoundnegativerelationshipsatthelocalto landscapescalereflecttheirrelativelylowfrequency(seeFigure9).Nomeaneffect sizescouldbecalculatedfornegativeandnonsignificantrelationshipsatthe continentalscaleor,ushapedrelationshipsatthelocaltolandscapescalebecauseonly asinglerelationship(Rosenbergetal.,2000)occurredattherespectivescales.

71 1.6

1.4

1.2 )

Zr 1

0.8

0.6 Meaneffectsize( 0.4

0.2

0 P NUMUSNS P NUMUSNS P NUMUSNS Figure21.Themeaneffectsizes(with95%confidenceintervals)ofdifferentA–PSR relationshipsacrossdifferentgeographicalscales(●,continentaltoglobal,n=36;♦, regional,n=46;■,localtolandscape,n=22).RelationshipcodesasinFigure5.

72 4.6.2 Grain

Atthecoarsegrain,positiverelationshipshadthehighestmeaneffectsize(0.9914), whereasatthefinegrainnegativerelationshipshadhighestmeaneffectsize(1.4012)

(Figure22).Importantlyhowever,therewereonlytwonegativerelationshipsrecorded atthefinegrainrelativeto15positiverelationships(seeFigure11).Atthecoarse samplinggrain,positiverelationshipshadahighermeaneffectsize(withnon overlappingconfidenceintervals)thanunimodal,andushapedrelationships.Atthefine grain,nonsignificantrelationshipshadsignificantlylowereffectsizethanallother relationships.However,therewasonlyasingleushapedrelationshipatthefinegrain makingcalculationofameaneffectsizeimpossible(Rosenbergetal.,2000).

1.6

1.4

1.2 )

Zr 1

0.8

0.6 Meaneffectsize( 0.4

0.2

0 P N UMUSNS P N UMUSNS Figure22.Themeaneffectsizes(with95%confidenceintervals)ofdifferentA–PSR relationshipsatdifferentsamplinggrains(●,coarse,n=69;♦,fine,n=28). RelationshipcodesasinFigure5.

73 4.7 Effect size across different ecosystem types

Meaneffectsizeswerehighestforpositiverelationshipformsinterrestrial(1.0426)and freshwateraquatic(0.8877)systems,whereasunimodalrelationshipshadthehighest effectsizeinmarinesystems(0.8370)(Figure23).Interrestrialecosystems,positive relationshipshadahighermeaneffectsize(withnonoverlappingconfidenceintervals) thanunimodalrelationships(0.4764) .

1.6

1.4

1.2 )

Zr 1

0.8

0.6 Meaneffectsize( 0.4

0.2

0 P NUMUSNS P NUMUSNS P NUMUSNS Figure23.Themeaneffectsizes(with95%confidenceintervals)ofdifferentA–PSR relationshipsacrossdifferentecosystemtypes(●,terrestrial,n=54;♦,freshwater,n= 22;■,marine,n=19).RelationshipcodesasinFigure5.

74 4.8 Effect sizes in homeotherms and poikilotherms

Positiverelationshipshadthehighesteffectsizeinbothhomeotherms(0.9860)and poikilotherms(0.9648)(Figure24).Furthermore,inpoikilotherms,positive relationshipshadasignificantlyhighermeaneffectsize(withnonoverlapping confidenceintervals)thanushapedrelationships.

1.6

1.4

1.2 )

Zr 1

0.8

0.6 Meaneffectsize( 0.4

0.2

0 P N UMUSNS P N UMUSNS Figure24.Themeaneffectsizes(with95%confidenceintervals)ofdifferentA–PSR relationshipsofhomeothermsandpoikilotherms(●,homeotherms,n=33;♦, poikilotherms,n=78).RelationshipcodesasinFigure5.

75 4.9 Assessing publication bias

Thereisnoclearsystematicbiasagainststudieswithloweffectsizewithcorresponding lowsamplesizes(Figure25).Studiesatthelowendoftheeffectsizespectrumalso tendtohavelowsamplesizesuggestingthattheinfluenceofthe‘filedrawer’problem isminimal(i.e.therewaslittleevidenceofsystematicbiasagainststudieswithnon significantresults).

4.5

4.0

3.5

3.0

2.5

Logsamplesize 2.0

1.5

1.0

0.0 0.5 1.0 1.5 2.0 Effectsize(Zr) Figure25.Afunnelploteffectsizeplottedagainstsamplesize(logtransformed)(n= 112).(●,studieswithsignificantrelationships;○,studieswithnonsignificant relationships)

76 5. DISCUSSION

PositiveA–PSRRswerefoundtopredominateinthepresentstudy.Theseresults contrastsubstantiallywiththoseofthepreviousreviewbyMittelbachetal.(2001).

AcrosstheirwholedatasetMittelbachetal.(2001)foundthatunimodalrelationships werethemostcommonformoftheA–PSRR.Withingeographicalscales(i.e.localto landscape,regionalandcontinentaltoglobal)theyfoundnegative,positiveand unimodalrelationshipswerecommonwithnoonerelationshippredominating(Figure

26).However,inthepresentstudy,positiverelationshipswerethemostcommonform acrossthewholedataset.Furthermore,atthecontinentaltoglobal(>4000km)extent positiverelationshipsweremorecommonthanallotherrelationshipscombined.At regional(200–4000km)andlocaltolandscape(<200km)extentspositiverelationships werepredominantalthoughunimodalrelationshipsweremorecommonthanatthe largestextent(Figure27).Mittelbachetal.(2001)reportedthatunimodalrelationships werecommoninaquaticsystems(Figure28)althoughfreshwaterandmarinesystems werenotanalysedseparately.Inthepresentstudymarineandfreshwaterstudieswere analysedseparately.Theproportionofunimodalrelationshipswashigherinfreshwater thanterrestrialsystems,andunimodalrelationshipswerethemostcommonformofthe

A–PSRRinmarinestudies.However,whenfreshwaterandmarinestudiesinthepresent studyarecombinedintoasinglecategory,positiverelationshipsremainthemost commonformoftheA–PSRR(Figure29).Explanationsforthesecontrastsare discussedindetailbelow( 5.3 ExplainingthecontrastwithMittelbachetal(2001) ).

77 100

80

60

40

20 PercentageofAPSRrelationships

0 P N UM US NS P N UM US NS P N UM US NS Continentaltoglobal Regional Localtolandscape

Figure26.TheproportionsofdifferentA–PSRrelationshipsacrossgeographicalextents reportedbyMittelbachetal.(2001)(continentaltoglobal,N=25;regional,N=26, localtolandscape,N=14).RelationshipcodesasinFigure5.

100

80

60

40

20 PercentageofAPSRrelationships

0 P N UM US NS P N UM US NS P N UM US NS Continentaltoglobal Regional Localtolandscape Figure27.TheproportionofdifferentA–PSRrelationshipsatthethreegeographic extentsreportedinthepresentstudy(continentaltoglobal,N=36;Regional,N=46; Localtolandscape,N=23).RelationshipcodesasinFigure5.

78 100

80

60

40

PercentageofAPSRrelationships 20

0 P N UM US NS P N UM US NS Terrestrial Aquatic Figure28.TheproportionofdifferentA–PSRrelationshipsindifferentecosystemtypes reportedbyMittelbachetal.(2001)(terrestrial,N=43;aquaticN=38).Relationship codesasinFigure5.

100

80

60

40

PercentageofAPSRrelationships 20

0 P N UM US NS P N UM US NS Terrestrial Aquatic Figure29.TheproportionofdifferentA–PSRrelationshipsindifferentecosystemtypes reportedinthepresentstudy(terrestrial,N=54;aquaticN=44).Relationshipcodesas inFigure5.

79 5.1 A note on negative and u-shaped relationships

Negativeandushapedrelationshipswererareacrossthewholedataset.Thisisa generalobservationintheliterature(Gillman&Wright,2006;Rosenzweig&

Abramsky,1993).Negativerelationshipslackageneraltheoreticalexplanation;

RosenzweigandAbramsky(1993)arguethatnegativerelationshipsonlyrepresentthe decliningphaseofaunimodalrelationship.Pärteletal.(2007)combinednegative relationshipsandunimodalrelationshipsfollowingthisreasoning.Similarly,ushaped relationshipshavefewgeneralexplanations.However,theyareexplainableinsome cases.ScheinerandJones(2002)suggestthattransitionalzonesbetweencommunities

(i.e.ecotones)atlowproductivitymightelevatespeciesrichnessintheseareasresulting inanapparentushape.Ushapedrelationshipscanalsobeexplainedbythespeciespool hypothesis.Ifmidproductivitysitesarerarethenthespeciespoolforthesesitesis likelytobelow.Therefore,thealphadiversityinmidproductivitysiteswouldbelow becauseofasmallspeciespoolforthesesites(Gillman&Wright,2006).Nonetheless,

Pärteletal.(2007)collapsedushaperelationshipsintononsignificantrelationships,on thebasisthattheyhavenotheoreticalexplanationHowever,reclassifyingnegativeand ushapedrelationshipsfoundinthepresentstudyasunimodalandnonsignificant relationshipsrespectivelyonlyinvolved11studies.Moreover,thishadlittleeffecton theoverallpattern;positiverelationshipsremainedmorecommonthanunimodaland nonsignificantrelationshipscombined(proportiontest, P<0.0005)(Figure30).

80 100

80

60

40

20 PercentageofAPSRrelationships

0 P UM NS Figure30.TheproportionofdifferentA–PSRrelationshipsaftercollapsingnegative intounimodalrelationships,andcollapsingushapedintononsignificantrelationships (N=112).RelationshipcodesasinFigure5.

5.2 Dataset description

Thelowproportionofstudies(~33%)acceptedforthevotecountandsubsequentmeta analysishighlightstwoimportantpointsforliteraturesynthesis.Firstly,thelarge numberofstudiesexcludedfromthefinalanalysesafterapplyingtheselectioncriteria suggeststhatcarefullyscrutinisingeachpotentialmemberstudyforappropriatenessin answeringtheresearchquestioniscrucial.Secondly,the28studiesforwhichdatawere notavailablesuggestsgreaterdataavailabilityisneededforecologicalpublications.

Twentysixofthesestudieswerepublishedsince2000.Theavailabilityofdatafrom recentpublicationsisofsomeconcernespeciallygiventheincreasingusageofmeta analysesandresearchsynthesesinecology.However,withrespecttothisstudy,thefirst pointismoreimportantgiventhatapplyingtheselectioncriteriaeliminatedmanymore

81 studies(206separatecases)thanalackofdatadid.However,alackofdatadidprevent thecalculationofeffectsizesformetaanalysis.

Theseconclusionsareconsistentwiththeresearchsynthesisliterature(see 2.3

Studyselection ),andspecificallytheforumin Ecology onmetaanalysisandtheplant–

PSRR(e.g.Gillman&Wright,2010;Gurevitch&Mengersen,2010;Hillebrand&

Cardinale,2010;Whittaker,2010b).However,opinionsdifferonthestringency, applicationandspecificcriteriathatshouldbeapplied.Thecriteriaproposedby

Whittaker(2010b)arevirtuallyidenticaltothoseappliedbyGillmanandWright

(2006),andtothoseusedinthepresentstudy.HillebrandandCardinale(2010)onthe otherhandarguethatthecriteriaproposedbyWhittaker(2010b)areoverlystrict,and thataccountingforvariationamongstudiesinmetaanalysesshouldberecordedand accountedforwheninterpretingresults.

ThecriteriausedforthisstudyreplicateGillmanandWright(2006)inorderto maintainconsistency,transparencyandrepeatabilityofthework.Surprisingly,the differencebetweentherelativefrequenciesofthedifferentrelationshipsbeforeandafter applyingtheselectioncriteriawassmall.ThiscontrastswiththeworkofWerenkraut andRuggiero(2011),whoreportedachangeintherelativefrequenciesofdifferent formsofthealtitude–speciesrichnessrelationship,afterapplyingstrictstudyselection criteria.Here,themaindifferenceafterapplyingstrictselectioncriteriawasthe reductionintheproportionofnonsignificantstudies.

5.3 Explaining the contrast with Mittelbach et al. (2001)

ThepredominanceofpositiveA–PSRRsintheliteraturefoundinthisstudycontrasts withthecommonlyheldassumptionthatthe“true”(Rosenzweig,1992)or“ubiquitous”

(Huston&DeAngelis,1994)formofthePSRRisunimodal.Thepredominanceof 82 positiverelationshipsalsocontrastswiththefindingofMittelbachetal.(2001)thatno formoftheA–PSRRwaspredominant.Thereareseveralpossibleexplanationsforthe differencebetweentheresultspresentedhereandthoseofMittelbachetal.(2001):(1) thedifferentsizeofthedatasets—thedatasetusedintheseanalysesincludedmorecases oftheA–PSRR(n=141)thanusedbyMittelbachetal.(2001)(n=88);(2)thegreater numberoflargescale(i.e.regionalandglobaltocontinental)studiesinthedatasetin thepresentstudy(presentstudy,n=82,Mittelbachetal.(2001),n=51);(3)thefewer numberofselectioncriteriausedbyMittelbachetal.(2001)andsomeinconsistencyin theirapplication;and(4)thestatisticalmethodsusedforclassifyingtheformofthe

PSRR.Eachofthesepossibleexplanationsisdiscussedbelow.

5.3.1Datasetsize

Datasetsizeisunlikelytoberesponsibleforthedifferenceinconclusionsmadehere withthosemadebyMittelbachetal(2001)(i.e.predominanceofpositiveandunimodal relationshipsrespectively).Thedatasetinthisstudy(n=112withdatareanalysed)had

24moreA–PSRRstudiesthantheoneusedbyMittelbachetal.(2001)(n=88animal speciesrichnessrelationships).However,therewere52morepositiveA–PSRRs reportedherethanbyMittelbachetal.(2001).Theyfoundunimodalrelationshipswere predominant(34.1%)followedbypositiverelationships(20.5%)(Figure31).Asubset ofthedatasetfromMittelbachetal.(2001)(n=37)thatwasacceptedforinclusionin thisstudywasexaminedtoseeif‘new’studies(i.e.publishedafterMittelbachetal.) influencedtheoverallpatternobservedhere.Usingmymethods,boththe‘old’(i.e.in theMittelbachetal.subset)and‘new’subsetsproducedapredominanceofpositive relationships(48.6and62.5%respectively)andinthe‘new’subset,positive relationshipsweremorecommonthanallotherrelationshipscombined(proportiontest,

83 P<0.0005)(Figure32).Furthermore,therewasnoevidenceofadifferencebetween the‘old’and‘new’studiesintherelativeproportionsofthedifferentformsof relationships(χ 2=7.05,df=4, P =0.133).Thus,thereislittleevidencethatthecontrast betweentheresultspresentedhereandthosereportedbyMittelbachetal.(2001)isthe resultofthelargerdataset.Thesimilaritiesintheproportionsofdifferentrelationships betweentheMittelbachetal.(2001)subsetandthe‘new’studiesdonotsupportthis explanation.

100

80

60

40 PercentageofAPSRrelationships 20

0 P N UM US NS Figure31.TherelativeproportionsofA–PSRrelationshipsreportedbyMittelbachetal. (2001)(blackbars,n=88)andinthepresentstudy(n=112).Relationshipcodesasin Figure5.

84 100

80

60

40 PercentageofAPSRrelationhsips 20

0 P N UM US NS Figure32.TherelativeproportionsofA–PSRrelationshipsfromtheMittelbachetal. (2001)subsetincludedinthisstudyandreclassifiedusingOLSregression,LOWESS linefittingandAICcmodelselection(blackbars),and‘new’studies(Mittelbachetal. subset,n=36,‘new’subset,n=76).RelationshipcodesasinFigure5.

5.3.2Theinfluenceofmacroscalestudies

Asecondpossibleexplanationmightbethepresenceofagreaternumberof macroecologicalstudiesinthedataset.ThedatasetcompiledbyMittelbachetal.(2001) containedstudiesupuntilSeptember1999;sincethemidninetiesthefieldof macroecologyhasgrownrapidlyfollowingthepublicationofinfluentialvolumesonthe topic(Brown,1995;Gaston&Blackburn,2000;Rosenzweig,1995),suggestingthatthe potentialforagreaternumberofmacroscalestudiesisprobable.Whittakeretal.(2001) predictsapositivePSRRacrosslargegeographicextentsandcoarsegrains.Therefore,a greaternumberofmacroscalestudiesinthedatasetusedinthisstudymighthave affectedtheoverallproportionofpositiverelationships.However,theproportionsof studiesatdifferentextents(localtolandscape,21.9%;regional,43.8%;continentalto global34.3%)aresimilartothoseusedbyMittelbachetal.(2001)(21.5,40.0,38.5% 85 respectively)(Figure33)(χ 2 =0.335,df=2, P=0.846).Itshouldbenotedthat

Mittelbachetal.(2001)usedfourgeographicextentsseparatinglocaltolandscapeinto

‘local’(<20km)and‘landscape’(20–200km);thesetwoextentswerecombinedforthe abovecomparison.Moreover,positiverelationshipsdominateatallthreeextents examinedhere,whereasMittelbachetal.(2001)reportedthatunimodalrelationships werethemostcommonformoftheA–PSRRatthecontinentaltoglobalscale, unimodalandpositiverelationshipswerethemostcommonatregionalscales,andnon significantrelationshipswerethemostcommonatthelocaltolandscapescale

(combined‘local’and‘landscape’).Therefore,thereisnoevidencethatmoremacro scalestudieshavecontributedadisproportionatenumberofpositiveA–PSRRstothe resultspresentedinthisstudy,firstlybecausethenumberofstudiesatdifferent geographicalextentsareproportionatelysimilarinbothdatasets,andsecondlybecause positiverelationshipswerepredominantatallthreegeographicextentsinthisstudy.

50

40

30

20 Percentageofstudies

10

0 C R L Figure33.TheproportionsofstudiesatdifferentgeographicalextentsintheMittelbach etal.(2001)datasetandthedatasetusedinthisstudy(M2001(blackbars),n=65; presentstudy,n=105).C,continentalglobal;R,regional;L,localtolandscape.

86 5.3.3Theinfluenceofselectioncriteria

AthirdfactorthatmightexplainthecontrastbetweentheresultsreportedbyMittelbach etal.(2001)andthosepresentedhererelatestothefewerselectioncriteriausedby

Mittelbachetal.(2001).However,despitean apriori assumptionthatselectioncriteria mightinfluencethefinaloutcome(e.g.Gillman&Wright,2006;Werenkraut&

Ruggiero,2011;Whittaker,2010b;Whittaker&Heegaard,2003),anexaminationofthe datadoesnotsupportthisassumption.Rather,thedifferentmethodsforclassifying relationshipsweremoreimportantingeneratingthecontrastingresults.

Mittelbachetal.(2001)hadfourcriteriathatastudyhadtomeettobeincludedin theirstudy;(1)thesamplesizewas≥10;(2)studieswerenotfrom“agriculturaland intensivelymanagedsystems”;(3)studieswerenotfrom“systemssubjecttosevere anthropogenicdisturbance”;and(4)productivitywasnotexperimentallymanipulated.

InadditiontothecriteriausedbyMittelbachetal.(2001),sixmorecriteriawereused forthisstudy;(1)thesamplingregimewasheldconstant;(2)thesurrogatefor productivitywasappropriateforthesystembeingstudied,andnotliabletodistortion fromotherfactors;(3)thestudydesignwasnotlikelytoinfluencetheperceivedformof

A–PSRR;(4)theentiredataset,orpartthereof,wasnotincludedmorethanoncewithin themetaanalysis;(5)nootherstudyassessingtheA–PSRRwasincludedthatcovered thesametaxonacrossthesamespatialarea;and(6)thetargettaxawerenot phylogeneticallyrestricted.

Afterapplyingselectioncriteria(definedabove)forthepresentstudy,theoverall patternintheentiredatasetchangedlittlewithpositiverelationshipsremainingthemost commonformoftheA–PSRR(seeFigures5and6).However,unimodalandnon significantrelationshipswerethemostcommonrelationshipsexcludedfromthe

Mittelbachetal.(2001)dataset(33.3and29.4%respectively,Figure34)andpositive relationshipswerethemostcommonlyexcludedrelationshipfromthe‘new’dataset(i.e. 87 additionalstudiesidentifiedforthepresentstudy)(49.6%,Figure34).Thiscontrasts withthefindingsofGillmanandWright(2006)whoinexaminingplant–PSRRs deemedasimilarproportionofnonsignificant(27.3%)relationships,butahigher proportionofunimodal(52.3%)relationshipsinadmissiblefromtheMittelbachetal.

(2001)plantonlydataset.Thecontrastintherelationshipformsexcludedfromthe

Mittelbachetal.(2001)componentofthedatasetand‘new’componentofthedatasets makesitdifficulttodetermineifselectioncriteriainfluencedthedifferencebetweenthe resultsreportedinthepresentstudyandthosereportedbyMittelbachetal.(2001).

Therefore,theinfluenceofselectioncriteriawithintheMittelbachetal.(2001)data subsetisexaminedbelow.

UnimodalrelationshipswerethemostcommonformoftheA–PSRRinthe

Mittelbachetal.(2001)datasubsetbefore(n=88)andafter(n=36)applyingthe selectioncriteriausedinthepresentstudy(Figure35)andtheproportionsofdifferent formsoftheA–PSRRweresimilar(χ 2 =11.758,df=8, P=0.161)(Figure35).

However,afterreclassifyingrelationshipsforuseinthepresentstudy(i.e.usingOLS regression,LOWESSlinefittingandAIC cmodelselection),positiverelationships becamethemostcommonformoftheA–PSRRintheMittelbachetal.(2001)data subset(n=36)(Figure35).Thepredominanceofunimodalrelationships,asclassified byMittelbachetal.(2001),beforeandafterapplyingtheselectioncriteriacontrasts withthepredominanceofpositiveA–PSRRswhenreanalysedandreclassifiedforthe presentstudy.Thissuggeststhatthemethodsusedforclassifyingtheformof relationshipsnotselectioncriteriahadastrongerinfluenceonthecontrastingresults betweenthepresentstudyandMittelbachetal.(2001).Theinfluenceofrelationship classificationisdiscussedinmoredetailbelow(see 5.1.4Theinfluenceofrelationship classification ).

88 50

40

30

20 PercentageofA-PSRrelationships 10

0 P N UM US NS Figure34.TheproportionofdifferentformsofA–PSRRsdeemedinadmissibleforthe presentstudyfromtheMittelbachetal.(2001)dataset(asclassifiedbyMittelbachetal. usingGLMregressionandtheMOStest)(blackbars,n=51),andfromthe‘new’ dataset(n=132).RelationshipcodesasisFigure5.

50

40

30

20 PercentageofAPSRrelationships 10

0 P N UM US NS Figure35.TheproportionofdifferentformsoftheA–PSRRsfromtheMittelbachetal. (2001)datasetbefore(blackbars,n=88)andafterapplyingselectioncriteria(grey bars,n=36)andafterreclassifyingtherelationshipsusingOLSregression,LOWESS linefittingandAIC cmodelselection(n=36).RelationshipcodesasinFigure5.

89 5.3.4Theinfluenceofrelationshipclassification

Themethodsusedforclassifyingrelationshipsdifferedbetweenthepresentstudyand

Mittelbachetal.(2001).Thus,17studiesthatwereacceptedforinclusioninthepresent studywereclassifieddifferentlythanMittelbachetal.(2001).Anexaminationof reclassificationrevealedthat10studieswerereclassifiedaspositive(linearor quadratic),threeofwhichchangedfromunimodaltodeceleratingpositive(Table5).

Moreover,therewerenetgainsofsevenpositiverelationshipsandonenegative relationship,andanetlossofoneushapedrelationshipandequalnetlossesofthree unimodalandnonsignificantrelationships.Thissuggeststhatthedifferencesinthe resultspresentedhereandthosereportedbyMittelbachetal.(2001)(i.e.positiveand unimodalpredominancerespectively)maybetheresultofdifferentmethodsfor classifyingrelationships.

Mittelbachetal.(2001)usedatwostepmethodforclassifyingrelationships:(i)

GLMregression(withaPoissondistribution,loglinkfunctionanda10%levelof significance);and(ii)theMOStestfortestingforunimodality.Thedifferencesinthe methodsandhowtheymayhavecontributedtothedifferentresultsareexploredin detailbelow.Additionally,examplesareusedtodemonstratehowsomeofthe inconsistenciesmighthavebeengenerated.

90 Table5.Thereclassificationofrelationshipsinthepresentstudythatwereincludedin Mittelbachetal.(2001).(N=17) Reclassification n noofaccelerating noofdecelerating Negativetounimodal 1 na na Positivetounimodal 1 na na Nonsignificanttounimodal 1 na na Nonsignificanttopositive 2 0 1 Ushapedtopositive 2 2 0 Unimodaltopositive 6 1 3 Nonsignificanttonegative 1 1 0 Ushapedtonegative 1 0 1 Positivetoushaped 1 na na Positivetononsignificant 1 na na Total 17 4 5

(i)Generalisedlinearmodelregression

WhittakerandHeegaard(2003)foundthattheregressionmethodsusedbyMittelbachet al.(2001)werelikelytohavebiasedtheirdataset.Mittelbachetal.(2001)usedGLM regressionwithaPoissondistributionandloglinkfunction—inpreferencetoOLS regression—usinga10%levelofsignificance(i.e.P<0.1):whilethisisgenerally statisticallysound,itmightnotalwaysbeapplicabletoecologicaldata.Overdispersion

(i.e.thevarianceexceedingthemean)iscommoninbiologicaldata,anddespite methodsbeingavailable,Mittelbachetal.(2001)didnotcheck,norcorrectfor, overdispersionwherenecessary(Gillman&Wright,2006;Whittaker&Heegaard,

2003).Furthermore,usinga10%levelofsignificancewillbebiasedtowardsaccepting complexrelationshipsthatwouldnormallyberejectedusing5%levelofsignificance

(Whittaker&Heegaard,2003).Byrunningsimulations,WhittakerandHeegaard(2003) demonstratedthatthenumberofunimodalrelationshipsreportedbyMittelbachetal.

(2001)waslikelytobeartificiallyinflatedbynotcheckingand/orcorrectingfor overdispersion.Mittelbachetal.(2001)analysedtheirdatausingbothOLSandGLM regression,buttheyonlyreportedresultsforGLM.AmongthestudiesintheMittelbach etal.(2001)dataset,therewasasignificantdifferenceintheformofrelationships 91 classifiedusingGLMandtheunreportedresultsusingOLSregression(χ 2 =11.10,df=

4, P=0.022)(Figure36).UnimodalrelationshipswerethemostcommonwhenGLM regressionwasused(36.3%)andpositiverelationshipspredominatedwhenOLS regressionwasused(36.4%).Furthermore,therelativeproportionsofdifferentA–

PSRRsclassifiedbyMittelbachetal.(2001)usingOLS(n=88)and,thestudiesfrom theMittelbachetal.(2001)includedinthepresentstudy(i.e.reclassifiedusingOLS,

2 LOWESSlinefittingandAIC cmodelselection)(n=36)weresimilar(χ =2.85,df=4,

P=0.557)(Figure36).Positiverelationshipswerehowever,morecommoninthe presentstudy(48.6%)thanintheunreportedOLSclassificationsbyMittelbachetal.

(2001)(36.4%).ThecontrastbetweentheGLMandOLSresultswithintheentire

Mittelbachetal.(2001),andwithintheMittelbachetal.(2001)datasubsetreanalysed andreclassifiedforthepresentstudy,demonstratesaclearinfluenceofthemethods usedforclassifyingrelationshipforms.

92

60

50

40

30

20 PercentageofAPSRrelationships

10

0 P N UM US NS Figure36.TheproportionofdifferentA–PSRRsfromMittelbachetal.(2001)using GLMregression(blackbars,n=80);Mittelbachetal.(2001)usingunreportedOLS regression(greybars,n=88);andthesubsetofstudiesfromMittelbachetal.(2001) usedinthisstudyusingOLSregression,LOWESSlinefitandAIC cmodeltesting(C,n =36).

(ii)TheMOStest

Unimodalhasbeensuggestedtobethe‘true’(Rosenzweig,1992)and‘ubiquitous’

(Huston&DeAngelis,1994)formofthePSRR.Whittaker(2010b)arguesthatthismay haveledMittelbachetal.(2001)andPärteletal.(2007)tobe“fartoogeneroustoward thenotionof[ahump].”Inotherwords,whenthedatashowedasignificantquadratic term,ahumpmighthavebeenassumed.However,thepresenceofasignificant quadratictermisnotnecessarilyevidenceagainstmonotonicityandcautionshouldbe takeninconcludingthatarelationshipisunimodal(Murtaugh,2003).Inecologyand evolution,researchersareofteninterestedinwhethertherelationshipbetweenparticular responseandpredictorvariablesismonotonicor,unimodalorushaped(e.g.thePSRR).

Thusanobjectivemethodfortestingforaninternalminimumormaximumisdesirable. 93 StartingwithLeibold(1999),anumberofresearchersinterestedintheformofthe

PSRR(e.g.Chase&Leibold,2002;Chase&Ryberg,2004;Ding,Yuan,Geng,Lin,&

Lee,2005;Dodsonetal.,2000;Hoffmann&Dodson,2005)haveusedatestdeveloped byMitchellOldsandShaw(1987;theMOStest)fordetectingunimodalrelationships inmodelsofnaturalselection:thisisthesametestemployedbyMittelbachetal.

(2001).Twoissuescanbeidentifiedthatneedtobeaddressedwhenusingthis approach.ThefirstissueisoneinitiallyaddressedbyMitchellOldsandShaw(1987,p.

1155)andrelatestofundamentalstatisticalpractice:

itisimperativetolookcarefullyatthedata.Graphicalanalysisisan essentialstepinregressionanalysis....inordertodeterminewhether thedatafitthehypothesizedmodelandtodetectpossibleunexpected patternsorproblemsinthedata

ThatmeansindiscriminatelyapplyingtheMOStest—oranyotherstatisticaltest—to dataandinterpretingasignificant pvalueasevidenceofaunimodalorushapeis inappropriate.Datashouldalwaysbeexaminedvisuallybeforestatisticaltesting.

ThesecondissuewiththeMOStestisaddressedbyMurtaugh(2003)andrelates tothehighrateofrejectionofmonotonicitywhenusing‘quadratictests’(e.g.MOS test).Usingsuchtests,aunimodalorushapeisinferredwhenamaximumorminimum fallswithintheobservedrangeofvalues(i.e.MOStest).However,‘thisisalmost alwaysthecase’inquadraticrelationships,eventhosewithnonsignificantquadratic terms(Murtaugh,2003).Murtaughfoundthatover99percentoftestsfailedtorejecta nullhypothesisofunimodalitydespitedatabeingdrawnfromdistributionsthatwerenot unimodal.Therefore,thereisahighprobabilityofclassifyinganyquadraticrelationship

(i.e.decelerating,accelerating,asymptoticor,unimodal)asunimodal,indicatingabias towardunimodalrelationships.Indeed,afterMittelbachetal.(2001)appliedtheMOS

94 test,allrelationshipswith‘significant’(P<0.10)quadraticcomponentsaccordingto

GLMregression(39studies)wereclassifiedasunimodalorushaped.

Themethodsusedinthepresentstudy(i.e.OLSregression,LOWESScurve fittingandAIC cmodelselection)mayhavebeentooliberaltowarddetecting deceleratingpositiverelationships.However,itisimportanttonotethatsomeofthe relationshipsclassifiedasunimodalbyMittelbachetal.(2001)didnothavestatistically significantlyquadratictermsandweresubsequentlyclassifiedasdeceleratingpositive inthepresentstudy.TheevidencepresentedaboveandthedemonstrationbyWhittaker andHeegaard(2003)suggestthatthemethodsemployedbyMittelbachetal.(2001) werebiasedtowardsunimodalrelationships.Therefore,itisunsurprisingthattherewere alowerproportionofunimodalrelationshipspresentedhereincontrasttothe predominanceofunimodalrelationshipsreportedbyMittelbachetal.(2001).The methodsusedinthepresentstudydonothaveasystematicbiastowardsanyparticular relationshipsform.PlottingthedataandvisuallyexaminingaLOWESSfitgivesan estimationofthetrendinthedataallowingthedetectionofadownorupwardtrend.

Thisisimportantgiventhecontentionthathasarisenregardingpositiveorunimodal

PSRRs(Gillman&Wright,2006;Mittelbachetal.,2001;Whittaker&Heegaard,

2003).Furthermore,theassumptionsofOLSregression(i.e.normalityandsymmetryof errors)arelesslikelytobeviolatedthantheassumptionofPoissonerrorsinGLM regressioninspeciesrichnessdata(Gillman&Wright,2006).Therefore,OLS regressionwasmoreappropriateforuseinthepresentstudy.Theadditionalstepof usingAIC cmodelselectionprovidedimportantinformationfordifferentiating monotonicrelationshipsfromdeceleratingandacceleratingrelationships,afactornot consideredbypreviousmetaanalyses.Thisstepwasimportanttodistinguishhow previousstudiesmighthavemisclassifieddeceleratingpositiverelationshipsas unimodal. 95 5.3.5Examplesofinappropriaterelationshipclassification

FourexamplesoftheissuesrelatedtothemethodsusedbyMittelbachetal.(2001)are presentedbelow:(i)anexamplerelatedtotheproblemwithapplyingstatisticalanalyses withoutvisuallyexaminingthedatafirst;(ii)amisclassificationofadecelerating positiverelationshipasunimodalintheabsenceofevidenceofadownturn;(iii)a misclassificationofadeceleratingnegativeasushapedwithevidencerefutingan upturnathighproductivities;and(iv)arelationshipclassifiedasunimodalbyGLM, witha10%levelofsignificancethatshowsnoevidenceofanyrelationshipatall.

(i)Visualexamination

Beforeapplyinganystatisticaltechniquetodataitshouldalwaysbevisuallyexamined toidentifygeneralpatternsandanyunusualobservations.Forregression,thedata shouldbereasonablyscatteredacrossthewholelengthoftheinferredregression

(Fowler,Cohen,&Jarvis,2008).PalomäkiandPaasivirta(1993)wasincludedby

Mittelbachetal.(2001)usingphosphorousasasurrogateforproductivity.Elevensites weresampledwithphosphorouslevelsrangingfrom5–55g/lwith10ofthe11sites rangingfrom,5to15g/l.Thesitewithhighestphosphorousconcentration,however, wasthreeandahalftimeshigherthanthenexthighestmeasureofphosphorousandthus representsanoutlierthatdeviatesfromthegeneraltrendofthedata.Thislastdatapoint wouldhavehadanoverwhelminginfluenceonthequadraticfit(Figure37).The discontinuityinthedatainvalidatestheuseofregressionbecauseanydeparturefroman apparenttrendcannotbeinferredwiththeabsenceofinternaldata.Inthiscase,the numberofdifferenttaxaincreasedbetween5and15g/lP,butthehighestphosphorus levelcorrespondedwiththelowestdiversityinthedataset.Basedonthesedata,

Mittelbachetal.(2001)inferredahumpshapedrelationshipusingGLMregression.

96 However,extremeoutliersresultinoverdispersioninPoissonGLMregression(Zuur,

Ieno,&Elphick,2010)(see 5.1.4Theinfluenceofrelationshipclassification fora discussiononGLMandoverdispersionabove).ThisconclusionbyMittelbachetal.

(2001)isincontrasttotheconclusionsdrawnbyPalomakiandPaasivirta(1993)who reportedthatphosphorouscouldnotexplainthevariationinthenumberoftaxaintheir study.Interestingly,biomassdatawerealsoreportedbyPalomäkiandPaasivirta(1993) andbiomasshadapositiverelationshipwiththenumberofdifferenttaxa(Figure38) andthehighestphosphorousvaluecorrespondswiththelowestbiomassvalue.

Therefore,notonlyistheuseofregressiononthephosphorous–numberofdifferent taxadatainvalid,butitappearsthatphosphorousisapoorproxyforproductivityinthe studysystem.Mittelbachetal.(2001)providenoexplanationwhythephosphorouswas choseninsteadofbiomasswhenbiomasswascommonlychoseninothercases.

97 70

60

50 Numberoftaxa

40

30 0 10 20 30 40 50 60 70 Phosphorous(g/l) Figure37.AnexampleofdataclassifiedasunimodalbyMittelbachetal.(2001)using GLIMregressionandtheMOStest.Thelargegapinthedatabetween15and55g/lP invalidatestheuseofregressionandinterpolatingahumpishighlyquestionable.Data obtainedfromthedatatablepublishedinPalomäkiandPaasavirta(1993)(N=11).

70

60

50 Numberoftaxa

40

30 0 200 400 600 800 1000 1200 1400 Biomass(mg/m2) Figure38.Therelationshipbetweenspeciesrichnessandbiomasspresentedby PalomäkiandPaasavirta(1993).Thepositiverelationshipcontrastswiththe‘unimodal’ relationshipreportedbyMittelbachetal.(2001)usingphosphorousasasurrogate (Figure33)(N=11).ThesolidpointcorrespondstothehighestPvalueinFigure37.

98

(ii)Unimodalmisclassification

DeathandWinterbourne(1995)measuredepithelicphytopigmentconcentration

(g/cm 2)instreamsasasurrogateforproductivityandrelatedittomacroinvertebrate speciesrichness.Therelationshipwaspresentedaspositive( R2=53%)bytheprimary authors,whostatedthat“[a]quadraticmodelfortherelationshiponlyimprovedthefit by9percent.”Mittelbachetal.(2001)however,classifiedtherelationshipasunimodal.

AreanalysisdoneforthepresentstudyagreeswiththefindingsoftheDeathand

Winterbourne(1995).ByplottingthedatawithaLOWESSline,thereisnoevidenceof adownwardtrendatthehighendoftheproductivityscale(Figure39A).Afterapplying

AIC citwasdeterminedthatthequadraticmodelfitthedatabest,indicatinga

2 deceleratingpositiverelationship(quadratic R =54.4%, P<0.0005,linearAIC c=

399.44,curvilinearAIC c =388.90).Fittingaquadraticcurvewith95percentconfidence intervalsdemonstratestheincreasinguncertaintyofthedownwardcurveathighlevels ofphytopigmentconcentration(Figure39B).Moreover,theupperboundofthe95 percentconfidenceintervalshowsnoevidenceofadownturn.

99 70 A)

60

50

40

30

20

10

0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Logphytopigmentconcentration(g/cm2)

70 B)

60

Macroinvertebratespeciesrichness 50

40

30

20

10

0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Logphytopigmentconcentration(g/cm2)

Figure39.(A)AdemonstrationofarelationshipclassifiedbyMittelbachetal.(2001) thatwasreclassifiedasdeceleratingpositiveinthepresentstudygiventhelackof evidenceofdownturnofafittedLOWESSline.(B)Aquadraticfitted(with95% confidenceinterval)tothesamedataas(A)todemonstratetheincreasinguncertaintyof thedownwardcurveoftherelationship(B).Thedataweredigitisedfromthefigure presentedinDeathandWinterbourne(1995)(N=53).

100 (iii)Ushapedmisclassification

Owen(1988)measuredrodentspeciesrichnessandrelatedittoprimaryproductivity

(g/m 2/yr)findinganegativerelationship.Mittelbachetal.(2001)reanalysedthedata andclassifiedtherelationshipasushaped.Afterplottingthedatathatweredigitised fromOwen(1988)andfittingaLOWESScurvetherewasevidenceoflevellingoffand noupwardtrendinspeciesrichnessattheupperendofmeasuredproductivities(Figure

40A).Moreover,fittingathirdorderpolynomial(witha95%confidenceinterval) suggestsadeclineinrichnessathighproductivity(Figure40B)providingstrong evidenceagainstaushapeinthesedata.Thisisconsistentwiththeresultspresentedby

Owen(1988).Thus,inthepresentstudy,adeceleratingnegativewasconcludedafter

2 usingOLSregression,fittingaLOWESSlineandAICcmodelselection(quadratic R =

56.4%, P<0.0005,linearAIC c=886.76,curvilinearAIC c =851.77).

101 A) 35

30

25

20

15

10 0 500 1000 1500 2000 2500 Primaryproductivity(g/m2/yr)

35 B) Rodentspeciesrichness

30

25

20

15

10 0 500 1000 1500 2000 2500 Primaryproductivity(g/m2/yr) Figure40.(A)AdemonstrationofarelationshipclassifiedbyMittelbachetal.(2001) asushapedthatafittedLOWESSlineshowsnoevidenceofanupturninthedataat highlevelsofproductivity.(B)Athirdorderpolynomialfitted(with95%confidence intervals)tothesamedataas(A)suggestingadownturninspeciesrichnessathigh levelsofproductivityrefutingtheclaimedushapebyMittelbachetal.(2001).Thedata weredigitisedfromthefigurepresentedbyOwen(1988)(N=171).

102 (iv)Liberalclassificationofunimodalrelationships

ThefollowingexamplewaspresentedbyGillmanandWright(2006)todemonstrate howliberalGLIMregressionwitha10%levelofsignificanceisatclassifyingspurious relationshipsasunimodal.Goughetal.(1994)presentedarelationshipbetweenbiomass andplantspeciesrichnessclassifyingtherelationshipasnonsignificant.Mittelbachet al.(2001)presentedaGLIMunimodalresultwitha‘significant’quadraticcomponent

(P=0.016).OLSontheotherhandwasnonsignificantusinga5%levelofsignificant

(R2=12.9%,quadraticmodel, P =0.110;quadraticterm, P=0.095).Avisual examinationofthedatashowsnoobviousrelationship(Figure41).

12

10

8

6

Speciesrichness 4

2

0 0 1000 2000 3000 4000 Biomass(kg/m2) Figure41.ArelationshipclassifiedbyMittelbachetal.(2001)asunimodalusingGLIM regressionandtheMOStest(P=0.016)despitethelackofrelationshipindicatedbythe scatterplotandOLSregression( R2=12.9%,quadraticmodel, P =0.110;term, P= 0.095).DatadigitisedfromGoughetal.(1994)(N=35).

103 5.4 Conclusions on explanations for contrasting results

Datasetsizedidnotinfluencethecontrastbetweentheresultsofthepresentstudyand

Mittelbachetal.(2001).BoththesubsetofMittelbachetal.(2001)studies(asclassified forthepresentstudy),andthesubsetofmorerecentstudiesincludedinthepresent studyshowedapredominanceofpositiverelationships,providingevidencethatpositive relationshipswerethemostcommonformoftheA–PSRRinbothdatasets.The additionalmacroscalestudiespresentinthemorerecentstudiespublishedafter

Mittelbachetal.(2001)didnotcontributeadisproportionatenumberofpositiveA–

PSRRsthepresentstudy.Despitethepresenceofmorelargescalestudiesinthepresent study,therelativeproportionsofstudiesatdifferentscaleswassimilarinbothdatasets.

Furthermore,positiverelationshipswerepredominantatallthreegeographicalextents inthepresentstudy.Selectioncriteriadidnotappeartogreatlyinfluencethedifferences betweentheresultsofMittelbachetal.(2001)andtheresultsinthepresentstudy.

Acrossthewholedataset,positiverelationshipswerethemostcommonformoftheA–

PSRRbeforeandafterselectingonlystudiesthatwererobusttestsoftheA–PSRR.The differentmethodsusedforanalysingrelationshipsisthemostplausibleexplanationfor thecontrastingresultspresentedinthisstudyandtheresultsreportedbyMittelbachet al.(2001).Furthermore,theexamplesofmisclassification,inappropriatestatistical applicationandquestionableclassificationusingGLM,andthedemonstrationby

WhittakerandHeegaard(2003)thatGLMregressionmayhaveinflatedthenumberof unimodalrelationshipsintheMittelbachetal.(2001)dataset,suggestasystematicbias towardsunimodalrelationshipsusingthemethodsemployedbyMittelbachetal.

(2001).Therefore,giventhisbiastowardshumpshapedrelationshipsinprevious studies,itcanbeconcludedthatpositiverelationshipsarethemostcommonformofthe

A–PSRR.ThisconclusionisconsistentwiththeresultspresentedbyGillmanand

Wright(2006)whofoundpositiverelationshipswerepredominantforterrestrialplants. 104 5.5 The influence of scale

5.5.1Geographicextent

TheformofthePSRrelationshipishypothesisedtovarywithscaleinbothplants

(Scheiner&Jones,2002)andanimals(Chase&Leibold,2002).Atsmallerscalesthe formoftherelationshipisproposedtobehumpshapedormorevariable,butatlarger scalestherelationshipisproposedtobemonotonicandpositive(Chase&Leibold,

2002;Mittelbachetal.,2001;Waideetal.,1999;Whittakeretal.,2001).Furthermore, somehaveproposed(e.g.VanderMeulen,Hudson,&Scheiner,2001;Whittakeretal.,

2001)thattheobservedpositivePSRRatbroadgeographicextentsistheresultof humpshapedrelationshipsatsmallerscaleswithsuccessivelyhigherbetadiversitywith increasingproductivity.Thepredominanceofpositiverelationshipsatallscalesinthe presentstudycontrastwiththesepredictionsandtheresultsofMittelbachetal.(2001).

Indeed,positiverelationshipswereoverwhelminglypredominantatthecontinentalto globalextentand,despitetheformoftherelationshipbeingmorevariableandunimodal increasinginfrequencyatthetwosmallerextents,positiverelationshipswerealso predominantatsmallerscales.Moreover,positiverelationshipshadthehighestmean effectsizeatthecontinentaltoglobalandlocaltolandscapescales.Althoughnegative relationshipshadthehighestmeaneffectsizeattheregionalscale,positiverelationships wereoverallmoreimportantgiventhelowfrequencyofnegativerelationshipsatall scales(4.5%intheentiredataset).Similarly,attheregionalscaleushapedrelationships canbeconsideredunimportant.

Thepredominanceofpositiverelationshipsmightresultfromclassifying curvilinearrelationshipsforwhichnoevidenceofaturningpointexistsasdecelerating andacceleratingratherthanasunimodalorushapedrelationshipsashasbeendonein thepast.Thisisofparticularinterestwithregardtounimodalanddeceleratingpositive

105 relationshipsgiventhepredictionofunimodalpredominanceatsmallscalesand positiverelationshipsatprogressivelylargerscales.Collapsingdeceleratingpositive relationshipsintounimodalrelationshipsproducesanincreasingfrequencyofunimodal relationshipswithdecreasinggeographicextent(Figure42).Thissuggeststhatthe previouslyperceivedinfluenceofscaleontheformoftherelationshipmaytosome extentbeanartefactofMittelbachetal.(2001)beingtooliberaltowardunimodal relationshipsatsmallerscales.Therefore,deceleratingpositiverelationshipsbecome morecommonwithdecreasinggeographicalextent.

Anotherexplanationforthepredominanceofpositiveanddeceleratingpositive relationshipsatsmallextentsrelatestotherangeofproductivitymeasured.Atsmall extents,therangesinproductivitywilltendtobesmall,andstudiesatsmallextents mightfailtocapturetheentirerangeofproductivityforthegivenhabitat.Therefore,a deceleratingrelationshipmightrepresentthebeginningofadownturnofaunimodal relationship.Nonetheless,intheabsenceofevidenceofadownturn,ahumpshape cannotbeinferred,becausethisamountstoanassumptionabouttheorywhichinturnis usedtoprovideevidenceinfavourofthetheory.

106 A) 100

80

60

40

20

0 P N UM US NS

B) 100

80

60

40

20

0 P N UM US NS PercentageofAPSRrelationships

C) 100

80

60

40

20

0 P N UM US NS Figure42.TheproportionofdifferentAPSRrelationshipsatdifferentgeographical extents,beforeandafter(blackbars)hypotheticallycollapsingdeceleratingpositives intounimodalrelationships.(A)Continentaltoglobal(n=36);(B)regional(n=46); (C)localtolandscape(n=23).RelationshipcodesasinFigure5.

107

Attheregionalscaleoneofthetwonegativerelationships(Owen&Dixon,1989) representedtherelationshipbetweenlizardrichnessandamultivariatemeasureof

‘wetness’inanaridregion.Inthesamestudy,apositiverelationshipwasfoundfor frogsandtoads,turtlesandsalamanders.Thiscouldberelatedtophysiologicaland biologicaldifferencesbetweenlizardsandtheothergroups.OwenandDixon(1989) inferthatbecauselizardsarephysiologicallyindependentofwaterforreproductionand heliothermic(i.e.requiresunlightforthermoregulation),thewetterareasmightsuppress lizardactivity.Thiscontrarianrelationshipbetweenlizardsandothervertebrategroups

(i.e.mammals,birdsandamphibians)hasalsobeendemonstratedinAustraliawith lizardrichnesspeakinginthedrydesert(Powney,Grenyer,Orme,Owens,&Meiri,

2010).Alongwithdifferentialresponsestoenvironmentalvariables,Powneyetal.

(2010)concludethatcentresofdiversificationdifferbetweenlizardsandothergroups, accountingforthisnoncongruence.Hence,whilenegativerelationshipsmaybe observedintaxonomicallyrestrictedgroupsduetotheirphysiologicalrequirements,a broaderinvestigation(e.g.totalvertebraterichness)islikelytohaveadifferentformof thePSRR.Oneofthetwonegativerelationshipsatthelocaltolandscapescalerelated antrichnesstoNPP(Sanders,Lessard,Fitzpatrick,&Dunn,2007).However,thelevels ofNPPwererelativelyhighandtherangewasnarrow,indicatingthenegative relationshipcouldreflectthedownwardcurveofaunimodalrelationship(Rosenzweig,

1992).However,Sandersetal.(2007)foundthatantrichnesswasstronglyand positivelyrelatedtotemperature,andsuggestthatacrossthescaleofstudytemperature ismoreimportantthanNPPinregulatingantactivity.

108 5.5.2Grain

WhittakerandHeegaard(2003)arguethatgrainisathemostimportantcomponentof scaleindeterminingpatternsofdiversity.Furthermore,combiningcoarseandfine grainstudiesisinappropriatesincedifferentcomponentsofdiversityaresampledat differentgrains.Finegrainsamplesalphadiversity,andcoarsegrainsamplesbeta diversity.Alphadiversityismorestronglyinfluencedbymigration,whereasbeta diversityismorestronglyinfluencedbylongertermprocesslikespeciation(Whittaker etal.,2001).Afterseparatingthestudiesintofineandcoarsegrain,therewasindeeda differencewithunimodalrelationshipsbeingmorecommoninfinegrainedstudies.

Nonetheless,positiverelationshipswerepredominantatbothgrainswhichissimilarto thepatternsfoundforterrestrialplants(Gillman&Wright,2006).Theseresults contradictthepredictionthathumpshapedrelationshipsdominateatfinegrains althoughtheyaremorecommonthanatcoarsegrains(Chase&Leibold,2002).

Furthermore,otherstudieshavefoundthattheformofthePSRRdoesnotvarywith grain(Kasparietal.,2000)suggestingthattheformofthePSRRisnotuniversallygrain dependent.

Thereweremorethantwiceasmanycoarse(n=69)thanfinegrain(n=29) studiesinthedataset,manyofwhichconstitutespatialanalysesusinggeographic informationsystems(GIS)gridsquares.Thesizeofgridsquarescanvaryfromstudyto study,withsomeusing220×220km(approx48,400km 2)(Hawkins&Porter,2003b) andothersusingsmaller20,000km 2gridcells(Hurlbert&Haskell,2003).However, acrosssuchlargescales,despitethedoublingingridcellsize,thesamecomponentof diversityisbeingsampled(i.e.betadiversity).vanRensburgetal.(2002)demonstrated noqualitativedifferenceintherelationshipsbetweenbirdsandAETinsouthernAfrica

109 whenusinghalf,oneandtwodegreegridcells.Thereforeanalysingcoarsegrainstudies ofthesescalestogetherisappropriate.

ChaseandLeibold(2002)foundthatthePSRRwasdifferentusingthesame datasetwhentheyaggregateditatdifferentgrains(pondsandwatersheds);thePSRR washumpedatthe‘pond’grainandpositiveatthe‘watershed’grain.Ifdecelerating positiverelationshipswerecollapsedintounimodalrelationships(aprobableresultif usingGLMregressionandtheMOStest),positiverelationshipswouldremain predominantatthecoarsegrain(73.9to53.2%)(Figure43A).Whereas,positiveand unimodalA–PSRRswouldbecomeequallycommon(37.9%)amongfinegrainstudies

(Figure43B).Whiledoingthismightmaketheresultsmoreconsistentwithstudiessuch asChaseandLeibold(2002),inwhichitisclaimedthatthetypeofrelationshipis entirelyscaledependent,thelargenumberofpositiverelationshipsatfinegrainsisstill contradictorytothisassertion.Importantly,asdiscussedwithregardtogeographical extents,thereislittleevidencetosuggestthatdeceleratingpositiverelationshipsshould beclassifiedasunimodal.

110 A) 100

75

50

25

0 P N UM US NS

B) 100 PercentageofAPSRrelationships

75

50

25

0 P N UM US NS Figure43.TheproportionofdifferentAPSRrelationshipsatcoarse(A,n=69)and fine(B,n=29)grainsbeforeandafter(blackbars)hypotheticallycollapsing deceleratingpositivesintounimodalrelationships.RelationshipcodesasinFigure5.

111 5.6 The influence of ecosystem type

Terrestrialspeciesrichnesspatternshavereceivedmoreattentionthanaquaticsystems, particularlyatlargescales(Heino,inpress).Herethereweremorethantwiceasmany terrestrialA–PSRRstudiesthanstudiesinmarineandfreshwatersystemscombined.

SimilarproportionsoffreshwaterandterrestrialstudieswereexaminedbyMittelbachet al.(2001).Moreover,therelativeproportionofstudiesinterrestrialandaquatic ecosystemswassimilartopreviousreviewsoftheA–PSRR(Mittelbachetal.,2001;

Waideetal.,1999).However,theresultsareincontrast.BothMittelbachetal.(2001) andWaideetal.(1999)reportedunimodalrelationshipsaspredominantinaquatic environmentswhereaspositiverelationshipswerethemostcommonformoftheA–

PSRRinthepresentstudy.Itshouldbenotedthatbothofthepreviousstudiesdidnot examinefreshwaterandmarinehabitatsseparately.Waideetal(1999)foundpositive relationshipspredominatedinterrestrialsystemsconsistentwiththeresultspresented here.Mittelbachetal.(2001),however,reportedhumpshapedA–PSRRsasthemost commonrelationshipinterrestrialhabitats.

5.6.1Terrestrial

Plantspeciesrichnessispositivelyrelatedtoproductivityatregionalandcontinentalto globalextents(Gillman&Wright,2006)andglobalterrestrialrichnessofvertebrate consumersispositivelyrelatedtoproducerrichness(Jetz,Kreft,Ceballos,&Mutke,

2009).Thus,atleastatlargerscales,thepredominanceofpositiveA–PSRrelationships andcongruencewithplantspeciesrichnessisunsurprising,despitethecontrastwiththe findingsofMittelbachetal.(2001).Theideathatdiversitybegetsdiversityhasbeen aroundforatleast50years(Hutchinson,1959),buttheunderlyingcausalmechanisms areuncertain.Speciesrichnessoftaxamightcorrelatewiththerichnessofothertaxafor 112 anumberofreasons:(1)consumerrichnessmaybelinkedtoproducerrichnessthrough trophiccascadingandresourcediversity(Hutchinson,1959);(2)producerand consumerrichnessmaybecontrolledbythesameexternalfactorssuchasenergyor productivity(Hawkins&Porter,2003a;Wright,1983);or(3)taxamightrespond similarlytodifferentcollinearfactors(e.g.temperatureandproductivity).Anumberof studieshavefoundapositivecorrelationbetweenplantandanimalrichness(e.g.Currie,

1991;Hawkins&Porter,2003a;Siemann,Tilman,Haarstad,&Ritchie,1998).

However,arecentmetaanalysisofintertaxadiversityrelationshipsfoundonly~35% ofthestudiesexaminedreportedsignificantcorrelationswitharelativelylowmean r value(0.374)(Wolters,Bengtsson,&Zaitsev,2006).Furthermore,bothCurrie(1991) andHawkinsandPorter(2003a)foundstrongerrelationshipsbetweenvertebrate richness(excludingamphibians)andPETand,butterflyrichnessandAETrespectively thanwithplantspeciesrichness.Thissuggeststhatconsumerspeciesrichnessislikely tobemorestronglyinfluencedbythesameorcollinearfactorthatinfluencesplant speciesrichnessratherthandependencebetweenthetwo.Theevidencepresentedinthe presentstudyandbyGillmanandWright(2006)suggeststhatproductivityisan importantfactorindeterminingspeciesrichnessofbothplantsandanimals,andthatthe relationshipbetweenthetwoispredominantlypositive.

5.6.2Freshwater

PositiveA–PSRRspredominatedinfreshwaterecosystems.Thiscontrastswithprevious studiesthatfoundthatunimodalrelationshipswerethemostcommonformofthePSRR inaquaticecosystems(e.g.Dodsonetal.,2000;Mittelbachetal.,2001;Waideetal.,

1999).InthecaseofMittelbachetal.(2001)thepredominanceofunimodal relationshipsismostlikelyduetotheirmethodshavingabiastowardsunimodal

113 relationships(see 5.1.4Theinfluenceofrelationshipclassification ).However,unimodal relationshipsweremorecommoninfreshwatersystemsthaninterrestrialstudies.There arethreepossibleexplanationswhytherewasagreaterproportionofunimodal relationshipsfoundinfreshwatersystemsthanterrestrialstudies:(i)thesurrogatesfor productivityinfreshwatersystemsmaynothavealinearrelationshipwithproductivity;

(ii)asmentionedabove,studiesaremorecommonlyundertakeninfreshwater ecosystemsacrosssmallerscales;and(iii)allbutone(Hoyer&Canfield,1994)ofthe studiesinfreshwatersystemsconsistedofpoikilothermictaxa(see 5.5.2Poikilotherms fordiscussiononpoikilotherms).

(i)Surrogates

Oftheproductivitysurrogatesusedinfreshwatersystems,nutrientconcentrationsare themostproblematic.Higherlevelsofphosphorousandnitrogenmightallowhigh productivity,butproductivitycanbeconfoundedbytoxicitybecausehighnutrient concentrationsresultineutrophicconditions(Camargo&Alonso,2006).However, therewasonlyonerelationshipincludedinthepresentstudyinwhichnutrient concentration(phosphorousinthiscase)wasusedasaproductivitysurrogateanditwas classifiedasapositiveA–PSRR.Moreover,thesurrogatesusedinfreshwaterstudies werecommonlydirectmeasuresofproductivity(e.g.algalbiomassaccrualand 14 C fixationrate).Therefore,unimodalrelationshipsinthisdatasetcannotbeattributedto surrogateselection.

(ii)Theinfluenceofscale

Studiesoffreshwatersystemshavehistoricallycoveredsmallspatialscaleswithless focusonmacroscales(Heino,inpress).ThePSRRishypothesisedtobemorevariable 114 and/orunimodalatsmallerscales(Chase&Leibold,2002;Whittakeretal.,2001).

Therefore,thegreatervariabilityintheformoftheA–PSRR,andhigherfrequencyof humpshapedrelationshipsinfreshwaterecosystemspresentedherecouldbeattributed toalowerproportionofmacroscalestudies.Indeed,studiesatthelocaltolandscape extent(39.1%)weremorecommonthanatthecontinentaltoglobalextent(26.1%) withinfreshwaterstudiesinthepresentmetaanalysis.Nonetheless,considering regionalandcontinentaltoglobalbothasmacroscale,therearealmosttwiceasmany largescalestudiesinthedatasetusedinthepresentstudy.Therefore,largescalestudies mayhavecontributedadisproportionatenumberofpositiverelationshipstothe freshwaterdataset.Indeed,positiverelationshipspredominatedthecontinentaltoglobal extent(85.7%),werethemostcommonformoftheAPSRRattheregionalextent

(62.3%),andlocaltolandscapeextent(44.4%)(Figure44).However,giventhat unimodalrelationshipsweremorecommonatthesmallestextent,andthereweremore studiesatthesmallestextent,thesestudiesmayhavecontributedtothehigher proportionofunimodalrelationshipsinfreshwatersystemsthanterrestrialstudies.The predominanceofpositiverelationshipsatmacroscalesontheotherhand,doesnot accountfortheobservedpatternofpositivepredominanceacrossallfreshwaterstudies becausepositiverelationshipswerethemostcommonformoftheA–PSRRatallscales.

115 100

80

60

40

20 PercentageofAPSRrelationships

0 P N UM US NS P N UM US NS P N UM US NS Continentaltoglobal Regional Localtolandscape Figure44.TheproportionofdifferentA–PSRrelationshipsinfreshwatersystems,at threegeographicalextents.Continentaltoglobal,N=6;regional,N=8;localto landscape,N=9.RelationshipcodesasinFigure5.

5.6.3Marine

TherelativefrequenciesofA–PSRRsinmarineecosystemswereincontrasttoallother categoriespresentedhere.Themarginalpredominanceandaccompanyingstrengthof humpshapedrelationshipsismoreconsistentwithMittelbachetal.(2001)thanany othergroupingusedinthepresentmetaanalysis.Therearefourpotentialexplanations fortheunimodalrelationshipsobservedinmarinesystems:(i)thesurrogatesusedfor marineproductivity(predominantlydepthinthepresentstudy)maynotbelinear measuresofproductivity;(ii)otherfactorsinthemarineenvironmentthatcovarywith depth(e.g.lightandtemperature)mighthaveastrongerinfluenceonspeciesrichness thanproductivity;(iii)theunimodalshapemightbetheconsequenceofarandom process(i.e.themiddomaineffect);and(iv)seasonalpulsesofproductivityinshallow watermightdepressspeciesrichnessinshallowseas.Additionally,allmarinestudies

116 consistedofpoikilothermsandthesehavefastermetabolicratesinwarmerregions

(Gilloolyetal.,2001).Theinfluenceofmetabolicrateshasbeenimplicatedinelevated ratesofmicroevolutionundertwohypotheses(seediscussionsbelow 5.8.4Metabolic theoryofecology ; 5.8.5Evolutionaryspeedhypothesis ).Bothofthesehypotheses predictapositiverelationshipbetweentemperatureand/orproductivity,suggestinga potentialexplanationforobservedpositiveA–PSRRsinmarinestudies.

(i)Depthasasurrogate

Amongthemarinestudiesusedinthepresentstudy,depthwasthemostcommonly usedsurrogate(62%ofthestudies),andthesurrogatethatproducedthehighest proportionofhumpshapedrelationshipsintheentiredataset(61.5%).Onlyonehump shapedrelationshipwasfromastudythatdidnotusedepthasasurrogate(Wollenburg

&Kuhnt,2000).Therefore,consideringthecontrastwiththerestofthedataset,an importantquestionis:doesproductivitydeclinelinearlywithdepth?Thelargest proportionoforganiccarboninoceanscomesfromseasurfaceprimaryproduction

(Johnsonetal.,2007)anddeepoceancommunities,particularlythebenthos,arereliant onthissinkingphotodetritusorparticulateorganicmatter(POC)fluxasasourceof energyinput.TheamountofPOCreachingtheseafloordecreaseswithdepthand distancefromtheshoreduetointerceptionbydepositfeedersandremineralisation

(Rex,Crame,Stuart,&Clarke,2005).Indeed,adeclineinstandingstock(biomass)and thenumberofindividualswithdepthhasbeendocumented(Rexetal.,2006;Weietal.,

2010),ashasanincreaseinbiomassandnumberofindividualswithPOCflux(Johnson etal.,2007).Therefore,itwouldappearthatdepthisagoodproxyforproductivity givenboththedeclineinPOC,biomassandnumberofindividualsinbenthic communitieswithincreasingdepth.Therefore,therelativelyhighfrequencyof

117 unimodalrelationshipsinmarinesystemssuggeststhatmarineorganismsmightrespond toproductivitydifferentlythanterrestrialorganisms.Alternatively,otherfactorsmight modifytheA–PSRRinmarinesystems(see (ii)Covariantfactors and (iv)Seasonal pulses below).

(ii)Covariantfactorswithdepth

Thereareanumberofvariablesthatchangewithdecreasingdepththatmaypotentially influencespeciesrichnessorconfoundthePSRR.Thoseofinterestincludelight, temperature,bottomwateroxygenconcentration.Areaandenvironmentalstability mightbeconfoundingfactorsbecausedifferentcomponentsoftheoceanfloordifferin size.

Lightandtemperature —Lightandtemperaturearesomewhatinterconnectedand arelinkedtoproductivityandthereforecannotbeconsideredasconfoundingfactors.

Furthermore,benthicdiversitydeclinesrapidlybelowthethermoclinewhereas temperaturedeclinesmoregraduallysuggestingthattemperatureisnotastrong determinantofmarinebenthicdiversity(Rex,Crameetal.,2005).

Bottomwateroxygen —Someregionsintheoceanhavedepressedoxygen concentrationscalledoxygenminimumzones(OMZs).OMZstypicallyoccurbeneath regionsofupwelling,duetoexcessorganicmatterloading,andindepthsof100–1200m

(Levinetal.,2001).Acommonconsequenceoflowoxygenconcentrationislow macrofaunaldiversitycoupledwithhighdominance(i.e.fewspeciesareabundant)

(Levinetal.,2001).Therefore,insomecaseswheredepthwasusedasaproductivity surrogate,anapparentunimodalA–PSRRmightbetheartefactofdepresseddiversity duetoanOMZinshallowerwater.Seasonalpulsesofproductivityarecharacteristicof

118 upwellingandthusconsistentwiththeconclusionsmadebelow(see (iv)Seasonal pulses ).

Areaandstability —TheabyssalplainisthelargestbiomeonEarth(Ramirez

Llodraetal.,2010).HesslerandSanders(1967)firstsuggestedthatthedeepseais hyperdiverse.Sanders(1969)arguedthatthedeepseahasbeenenvironmentallystable overevolutionarytimeallowingforradiationanddiversitytoaccumulateinthese regions.Coupledwithlargearea,stabilitymayresultinhighdiversitydespitelow carbonflux.However,whetherthedeepseaisindeedhyperdiverseiscontroversial

(e.g.Lambshead&Boucher,2003;RamirezLlodraetal.,2010).Thehighfrequencyof positive(i.e.negativewithincreasingdepth)andunimodalrelationshipsfoundinthe presentstudyisnotconsistentwiththesuggestionthatdeepseasaremorediversethan shallowwaters.

Thecontinentalshelfcoversalargerareathanshallowseas(RamirezLlodraet al.,2010).Thushigherdiversityatmiddepthsmightbetheresultoflargerareasof continentalshelves.Importantlyhowever,fiveofthenineunimodaldepth–species richnessrelationshipsspecificallyruleouttheinfluenceofarea.Howeverareamay havehadaninfluencetheotherfourunimodaldepth–speciesrichnessrelationships suggestingthatanareaeffectcannotbediscountedentirely.

(iii)Themiddomaineffect

Alternatively,theunimodaldepthrelationshipcouldarisefromarandomprocess.

Benthictaxahavebroaderdepthrangesatintermediatedepthssuchthatthereisa greateroverlapofspeciesrangesatmiddepths(Pineda,1993).Thisphenomenonhas beenformalisedasthemiddomaineffect(MDE)(Colwell&Lees,2000).Considering thebottomoftheoceanandtheoceansurfaceasthehardboundariesbetweenwhich 119 marinetaxacanexistprovidesthefundamentalpropertyunderwhichtheMDEis proposedtooccur.Interrestrialenvironments—usingaltitudinalandlatitudinal gradientsofdiversity—theMDEhasreceivedmixedsupport,bothempirically

(McCain,2003,2004)andtheoretically(Colwell,Rahbek,&Gotelli,2004;Hawkins,

DinizFilho,&Weis,2005).Inmarinesystem,theMDEhasfailedtopredictthe depth–speciesrichnessdistributionofgastropods,polychaetesandbivalves(McClain&

Etter,2005)ordeepseafishes(Kendall&Haedrich,2006).Furthermore,inareviewof studiesthathavetestedtheMDE,Zapataetal.(2003)foundlittlesupportfortheMDE.

Thus,itisunclearwhethertheunimodaldepth–speciesrichnessrelationshipscanbe explainedbytheMDEinthepresentstudy.Further,theMDEmakesspecific predictionsaboutthepositionofthepeakandtheheightofthepeak,notjustthatapeak exists(Colwell&Lees,2000).Therefore,testingforeachindividualrelationshipis requiredtoconfirmtheMDE.Nonetheless,theMDEmightprovideapotential explanationforobservedpredominanceofunimodalrelationshipsinmarinestudies alongadepthgradient.

(iv)Seasonalpulses

Thedeclineinmarinespeciesrichnesswithincreasingdepthfromthebathyalzone

(1000–4000m)totheabyss(>4000m)canbeattributedtotheAlleeeffect(Rex,1973); lowpopulationdensities,resultingfromlowfoodavailability,limitpercapitagrowth ratesincreasingthechancesoflocalextinction.Furthermore,fewspeciesofmolluscs areentirelyabyssalandspeciesrangesarepredominantlybathyal(Rex,McClainetal.,

2005).Therefore,thereisasource–sinkdynamicbetweenbathyalandabyssalzones.

Thisdeclineinrichnesswithincreasingdepthfromthebathyaltotheabyssalzone showsapositiverelationshipwithproductivity.However,theincreaseinspecies

120 richnessfromthephoticzonetothebathyalshowsaninverserelationshipwith productivity.Despitehavinghigherratesofcarbonfluxontheupperslope(0–1000m),

Rex,Crameetal.(2005)suggestthatnutrientsupplyismoretemporallyvariable becauseofpulsed,seasonalphytoplanktonblooms.Highproductivitypulsesresultin periodicrapidpopulationgrowthwhichmightlimitdiversitythroughcompetitive exclusionandthepotentialinabilityofpredatorstodiversifybecauseoflowprey diversity(Rex,1983).Furthermore,LevinandGage(1998)foundthatdominance amongbenthicmacrofaunaincreasedwithincreasingsedimentPOCconcentration.Rex,

Crameetal.(2005)pointoutthattherearenodirecttestsofthishypothesis.However, theydodemonstratethatlowdiversityandhighabundancesarecommonlyobservedin regionswherethedeepseabenthosissubjecttoseasonalproductivitypulses.

Therefore,thedepresseddiversityontheupperslopemaybeinfluencedbyseasonal pulsesandcompetitiveexclusionwhenproductivityishigh.However,itisimportantto notethattheoceanisadynamicsystemandthecommunitieswithinitareinfluencedby numerousenvironmentalfactors.Furthermore,despitethespeciesrichness– depth/productivityrelationshipappearingatleastsomewhatconsistentwiththeMDE, therearemanyotherfactorsthatcanmediatetheSPRR(e.g.habitatheterogeneityand disturbance)(Levinetal.,2001).

5.7 Relationships in homeotherms and poikilotherms

5.7.1Homeotherms

ThepredominantlypositivePSRRsfoundforhomeothermsinthepresentstudycanbe explainedacrosssmallandlargescales.Homeothermsrequireconstantenergyinputto maintainthehighmetabolicrateneededforaconstantbodytemperature.The‘costof living’forterrestrialhomeothermsissignificantlyhigherthanforterrestrial 121 poikilothermsintermsofenergyrequirements(Nagy,1987).Acrosssmallscales,low levelsofproductivitymightlimithomeothermsspeciesrichnesssimplyduetolow availabilityoffoodsourcesandtheirhighenergyrequirementsforthermoregulation.As resourcesincreasewithproductivity,diversitywillinevitablyincrease(Rosenzweig&

Abramsky,1993).However,RosenzweigandAbramsky(1993)suggestthatathigh levelsofproductivity,speciesrichnessdeclines.Theresultspresentedherecontradict thepredictionofunimodalubiquity.

Acrosslargescales,positivehomeothermPSRRscanpotentiallybeexplainedby differentialratesofmolecularevolution,providedratesofmolecularevolution positivelyaffectnetdiversificationrates(e.g.Lancaster,2010).Colderregionsare generallylessproductiveandmaintaininghighmetabolicratestoproducesufficient endogenousheatrequireshighfoodintake(Geiser,2004).Furthermore,resourcesare relativelyscarceinlowproductivityenvironments.Temperatehomeothermsoften undergotorpororhibernationwhichcanslowannualmetabolicrates(McKechnie&

Lovegrove,2002).Slowedannualmetabolicratescouldtheoreticallycontributeto slowerratesofmolecularevolutionincomparisontowarmer,moreproductive environmentsalthoughthishasnotbeendirectlytested(Gillmanetal.,2009;Gillman&

Wright,2007).Notably,Lanfearetal.(2010)foundnetdiversificationratesinbird familiescorrelatedpositivelywithmutationrates.Also,mammalshavebeen demonstratedtohavehigherratesofDNAsubstitutioninwarmermoreproductive environments(Gillmanetal.,2009)fittingthisprediction.Additionally,Gillmanetal.

(2009)proposedthattheredqueenhypothesismightcontributetofasterratesof molecularevolutioninmammalsindirectlyrelatedtothermalregimes(see 5.6.5

Evolutionaryspeedhypothesis ).

122 5.7.2Poikilotherms

PositiverelationshipswerethemostcommonformoftheA–PSRRobservedamong poikilotherms.Greaterproductivityisgenerallylinkedtohighertemperatures.Some terrestrialpoikilothermsareheliothermic(e.g.lizards)requiringanexternalheatsource toremainactive.Therefore,terrestrialheliothermdiversitymightbeexpectedtobehigh inwarmerareas.Indeed,heliothermsareoftendiverseinhot,butalsodryplaces(i.e. deserts)(Powneyetal.,2010;Schall&Pianka,1978).Desertstypicallyhaverelatively lowproductivitysuggestingthatheliothermsmightshowanegativerelationshipwith productivityifabroadrangeofproductivitywereconsidered.However,ofthefive studiesconsideringterrestrialheliotherms,onlyoneA–PSRRwasnegative,onewas weaklyunimodal,onewasarelativelyweaklyushapedandtherestwerepositive.

Importantly,alltheterrestrialpoikilothermstudiescoveredbroadproductivityregimes acrossregionalandcontinentaltoglobalscales.

Highertemperaturescausefastermetabolicratesinpoikilotherms(Gilloolyetal.,

2001).Themetabolictheoryofecology(MTE;see 5.8.4Metabolictheoryofecology ) predictsapositiverelationshipbetweentemperatureandspeciesrichnessof poikilotherms(Brown,Gillooly,Allen,Savage,&West,2004).However,despite positiverelationshipsbeingpredominant,unimodalrelationshipsweremorecommonin poikilothermsthanhomeothermssuggestingthattheMTEcannotbeappliedasa generalexplanationforpoikilothermPSRRs.However,temperaturemightnotvary sufficientlyinallthecasespresentedinthepresentstudyfortheprocessesdescribedby theMTEtohaveaninfluenceonrichness.Thisisparticularlyimportantacrosssmall scaleswherevariablesotherthanclimateandproductivityaremoreimportant determinantsofspeciesrichness(e.g.habitatheterogeneityandarea)(Fieldetal.,

2009).

123 5.8 Theories to explain the observed A–PSRRs

5.8.1Competitiveexclusion

CompetitiveexclusionisproposedtoexplainunimodalPSRRs.However,unimodal relationshipswerelesscommonthanpositiverelationshipsacrossthewholedatasetand inallcategoricalbreakdownsoftheA–PSRR,exceptmarineecosystems.Unimodal relationshipswerehoweverconsistentlythesecondmostfrequentformoftheA–PSRR.

Moreover,deceleratingpositiverelationshipswereonlymarginallylesscommonthan monotonicpositiveA–PSRRsatthelocaltolandscapescale.Aftercollapsing deceleratingpositivesintounimodalrelationships,unimodalrelationshipsbecamethe mostcommonformoftheA–PSRRatthelocaltolandscapescale.However,thereis noobjectivejustificationforclassifyingdeceleratingrelationshipsasunimodal relationshipswhenthereisnoevidenceofadownturninthedata.

TheobservationofpositivePSRRsatlargescalesisthoughttobetheresultof unimodalrelationshipsatsmallscalescontaininghigherbetadiversitywithincreasing productivity(VanderMeulenetal.,2001;Whittakeretal.,2001).Therefore,itis importanttoexplainpotentialmechanismsthatmightresultinhumpshapedandsimilar deceleratingpositiveA–PSRRs.Competitiveexclusionpredictsahumpshaped relationshipbetweenspeciesrichnessandproductivity(Grime,1973).Atlow productivitiesspeciesrichnessisconstrainedbytheamountofavailableresourcesand energy.Asproductivityincreasesconditionsforlifebecomemorefavourableand speciesrichnessincreases.However,aboveaparticularlevelofproductivity, competitionforresourcesbecomesintenseandpoorcompetitorsareexcluded,resulting inlowspeciesrichnessinhighproductivityregimes(Grime,1973).Alternatively, resourcesareproposedtobelessheterogeneousinhighproductivityregionsbecause plantstendtobesmallerinlessproductiveenvironments(Tilman,1982;Tilman&

124 Pacala,1993).Thistheorycouldexplainsmallscaleunimodalandthesimilar deceleratingpositiveA–PSRRs.Deceleratingpositiverelationshipsmightbetheresult ofincompletesamplingoftheentirerangeofproductivitywithinarelationshipthatis actuallyunimodal.Alternatively,otherfactorsmightreducetheinfluenceof competitionasproductivityincreases.

5.8.2Speciespoolhypothesis

Thespeciespresentinanygivenareaareasampleoftheregionalspeciespool.The speciespoolhypothesisproposesthatmorespeciesarelikelytooccurinhabitatsor environmentalconditionsthatareolderorlarger(Schamp,Laird,&Aarssen,2002;

Taylor,Aarssen,&Loehle,1990).Taylor(1990)presentedthisideaasanalternative explanationforunimodalPSRRssuggestingthathighlyproductiveenvironmentsare relativelyrare,smallandyoung.Thus,theseareasofhighproductivityhavelowspecies richnessasaresultofsmallerareaandcomparativelylessevolutionarytimeforspecies toadapttotheconditionsthanmorecommon,olderenvironments(Schampetal.,

2002).GillmanandWright(2006)alsopointoutthattheselesscommonareasarelikely tobeisolatedfromeachotherthusreducingthechanceofcolonisationfromsimilarly small,rare,productiveenvironments.Thespeciespoolhypothesismightthereforebea possibleexplanationfordeceleratingandhumpshapedA–PSRRsatthelocalto landscapescale.PositiveA–PSRRscanalsobeexplainedbythespeciespooleffectif thehabitatsampledispredominantlyinahighproductivityregime.Pärteletal.(2007) hypothesisedthatpositiveplant–PSRRswouldbemorecommonatlowlatitudes,and thatunimodalrelationshipswouldpredominateathighlatitudesbasedonthespecies pooleffect.Athighlatitudeshighlyproductiveenvironmentsarelesscommon(inspace andevolutionarytime)thaninthetropics.Therefore,thespeciespoolforhighly

125 productiveareasislowerintemperatezones.Theirresultswereconsistentwiththis prediction.However,theirreviewsufferedfromseverelimitations(see 1.4.Critical analysisofPSRRreviews )andthishypothesisremainstobetestedadequately.

5.8.3Moreindividualshypothesis

Themoreindividualshypothesis(MIH)positsthathigherenergyregimescansupport moreindividualsintheecosystem.Thereforemorespecies,withminimumviable populationscanbeaccommodatedinthesystem(Wright,1983).Thishypothesismight thereforeexplainpositiveA–PSRRs.TheMIHhasbeentestedexperimentallyand observationallybutresultswereequivocal(Hurlbert,2004;Mönkkönenetal.,2006;

Srivastava&Lawton,1998;Yee&Juliano,2007).SrivastavaandLawton(1998) controlledproductivity(leaflitter)intreeholesandfoundthatspeciesrichnessof detritivorouswashigherinholeswithhigherleaflittervolumes.However,the numberofindividualsofallspecieswasnothigherinthemoreproductivetreeholes.

Morerecently,however,YeeandJuliano(2007)foundsupportfortheMIHwithtotal abundances,individualspeciesabundances,andspeciesrichnessallincreasingwith productivityinartificialtreeholes.ThissuggeststhattheMIHmightbeapplicableat smallscales.Acrossbroaderscaleshowever,theMIHisnotwellsupported.Tropical birdrichnesshasbeenreportedtobe4–5timeshigherthantemperatebirdspecies richness,despitecomparableabundances(Terborghetal.,1990)indicatingsmaller ratherthanequivalenttropicalpopulationsizes.Hence,theevolutionarypatterns underpinningbroadscalepatternsofspeciesrichnessappeartobemorecomplexthana simplemoreindividualseffect.Currieetal.(2004)alsopointoutthatacrossbroad scalesspeciesrichnessandabundance,andabundanceandproductivityarenot

126 generallyrelated.Therefore,thepredominanceofpositiveA–PSRRsreportedhereis notlikelytobeexplainedbytheMIH.

5.8.4Metabolictheoryofecology

Themetabolictheoryofecology(MTE)suggeststhatmetabolicrateistheunderlying, fundamentalcontrolofobservedpatternsinecology(Brownetal.,2004).Early formulationsoftheMTEwereconcernedwiththeeffectoftemperatureonthe metabolicratesofectotherms(i.e.higherinwarmertemperatures,Gilloolyetal.,2001).

However,thiscanonlybeappliedtopoikilothermsbecausehomeothermsmaintaina relativelyconstantbodytemperatureregardlessoftheambienttemperaturesofthe environment.Nonetheless,inpoikilotherms,therateofmolecularevolutionscaleswith metabolicrate(i.e.fastermolecularevolutioninwarmerenvironments)(Gillooly,

Allen,West,&Brown,2005).Theproposedimplicationsofthisscalingarethatfaster ratesofmolecularevolutionincreasespeciationrates.Therefore,warmerenvironments

(oftenmoreproductivesuchasthetropics)willhavehigherratesofspeciationthan coolerregionsthusresultinginagreateraccumulationofspeciesinthewarmerareas.

Thistheorymightthenexplainbroadscale,positiveA–PSRRs.However,smallscale positivepatternsarenotlikelytobeexplainedbytheMTE.Firstly,temperatureisnot likelytovaryenoughoversmallextents,andsecondly,ecologicalfactorsunrelatedto temperaturegenerallyhavestrongerrelationshipswithdiversityatsmallscales(Fieldet al.,2009).Moreover,MTEcanonlybeappliedtopoikilothermsgiventhatresting metabolicratesofhomeothermsisindependentoftemperature(Mittelbachetal.,2007).

However,homeothermsspeciesrichnesshasasimilarlypositiverelationshipwith productivity.

127 5.8.5Evolutionaryspeedhypothesis

Theevolutionaryspeedhypothesis(ESH)positsthatratesofevolutionarefasterin warmerenvironmentsresultinginelevatedratesofspeciationandanaccumulationof speciesintheseenvironments(Rohde,1992).Threeunderlyingfactorsareproposedfor theESH:(1)mutagenesisiselevatedinwarmerenvironments;(2)generationtimesare shorterinwarmerenvironments;(3)together,higherratesofmutagenesisandshorter generationtimescontributetoacceleratedratesofselection(Rohde,1992).Thefirst factorisgenerallyappliedtopoikilothermssincetemperatureraisesmetabolicrates

(Gilloolyetal.,2001),andhighermetabolicratesarethoughttoincreasemutationrates viafastercelldivisionandpotentialgermlinereplicationerror,and/ortheproductionof mtDNAdamagingoxygenfreeradicals(Martin&Palumbi,1993).Homeothermsonthe otherhand,maintainaconstantbodytemperatureandrelativelyconstantmetabolicrate suggestingthatambienttemperatureislesslikelytoaffectDNAmutationrate.

Therefore,ithasbeensuggestedthatratesofmicroevolutioninpoikilothermsis influencedbytemperature,butnotinhomeotherms(Mittelbachetal.,2007).This however,doesnotappeartobethecase,withratesofmicroevolutionbeingfoundto proceedfasterinwarmerclimatesforectotherms(Allenetal.,2006;Wrightetal.,2010;

Wrightetal.,2006;Wrightetal.,2011)andhomeotherms(Gillmanetal.,2009).

Importantly,Rohde(1992)expresslydismissedtheinfluenceofproductivitybecause theoryatthetimesuggestedthattherelationshipbetweenspeciesrichnessand productivitywasunimodal(Rosenzweig,1992).

Recentlyhowever,amodificationtoESHwasproposedthatimplicated productivity,nottemperaturealone,asadriverofevolutionaryspeed(Gillman&

Wright,2006;Gillman&Wright,2007;Goldieetal.,2010;Wrightetal.,2006).

Furthermore,Goldieetal.(2010)demonstratedthatAustralianwoodyplantsinwetter

128 moreproductiveregionshaveelevatedratesofDNAevolution,consistentwiththis modificationtotheESH.However,aftercontrollingforbodysize,Lanfearetal.(2007) demonstratedthatmetabolicratesdonotscalewithmutationrates.Thissuggeststhat whiletherelationshipbetweentemperatureand/orproductivityappearstoexist,the mechanismthathasbeenproposedtoacceleratemicroevolutioninwarmer,more productiveplacesisnotclear.Nonetheless,mutationsmayarisefromothermeansin warmerenvironments,ormayberelatedtoannualmetabolicratherthanresting metabolicrate(Gillmanetal.,2009).Higherannualmetabolicratesmightresultin elevatedratesofmicroevolutioninregionswherespeciesdonotundergotorpor.

Furtherinvestigationofmechanismsthatmightdrivemicroevolutioninhomeotherms isrequired.

Homeothermmicroevolutionmightbefasterinwarmerenvironments independentofmetabolicrate.Anexplanationforwhyhomeothermsmighthave differentialratesofmicroevolutionindependentofelevatedratesofmutagenesis,and indirectlyrelatedtoproductivity,istheredqueenhypothesis(VanValen,1973).This explanationwasproposedbyGillmanetal.(2009)topotentiallyaccountforfasterrates ofmammalmicroevolutioninwarmerenvironments.Theredqueenhypothesis proposesanarmsracebetweencompetingspecies,andspecificallypredatorsandprey.

Ifratesofmicroevolutionamongpoikilothermpreyspecies(e.g.plantsorinsects)are fasterinwarmerenvironments(i.e.theESH),theymightbelikelytoevolvedefences rapidly.Thus,inordertoremainsuccessful,predatorsmustevolvecounterdefences.

Thatmeans,mutationsarisinginapredatorinanenvironmentinwhichthepreyare evolvingdefencesrapidlyhaveagreaterlikelihoodofbeingbeneficialthanifitarosein alesscompetitiveenvironment.TheESHandtheaccompanyingredqueenhypothesis provideaplausibleexplanationforthepredominanceofpositiverelationshipsatthe

129 continentaltoglobalextentbut,asGillmanandWright(2006)pointout,productivityis unlikelytovaryatsmallerscalesenoughtoinfluenceratesofevolution.

CONCLUSION

Thepredominanceofpositiverelationshipsreportedinthepresentstudycontrast substantiallywithboththepredictionthatunimodalrelationshipsarethemostcommon formoftheA–PSRR,andwithapreviousreview(Mittelbachetal.,2001)that suggestednosingleformoftheA–PSRRwasdominant.Scaledidnothaveastrong influenceontheformoftheA–PSRRandatallgeographicalextentsandsampling grainspositiverelationshipswerethemostcommonrelationship.Againthiscontrasts withcurrentscientificopinionthattherelationshipishighlydependentonscale.

EcosystemtypedidinfluencetheformoftheA–PSRRwithunimodalrelationships beingmorecommonthanpositiverelationshipsinmarineecosystems.Thecontrasting patternfoundinmarinesystemscouldbeattributedtoarandomprocess(i.e.theMDE), apotentialareaeffect,ortheinfluenceofotherfactorsthatmediatethePSRR.The contrastbetweentheresultsofthepresentstudyandthepreviousreviewbyMittelbach etal.(2001)canbeattributedtothedifferentmethodsusedforclassifyingtheformof theA–PSRR.Importantly,themethodsusedbythepreviousreviewhadasystematic biastowardsunimodalrelationships.Apotentialtheoreticalexplanationforthe predominanceofpositiverelationshipsisvariableratesofmolecularevolution,such thatspeciesinwarmermoreproductiveregionsmightevolveanddiversifyfaster.The metabolictheoryofecologymightexplainpositiverelationshipsinpoikilothermsbut nothomeotherms.Theevolutionaryspeedhypothesis,ontheotherhand,canpotentially explainpositiverelationshipsinhomeoandpoikilothermsthroughthedirectinfluence ofenergyandmetabolicrates,orindirectlyviatheredqueenhypothesis.Atsmaller scales,competitiveexclusionmightexplainunimodalanddeceleratingpositiveA–

130 PSRRs.Additionally,thespeciespoolhypothesiscouldexplainpositive,decelerating positiveandunimodalrelationshipsatsmallscales.

131 6. REFERENCES

Abramsky,Z.,&Rosenzweig,M.L.(1984).Tilman'spredictedproductivity–diversity relationshipshownindesertrodents. Nature,309 ,150151. Allen,A.P.,Gillooly,J.F.,Savage,V.M.,&Brown,J.H.(2006).Kineticeffectsof temperatureonratesofgeneticdivergenceandspeciation. Proceedingsofthe NationalAcademyofSciences,103 (24),91309135. Bachelet,G.,deMontaudouin,X.,&Dauvin,J.C.(1996).Thequantitativedistribution ofsubtidalmacrozoobenthicassemblagesinArcachonBayinrelationto environmentalfactors:amultivariateanalysis. Estuarine,CoastalandShelf Science,42 (3),371391. Begg,C.B.(1994).Publicationbias.InH.Cooper&L.V.Hedges(Eds.), The handbookofresearchsynthesis (pp.399409).NewYork:RussellSage Foundation. Bleiweiss,R.(1998).Slowrateofmolecularevolutioninhighelevationhummingbirds. ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesof America,95 (2),612616. Braschler,B.,Zschokke,S.,Dolt,C.,Thommen,G.H.,Oggier,P.,&Baur,B.(2004). Graindependentrelationshipsbetweenplantproductivityandinvertebrate speciesrichnessandbiomassincalcareousgrasslands. BasicandApplied Ecology,5 (1),1524. Brown,J.H.(1973).Speciesdiversityofseedeatingdesertrodentsinsanddune habitats. Ecology,54 (4),775787. Brown,J.H.(1995). Macroecology .Chicago:TheUniversityofChicagoPress. Brown,J.H.,Gillooly,J.F.,Allen,A.P.,Savage,V.M.,&West,G.B.(2004).Toward ametabolictheoryofecology. Ecology,85 (7),17711789. Buckley,L.B.,Davies,T.J.,Ackerly,D.D.,Kraft,N.J.B.,Harrison,S.P.,Anacker, B.L.,etal.(2010).Phylogeny,nicheconservatismandthelatitudinaldiversity gradientinmammals. ProceedingsoftheRoyalSocietyB:BiologicalSciences, 277 (1691),21312138. Burnham,K.P.,&Anderson,D.R.(2002). Modelselectionandmultimodelinference: apracticalinformationtheoreticapproach (2nded.).NewYork:Springer Verlag. Burns,J.H.,&Strauss,S.Y.(2011).Morecloselyrelatedspeciesaremoreecologically similarinanexperimentaltest. ProceedingsoftheNationalAcademyof Sciences,108 (13),53025307. Bushman,B.J.,&Wang,M.C.(2009).Votecountingproceduresinmetaanalyses.In H.Cooper,L.V.Hedges&J.C.Valentine(Eds.), Thehandbookofresearch synthesisandmetaanalysis (2nded.).NewYork:RussellSageFoundation. Camargo,J.A.,&Alonso,A.(2006).Ecologicalandtoxicologicaleffectsofinorganic nitrogenpollutioninaquaticecosystems:aglobalassessment. Environment International,32 ,831–849. Cardinale,B.J.,Bennett,D.M.,Nelson,C.E.,&Gross,K.(2009).Doesproductivity drivediversityorviceversa?Atestofthemultivariateproductivity–diversity hypothesisinstreams. Ecology,90 (5),12271241. Chase,J.M.,&Leibold,M.A.(2002).Spatialscaledictatestheproductivity biodiversityrelationship. Nature,416 (6879),427430. Chase,J.M.,&Ryberg,W.A.(2004).Connectivity,scaledependence,andthe productivity–diversityrelationship. EcologyLetters,7 (8),676683.

132 Chek,A.A.,Austin,J.D.,&Lougheed,S.C.(2003).Whyisthereatropical–temperate disparityinthegeneticdiversityandofspecies? Evolutionary EcologyResearch,5 ,6977. Chiba,S.(2007).Speciesrichnesspatternsalongenvironmentalgradientsinislandland molluscanfauna. Ecology,88 (7),17381746. Colwell,R.K.,&Lees,D.C.(2000).Themiddomaineffect:geometricconstraintson thegeographyofspeciesrichness. TrendsinEcology&Evolution,15 (2),7076. Colwell,R.K.,Rahbek,C.,&Gotelli,N.J.(2004).Themiddomaineffectandspecies richnesspatterns:whathavewelearnedsofar? TheAmericanNaturalist, 163 (3),123. Cooper,H.,&Hedges,L.V.(2009).Researchsynthesisasascientificprogress.InH. Cooper,L.V.Hedges&J.C.Valentine(Eds.), Thehandbookofresearch synthesisandmetaanalysis (2nded.,pp.316).NewYork:RussellSage Foundation. Cooper,H.,Hedges,L.V.,&Valentine,J.C.(Eds.).(2009). Thehandbookofresearch synthesisandmetaanalysis (2nded.).NewYork:RussellSageFoundation. Crame,J.A.(2001).Taxonomicdiversitygradientsthroughgeologicaltime. Diversity andDistributions,7 (4),175189. Crawley,M.J.(1993).GLIMforecologists. GLIMforecologists . Csada,R.D.,James,P.C.,&Espie,R.H.M.(1996).The"filedrawerproblem"ofnon significantresults:doesitapplytobiologicalresearch? Oikos,76 (3),591593. Currie,D.J.(1991).Energyandlargescalepatternsofanimalandplantspecies richness. TheAmericanNaturalist,137 (1),2749. Currie,D.J.,Mittelbach,G.G.,Cornell,H.V.,Field,R.,Guégan,J.,Hawkins,B.A.,et al.(2004).Predictionsandtestsofclimatebasedhypothesesofbroadscale variationintaxonomicrichness. EcologyLetters,7 (12),11211134. Davidowitz,G.,&Rosenzweig,M.L.(1998).Thelatitudinalgradientofspecies diversityamongNorthAmericangrasshoppers(Acrididae)withinasingle habitat:atestofthespatialheterogeneityhypothesis. JournalofBiogeography, 25 (3),553560. Davis,M.A.,Grime,J.P.,&Thompson,K.(2000).Fluctuatingresourcesinplant communities:ageneraltheoryofinvasibility. JournalofEcology,88 (3),528 534. Death,R.G.,&Winterbourn,M.J.(1995).Diversitypatternsinstreambenthic invertebratecommunities:theinfluenceofhabitatstability. Ecology,76 (5), 14461460. Ding,T.S.,Yuan,H.W.,Geng,S.,Lin,Y.S.,&Lee,P.F.(2005).Energyflux,body sizeanddensityinrelationtobirdspeciesrichnessalonganelevationalgradient inTaiwan. GlobalEcologyandBiogeography,14 (4),299306. Dobzhansky,T.(1950).Evolutioninthetropics. AmericanScientist (38),209221. Dodson,S.I.,Arnott,S.E.,&Cottingham,K.L.(2000).Therelationshipinlake communitiesbetweenprimaryproductivityandspeciesrichness. Ecology, 81 (10),26622679. Ehinger,M.,Fontanillas,P.,Petit,E.,&Perrin,N.(2002).MitochondrialDNA variationalonganaltitudinalgradientinthegreaterwhitetoothedshrew, Crocidurarussula. MolecularEcology,11 (5),939945. Englund,G.O.,Sarnelle,O.,&Cooper,S.D.(1999).Theimportanceofdataselection criteria:metaanalysisofstreampredationexperiments. Ecology,80 (4),1132 1141. Eo,S.H.,Wares,J.P.,&Carroll,J.P.(2008).Populationdivergenceinplantspecies reflectslatitudinalbiodiversitygradients. BiologyLetters,4 ,382–384.

133 Evans,K.L.,Warren,P.H.,&Gaston,K.J.(2005).Speciesenergyrelationshipsatthe macroecologicalscale:areviewofthemechanisms.BiologicalReviews,80 (1), 125. Field,R.,Hawkins,B.A.,Cornell,H.V.,Currie,D.J.,DinizFilho,J.A.F.,Guégan, J.F.,etal.(2009).Spatialspeciesrichnessgradientsacrossscales:ameta analysis. JournalofBiogeography,36 (1),132147. Fowler,J.,Cohen,L.,&Jarvis,P.(2008). Practicalstatisticsforfieldbiology (2nded.). Chichester,England:JohnWileyandSons. Friedman,L.(2001).Whyvotecountreviewsdon'tcount. BiologicalPsychiatry,49 (2), 161162. Gaston,K.J.,&Blackburn,T.M.(2000). Patternsandprocessesinmacroecology . Oxford:BlackwellScience. Geiser,F.(2004).Metabolicrateandbodytemperaturereductionduringhibernation anddailytorpor. AnnualReviewofPhysiology,66 (1),239274. Gillman,L.N.,Keeling,D.J.,Gardner,R.C.,&Wright,S.D.(2010).Fasterevolution ofhighlyconservedDNAintropicalplants. JournalofEvolutionaryBiology, 23 (6),13271330. Gillman,L.N.,Keeling,D.J.,Ross,H.A.,&Wright,S.D.(2009).Latitude,elevation andthetempoofmolecularevolutioninmammals. ProceedingsoftheRoyal SocietyB:BiologicalSciences,276 (1671),33533359. Gillman,L.N.,&Wright,S.D.(2006).Theinfluenceofproductivityonthespecies richnessofplants:acriticalassessment. Ecology,87 (5),12341243. Gillman,L.N.,&Wright,S.D.(2007).Molecularevolutionhaswheelsinthetropics. Biologist,54 (4),195199. Gillman,L.N.,&Wright,S.D.(2010).Megamistakesinmetaanalyses:devilinthe detail. Ecology,91 (9),25502552. Gillooly,J.F.,Allen,A.P.,West,G.B.,&Brown,J.H.(2005).TherateofDNA evolution:effectsofbodysizeandtemperatureonthemolecularclock. ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesof America,102 (1),140145. Gillooly,J.F.,Brown,J.H.,West,G.B.,Savage,V.M.,&Charnov,E.L.(2001). Effectsofsizeandtemperatureonmetabolicrate.Science,293 (5538),2248 2251. Goldie,X.,Gillman,L.,Crisp,M.,&Wright,S.(2010).Evolutionaryspeedlimitedby waterinaridAustralia. ProceedingsoftheRoyalSocietyB:BiologicalSciences, 277 (1694),26452653. Gough,L.,Grace,J.B.,&Taylor,K.L.(1994).Therelationshipbetweenspecies richnessandcommunitybiomass:theimportanceofenvironmentalvariables. Oikos,70 (2),271279. Greenhouse,J.B.,&Iyengar,S.(2009).Sensitivityanalysisanddiagnostics.InH. Cooper,L.V.Hedges&J.C.Valentine(Eds.), Thehandbookofresearch synthesisandmetaanalysis (2nded.,pp.417433).NewYork:RussellSage Foundation. Grime,J.P.(1973).Competitiveexclusioninherbaceousvegetation. Nature, 242 (5396),344347. Gurevitch,J.,&Hedges,L.V.(1999).Statisticalissuesinecologicalmetaanalyses. Ecology,80 (4),11421149. Gurevitch,J.,&Hedges,L.V.(2001).Metaanalysis:combiningtheresultsof independentexperiments.InS.M.Scheiner&J.Gurevitch(Eds.), Designand AnalysisofEcologicalExperiments (pp.347369).NewYork:Chapmanand Hall.

134 Gurevitch,J.,&Mengersen,K.(2010).Astatisticalviewofsynthesizingpatternsof speciesrichnessalongproductivitygradients:devils,forests,andtrees. Ecology, 91 (9),25532560. Harrison,F.(2011).Gettingstartedwithmetaanalysis. MethodsinEcologyand Evolution,2 (1),110. Hawkins,B.A.(2001).Ecology'soldestpattern? TrendsinEcology&Evolution,16 (8), 470470. Hawkins,B.A.(2010).Multiregionalcomparisonoftheecologicalandphylogenetic structureofbutterflyspeciesrichnessgradients.JournalofBiogeography,37 (4), 647656. Hawkins,B.A.,&DeVries,P.J.(2009).Tropicalnicheconservatismandthespecies richnessgradientofNorthAmericanbutterflies. JournalofBiogeography,36 (9), 16981711. Hawkins,B.A.,&DinizFilho,J.A.F.(2004).‘Latitude’andgeographicpatternsin speciesrichness. Ecography,27 (2),268272. Hawkins,B.A.,DinizFilho,J.A.F.,Jaramillo,C.A.,&Soeller,S.A.(2006).Post Eoceneclimatechange,nicheconservatism,andthelatitudinaldiversitygradient ofNewWorldbirds. JournalofBiogeography,33 (5),770780. Hawkins,B.A.,DinizFilho,J.A.F.,&Weis,A.E.(2005).Themiddomaineffectand diversitygradients:isthereanythingtolearn?TheAmericanNaturalist,166 (5), 140143. Hawkins,B.A.,Field,R.,Cornell,H.V.,Currie,D.J.,Guégan,J.F.,Kaufman,D.M., etal.(2003).Energy,water,andbroadscalegeographicpatternsofspecies richness. Ecology,84 (12),31053117. Hawkins,B.A.,&Porter,E.E.(2003a).Doesherbivorediversitydependonplant diversity?ThecaseofCaliforniabutterflies. TheAmericanNaturalist,161 (1), 4049. Hawkins,B.A.,&Porter,E.E.(2003b).Water–energybalanceandthegeographic patternofspeciesrichnessofwesternPalearcticbutterflies. Ecological Entomology,28 (6),678686. Hawkins,B.A.,Porter,E.E.,&DinizFilho,J.A.F.(2003).Productivityandhistoryas predictorsofthelatitudinaldiversitygradientofterrestrialbirds. Ecology,84 (6), 16081623. Hawkins,B.A.,Rodríguez,M.Á.,&Weller,S.G.(inpress).Globalangiosperm familyrichnessrevisited:linkingecologyandevolutiontoclimate. Journalof Biogeography . Hedges,L.V.,&Olkin,I.(1985). Statisticalmethodsformetaanalysis .SanDiego: AcademicPress. Heino,J.(inpress).Amacroecologicalperspectiveofdiversitypatternsinthe freshwaterrealm. FreshwaterBiology . Hessler,R.R.,&Sanders,H.L.(1967).Faunaldiversityinthedeepsea. DeepSea ResearchPartI,14 ,65–78. Hill,J.L.,Curran,P.J.,&Foody,G.M.(1994).Theeffectofsamplingonthespecies areacurve. GlobalEcologyandBiogeographyLetters,4 (4),97106. Hillebrand,H.(2004).Onthegeneralityofthelatitudinaldiversitygradient. The AmericanNaturalist,163 (2),192211. Hillebrand,H.(2008).Metaanalysisinecology.In EncyclopediaofLifeSciences . Chichester:JohnWiley&Sons,Ltd.doi:10.1002/9780470015902.a0003272 Hillebrand,H.,&Cardinale,B.J.(2010).Acritiqueformetaanalysesandthe productivity–diversityrelationship. Ecology,91 (9),25452549. Hobæk,A.,Manca,M.,&Andersen,T.(2002).Factorsinfluencingspeciesrichnessin lacustrinezooplankton. ActaOecologica,23 (3),155163. 135 Hoffmann,M.D.,&Dodson,S.I.(2005).Landuse,primaryproductivity,andlakearea asdescriptorsofzooplanktondiversity. Ecology,86 (1),255261. Hoyer,M.V.,&Canfield,D.E.(1994).BirdabundanceandspeciesrichnessonFlorida lakes:influenceoftrophicstatus,lakemorphology,andaquaticmacrophytes. Hydrobiologia,297/280 (1),107119. Hurlbert,A.H.(2004).Species–energyrelationshipsandhabitatcomplexityinbird communities. EcologyLetters,7 ,714720. Hurlbert,A.H.,&Haskell,J.P.(2003).Theeffectofenergyandseasonalityonavian speciesrichnessandcommunitycomposition. TheAmericanNaturalist,161 (1), 8397. Hurlbert,A.H.,&Jetz,W.(2010).Morethan“moreindividuals”:thenonequivalence ofareaandenergyinthescalingofspeciesrichness. TheAmericanNaturalist, 176 (2),E5065. Huston,M.A.(1985).Patternsofspeciesdiversityoncoralreefs. AnnualReviewof EcologyandSystematics,16 ,149177. Huston,M.A.,&DeAngelis,D.L.(1994).Competitionandcoexistence:theeffectsof resourcetransportandsupplyrates. AmericanNaturalist,144 (6),954977. Huston,M.A.,&Wolverton,S.(2009).Theglobaldistributionofnetprimary production:resolvingtheparadox. Ecology,79 (3),343377. Hutchinson,G.E.(1959).HomagetoSantaRosalia,orwhyaretheresomanykindsof animals? TheAmericanNaturalist,93 ,145159. Jablonski,D.,Roy,K.,&Valentine,J.W.(2006).Outofthetropics:evolutionary dynamicsofthelatitudinaldiversitygradient. Science,314 (5796),102106. Jetz,W.,Kreft,H.,Ceballos,G.,&Mutke,J.(2009).Globalassociationsbetween terrestrialproducerandvertebrateconsumerdiversity. ProceedingsoftheRoyal SocietyB:BiologicalSciences,276 (1655),269278. Johnson,N.A.,Campbell,J.W.,Moore,T.S.,Rex,M.A.,Etter,R.J.,McClain,C.R., etal.(2007).Therelationshipbetweenthestandingstockofdeepsea macrobenthosandsurfaceproductioninthewesternNorthAtlantic. DeepSea ResearchPartI:OceanographicResearchPapers,54 (8),13501360. Kaspari,M.,O'Donnell,S.,&Kercher,J.R.(2000).Energy,density,andconstraintsto speciesrichness:antassemblagesalongaproductivitygradient. TheAmerican Naturalist,155 (2),280293. Kay,R.F.,Madden,R.H.,VanSchaik,C.,&Higdon,D.(1997).Primatespecies richnessisdeterminedbyplantproductivity:implicationsforconservation. ProceedingsoftheNationalAcademyofSciences,94 (24),1302313027. Keeling,H.C.,&Phillips,O.L.(2007).Theglobalrelationshipbetweenforest productivityandbiomass. GlobalEcologyandBiogeography,16 ,618631. Kendall,V.J.,&Haedrich,R.L.(2006).SpeciesrichnessinAtlanticdeepseafishes assessedintermsofthemiddomaineffectandRapoport'srule. DeepSea ResearchPartI:OceanographicResearchPapers,53 (3),506515. Lambshead,P.J.D.,&Boucher,G.(2003).Marinenematodedeepseabiodiversity– hyperdiverseorhype? JournalofBiogeography,30 (4),475485. Lancaster,L.T.(2010).Mollecularevolutionaryratespredictbothextinctionand speciationintemperateangiospermlineages. 10 (1),162172. Lanfear,R.,Ho,S.Y.W.,Love,D.,&Bromham,L.(2010).Mutationrateislinkedto diversificationinbirds. ProceedingsoftheNationalAcademyofSciences, 107 (47),2042320428. Lanfear,R.,Thomas,J.A.,Welch,J.J.,Brey,T.,&Bromham,L.(2007).Metabolic ratedoesnotcalibratethemolecularclock. ProceedingsoftheNational AcademyofSciences,104 (39),1538815393.

136 Latham,R.E.,&Ricklefs,R.E.(1993).Continentalcomparisonsoftemperatezone treespeciesdiversity.InR.E.Ricklefs&D.Schluter(Eds.), Speciesdiversityin ecologicalcommunities (pp.294314).Chicago:TheUniversityofChicago Press. Leibold,M.A.(1999).Biodiversityandnutrientenrichmentinpondplankton communities. EvolutionaryEcologyResearch,1 (1),7395. Levin,L.A.,Etter,R.J.,Rex,M.A.,Gooday,A.J.,Smith,C.R.,Pineda,J.,etal. (2001).Environmentalinfluencesonregionaldeepseaspeciesdiversity. Annual ReviewofEcologyandSystematics,32 ,5193. Levin,L.A.,&Gage,J.D.(1998).Relationshipsbetweenoxygen,organicmatterand thediversityofbathyalmacrofauna. DeepSeaResearchPartI,45 ,129163. Lomolino,L.V.,Riddle,B.R.,&Brown,J.H.(2005). Biogeography (3rded.). Sunderland:SinauerAssociatesInc. Loya,Y.(1972).Communitystructureandspeciesdiversityofhermatypiccoralsat Eilat,RedSea. MarineBiology,13 (2),100123. Loya,Y.(1976).Effectsofwaterturbidityandsedimentationonthecommunity structureofPuertoRicancorals. BulletinofMarineScience,26 ,450466. MacArthur,R.H.,&Wilson,E.O.(1967). Thetheoryofislandbiogeography .New Jersey:PrincetonUniversityPress. Martin,A.P.,&Palumbi,S.R.(1993).Bodysize,metabolicrate,generationtime,and themolecularclock. ProceedingsoftheNationalAcademyofSciences,90 (9), 40874091. Martin,P.R.,&McKay,J.K.(2004).Latitudinalvariationingeneticdivergenceof populationsandthepotentialforfuturespeciation. Evolution,58 (5),938945. Martin,P.R.,&Tewksbury,J.J.(2008).Latitudinalvariationinsubspecific diversificationofbirds. Evolution,62 (11),27752788. McCain,C.M.(2003).NorthAmericanrodents:atestofthemiddomaineffectin speciesrichness. JournalofMammalogy,84 (3),967980. McCain,C.M.(2004).Themiddomaineffectappliedtoelevationalgradients:species richnessofsmallmammalsinCostaRica. JournalofBiogeography,31 (1),19 31. McClain,C.R.,&Etter,R.J.(2005).Middomainmodelsaspredictorsofspecies diversitypatterns:bathymetricdiversitygradientsinthedeepsea. Oikos,109 (3), 555566. McKechnie,A.E.,&Lovegrove,B.G.(2002).Avianfacultativehypothermic responses:areview. TheCondor,104 (4),705724. McNaughton,S.J.(1985).EcologyofaGrazingEcosystem:TheSerengeti. Ecological Monographs,55 (3),259294. McNaughton,S.J.,Banyikwa,F.F.,&McNaughton,M.M.(1998).Rootbiomassand productivityinagrazingsystem:theSerengeti. Ecology,79 (2),587592. MitchellOlds,T.,&Shaw,R.G.(1987).Regressionanalysisofnaturalselection: statisticalinferenceandbiologicalinterpretation. Evolution,41 (6),11491161. Mittelbach,G.G.,Schemske,D.W.,Cornell,H.V.,Allen,A.P.,Brown,J.M.,Bush, M.B.,etal.(2007).Evolutionandthelatitudinaldiversitygradient:speciation, extinctionandbiogeography. EcologyLetters,10 (4),315331. Mittelbach,G.G.,Steiner,C.F.,Scheiner,S.M.,Gross,K.L.,Reynolds,H.L.,Waide, R.B.,etal.(2001).Whatistheobservedrelationshipbetweenspeciesrichness andproductivity? Ecology,82 (9),23812396. Monk,C.D.(1965).SouthernmixedhardwoodforestofnorthcentralFlorida. EcologicalMonographs,33 ,335354.

137 Mönkkönen,M.,Forsman,J.T.,&Bokma,F.(2006).Energyavailability,abundance, energyuseandspeciesrichnessinforestbirdcommunities:atestofthespecies– energytheory. GlobalEcologyandBiogeography,15 (3),290302. MoralesCastilla,I.,OlallaTárraga,M.Á.,Bini,L.M.,DeMarcoJr,P.,Hawkins,B. A.,&Rodríguez,M.Á.(inpress).Nicheconservatismandspeciesrichness patternsofsquamatereptilesineasternandsouthernAfrica. AustralEcology . Murtaugh,P.A.(2003).Ondetectinghumpshapedrelationshipsinecology:abootstrap testformonotonicity. Environmetrics,14 (6),611616. Nagy,K.A.(1987).Fieldmetabolicrateandfoodrequirementscalinginmammalsand birds. EcologicalMonographs,57 (2),112128. O'Brien,E.M.(1993).Climaticgradientsinwoodyplantspeciesrichness:towardsan explanationbasedonananalysisofsouthernAfrica'swoodyflora. Journalof Biogeography,20 (2),181198. Owen,J.G.(1988).Onproductivityasapredictorofrodentandcarnivorediversity. Ecology,69 (4),11611165. Owen,J.G.,&Dixon,J.R.(1989).Anecogeographicanalysisoftheherpetofaunaof Texas. TheSouthwesternNaturalist,34 (2),165180. Pace,M.L.,Knauer,G.A.,Karl,D.M.,&Martin,J.H.(1987).Primaryproduction, newproductionandverticalfluxintheeasternPacificOcean. Nature, 325 (6107),803804. Palomäki,R.,&Paasavirta,L.(1993).Speciesrichnessofmacrozoobenthos,especially chironomidcommunities,inthelittoralzoneofsomeFinnishlakes. Annual ZooologicalFennici,30 ,209214. Pärtel,M.,Laanisto,L.,&Zobel,M.(2007).Contrastingplantproductivity–diversity relationshipsacrosslatitude:theroleofevolutionaryhistory. Ecology,88 (5), 10911097. Phillips,O.L.,Hall,P.,Gentry,A.H.,Sawyer,S.A.,&Vãsquez,R.(1994).Dynamics andspeciesrichnessoftropicalrainforests. ProceedingsoftheNational AcademyofSciences,91 (7),28052809. Pineda,J.(1993).Boundaryeffectsontheverticalrangesofdeepseabenthicspecies. DeepSeaResearchPartI,40 (1112),21792192. Porter,J.W.(1972).PatternsofspeciesdiversityinCaribbeanreefcorals. Ecology, 53 (4),745748. Powney,G.D.,Grenyer,R.,Orme,C.D.L.,Owens,I.P.F.,&Meiri,S.(2010).Hot, dryanddifferent:Australianlizardrichnessisunlikethatofmammals, amphibiansandbirds. GlobalEcologyandBiogeography,19 (3),386396. RamirezLlodra,E.,Brandt,A.,Danovaro,R.,DeMol,B.,Escobar,E.,German,C.R., etal.(2010).Deep,diverseanddefinitelydifferent:uniqueattributesofthe world'slargestecosystem. Biosciences,7 (1),28512899. Rebelo,J.E.(1992).Theichthyofaunaandabiotichydrobiologialenvironmentofthe RiadeAveir,Portugal. Estuaries,15(3),403413. Rensch,B.(1959). Evolutionabovethespecieslevel .NewYork:ColumbiaUniversity Press. Rex,M.A.(1973).Deepseaspeciesdiversity:decreasedgastropoddiversityatabyssal depths. Science,181 (4104),10511053. Rex,M.A.(1983).Geographicpatternsofspeciesdiversityinthedeepseabenthos.In G.T.Rowe(Ed.), Deepseabiology (Vol.8,pp.453472).NewYork,USA: Wiley. Rex,M.A.,Crame,J.A.,Stuart,C.T.,&Clarke,A.(2005).Largescalebiogeographic patternsinmarinemollusks:aconfluenceofhistoryandproductivity? Ecology, 86 (9),22882297.

138 Rex,M.A.,Etter,R.J.,Morris,J.S.,Crouse,J.,McClain,C.R.,Johnson,N.A.,etal. (2006).Globalbathymetricpatternsofstandingstockandbodysizeinthedeep seabenthos. MarineEcologyProgressSeries,317 ,18. Rex,M.A.,McClain,C.R.,Johnson,N.A.,Ron,J.E.,Allen,J.A.,Bouchet,P.,etal. (2005).Asourcesinkhypothesisforabyssalbiodiversity. TheAmerican Naturalist,165 (2),163178. Ricklefs,R.E.,&Schluter,D.(1993).Speciesdiversity:regionalandhistorical influences.InR.E.Ricklefs&D.Schluter(Eds.), Speciesdiversityinecological communities (pp.350363).Chicago:TheUniversityofChicagoPress. Rohde,K.(1978).Latitudinalgradientsinspeciesdiversityandtheircauses.I.Areview ofthehypothesesexplainingthegradients. BiologischesZentralblatt,97 (4), 393403. Rohde,K.(1992).Latitudinalgradientsinspeciesdiversity:thesearchfortheprimary cause. Oikos,65 (3),514527. Rosenberg,M.S.,Adams,D.C.,&Gurevitch,J.(2000).MetaWin:statisticalsoftware formetaanalysis(Version2.0).Sunderland:SinauerAssociatesInc. Rosenthal,R.(1969).The"filedrawerproblem"andtolerancefornullresults. PsychologicalBulletin,86 (3),638641. Rosenzweig,M.L.(1968).Netprimaryproductivityofterrestrialcommunities: predictionfromclimatologicaldata. TheAmericanNaturalist,102 (923),6774. Rosenzweig,M.L.(1992).Speciesdiversitygradients:weknowmoreandlessthanwe thought. JournalofMammalogy,73 (4),715730. Rosenzweig,M.L.(1995). Speciesdiversityinspaceandtime .Cambridge:Cambridge UniversityPress. Rosenzweig,M.L.,&Abramsky,Z.(1993).Howarediversityandproductivity related?InR.E.Ricklefs&D.Schluter(Eds.), Speciesdiversityinecological communities (pp.5265).Chicago:TheUniversityofChicagoPress. Sanders,H.L.(1969).Benthicmarinediversityandthetimestabilityhypothesis. BrookhavenSymposiainBiology,22 ,7181. Sanders,N.J.,Lessard,J.P.,Fitzpatrick,M.C.,&Dunn,R.R.(2007).Temperature, butnotproductivityorgeometry,predictselevationaldiversitygradientsinants acrossspatialgrains. GlobalEcologyandBiogeography,16 (5),640649. Schall,J.J.,&Pianka,E.R.(1978).Geographicaltrendsinnumbersofspecies. Science,201 (4357),679686. Schamp,B.S.,Laird,R.A.,&Aarssen,L.W.(2002).Fewerspeciesbecauseof uncommonhabitat?Testingthespeciespoolhypothesisforlowplantspecies richnessinhighlyproductivehabitats. Oikos,97 (1),145152. Scheiner,S.M.(2003).Sixtypesofspeciesareacurves. GlobalEcology& Biogeography,12 ,441447. Scheiner,S.M.,Chiarucci,A.,Fox,G.A.,Helmus,M.R.,McGlinn,D.J.,&Willig,M. R.(2011).Theunderpinningsoftherelationshipofspeciesrichnesswithspace andtime. EcologicalMonographs,81 (2),195213. Scheiner,S.M.,&Jones,S.(2002).Diversity,productivityandscaleinWisconsin vegetation. EvolutionaryEcologyResearch,4 ,10971117. Schemske,D.W.(2002).Ecologicalandevolutionaryperspectivesontheoriginsof tropicaldiversity.InR.L.Chazdon&T.C.Whitmore(Eds.), Foundationsof tropicalforestbiology:classicpaperswithcommentaries .Chicago:The UniversityofChicagoPress. Schiffer,M.,Kennington,W.J.,Hoffmann,A.A.,&Blacket,M.J.(2007).Lackof geneticstructureamongecologicallyadaptedpopulationsofanAustralian rainforestDrosophilaspeciesasindicatedbymicrosatellitemarkersand mitochondrialDNAsequences. MolecularEcology,16 (8),16871700. 139 Schoener,T.W.(1976).Thespeciesarearelationwithinarchipelagos:modelsand evidencefromislandlandbirds. ProceedingsoftheXVIInternational OrnithologicalCongress,6 ,629642. Scurlock,J.M.O.,&Olson,R.J.(2002).Terrestrialnetprimaryproductivity–abrief historyandanewworldwidedatabase. EnvironmentalReviews,10 (2),91. Shea,K.,&Chesson,P.(2002).Communityecologytheoryasaframeworkfor biologicalinvasions. TrendsinEcology&Evolution,17 (4),170176. Sheppard,C.R.C.(1980).Coralcover,zonationanddiversityonreefslopesofchagos atolls,andpopulationstructuresofthemajorspecies. MarineEcologyProgress Series,2 ,193205. Siemann,E.,Tilman,D.,Haarstad,J.,&Ritchie,M.(1998).Experimentaltestsofthe dependenceofdiversityonplantdiversity. TheAmericanNaturalist, 152 (5),738750. Smith,V.(2003).Eutrophicationoffreshwaterandcoastalmarineecosystemsaglobal problem. EnvironmentalScienceandPollutionResearch,10 (2),126139. Smith,V.H.(1979).Nutrientdependenceofprimaryproductivityinlakes. Limnology andOceanography,24 (10511064). Song,X.,Körtner,G.,&Geiser,F.(1995).Reductionofmetabolicrateand thermoregulationduringdailytorpor. JournalofComparativePhysiologyB: Biochemical,Systemic,andEnvironmentalPhysiology,165 (4),291297. Srivastava,D.S.,&Lawton,J.H.(1998).Whymoreproductivesiteshavemore species:anexperimentaltestoftheoryusingtreeholecommunities. The AmericanNaturalist,152(4),510529. Stevens,C.J.,Dise,N.B.,Mountford,J.O.,&Gowing,D.J.(2004).Impactof nitrogendepositiononthespeciesrichnessofgrasslands. Science,303 (5665), 18761879. Storch,D.,Davies,R.G.,Zajíček,S.,Orme,C.D.L.,Olson,V.,Thomas,G.H.,etal. (2006).Energy,rangedynamicsandglobalspeciesrichnesspatterns:reconciling middomaineffectsandenvironmentaldeterminantsofaviandiversity. Ecology Letters,9 (12),13081320. Sutton,A.J.(2009).Publicationbias.InH.Cooper,L.V.Hedges&J.C.Valentine (Eds.), Thehandbookofsystematicreviewsandmetaanalysis (2nded.,pp. 435452).NewYork:RussellSageFoundation. Taylor,D.R.,Aarssen,L.W.,&Loehle,C.(1990).Ontherelationshipbetweenr/K selectionandenvironmentalcarryingcapacity:anewhabitattempletforplant lifehistorystrategies. Oikos,58 (2),239250. Terborgh,J.,Robinson,S.K.,Parker,T.A.,III,Munn,C.A.,&Pierpont,N.(1990). StructureandorganizationofanAmazonianforestbirdcommunity. Ecological Monographs,60 (2),213238. Terribile,L.,OlallaTárraga,M.,MoralesCastilla,I.,Rueda,M.,Vidanes,R., Rodríguez,M.,etal.(2009).Globalrichnesspatternsofvenomoussnakesreveal contrastinginfluencesofecologyandhistoryintwodifferentclades. Oecologia, 159 (3),617626. Tilman,D.(1982). Resourcecompetitionandcommunitystructure:monographsin populationbiology .Princeton:PrincetonUniversityPress. Tilman,D.,&Pacala,S.(1993).Themaintenanceofspeciesrichnessinplant communities.InR.E.Ricklefs&D.Schluter(Eds.), Speciesdiversityin ecologicalcommunities (pp.1325).Chicago:TheUniversityofChicagoPress. Tjørve,E.(2009).Shapesandfunctionsofspecies–areacurves(II):areviewofnew modelsandparameterizations. JournalofBiogeography,36 (8),14351445. Tummers,B.(2006).DataThief(VersionIII).

140 vanRensburg,B.J.,Chown,S.L.,&Gaston,K.J.(2002).Speciesrichness, environmentalcorrelates,andspatialscale:atestusingSouthAfricanbirds. The AmericanNaturalist,159 (5),566577. VanValen,L.(1973).Anewevolutionarylaw. EvolutionaryTheory,1 ,130. VanderMeulen,M.A.,Hudson,A.J.,&Scheiner,S.M.(2001).Threeevolutionary hypothesesforthehumpshapedproductivitydiversitycurve. Evolutionary EcologyResearch,3 ,379392. Vitousek,P.M.,Aber,J.D.,Howarth,R.W.,Likens,G.E.,Matson,P.A.,Schindler, D.W.,etal.(1997).Technicalreport:humanalterationoftheglobalnitrogen cycle:sourcesandconsequences. EcologicalApplications,7 (3),737750. Vitousek,P.M.,Mooney,H.A.,Lubchenco,J.,&Melillo,J.M.(1997).Human dominationofEarth'secosystems. Science,277 (5325),494499. vonHumboldt,A.(1808). AnsichtenderNaturmitwissenschaftlichenErlauterungen . Tubingen. Waide,R.B.,Willig,M.R.,Steiner,C.F.,Mittelbach,G.,Gough,L.,Dodson,S.I.,et al.(1999).Therelationshipbetweenproductivityandspeciesrichness. Annual ReviewofEcologyandSystematics,30 ,257300. Wei,C.L.,Rowe,G.T.,Briones,E.E.,Boetius,A.,Soltwedel,T.,Caley,M.J.,etal. (2010).Globalpatternsandpredictionsofseafloorbiomassusingrandom forests. PLoSONE,5 (12). Werenkraut,V.,&Ruggiero,A.(2011).Qualityofbasicdataandmethodtoidentify shapeaffectrichness–altituderelationshipsinmetaanalysis. Ecology,92 (1), 253260. Whittaker,R.J.(2010a).Inthedragon'sden:aresponsetothemetaanalysisforum contributions. Ecology,91 (9),25682571. Whittaker,R.J.(2010b).Metaanalysesandmegamistakes:callingtimeonmeta analysisofthespeciesrichness–productivityrelationship. Ecology,91 (9),2522 2533. Whittaker,R.J.,&Heegaard,E.(2003).Whatistheobservedrelationshipbetween speciesrichnessandproductivity?Comment. Ecology,84 (12),33843390. Whittaker,R.J.,Willis,K.J.,&Field,R.(2001).Scaleandspeciesrichness:towardsa general,hierarchicaltheoryofspeciesdiversity.JournalofBiogeography,28 (4), 453470. Wiens,J.J.,&Donoghue,M.J.(2004).Historicalbiogeography,ecologyandspecies richness. TrendsinEcologyandEvolution,19 (12),639644. Wiens,J.J.,&Graham,C.H.(2005).Nicheconservatism:integratingevolution, ecologyandconservationbiology. AnnualReviewsinEcology,Evolutionand Systematics,36 ,519539. Wiens,J.J.,Graham,C.H.,Moen,D.S.,Smith,S.A.,&Reeder,T.W.(2006). Evolutionaryandecologicalcausesofthelatitudinaldiversitygradientinhylid frogs:treefrogtreesunearththerootsofhightropicaldiversity. TheAmerican Naturalist,168 (5),579596. Wiens,J.J.,Sukumaran,J.,Pyron,R.A.,&Brown,R.M.(2009).Evolutionaryand biogeographicoriginsofhightropicaldiversityinOldWorldfrogs(Ranidae). Evolution,63 (5),12171231. Willis,K.J.,&Whittaker,R.J.(2002).Speciesdiversity–scalematters. Science, 295 (5558),12451248. Wollenburg,J.E.,&Kuhnt,W.(2000).Theresponseofbenthicforaminiferstocarbon fluxandprimaryproductionintheArcticOcean. MarineMicropaleontology, 40 (3),189231. Wolters,V.,Bengtsson,J.,&Zaitsev,A.S.(2006).Relationshipamongthespecies richnessofdifferenttaxa. Ecology,87 (8),18861895. 141 Wright,D.H.(1983).Speciesenergytheory:anextensionofspeciesareatheory. Oikos,41 (3),496506. Wright,D.H.,Currie,D.J.,&Maurer,B.A.(1993).Energysupplyandpatternsof speciesrichnessonlocalandregionalscales.InR.E.Ricklefs&D.Schluter (Eds.), Speciesdiversityinecologicalcommunities:Historicalandgeographical perspectives (pp.6674).Chicago:UniversityofChicagoPress. Wright,S.D.,Gillman,L.N.,Ross,H.A.,&Keeling,D.J.(2010).Energyandthe tempoofevolutioninamphibians. GlobalEcologyandBiogeography,19 (5), 733740. Wright,S.D.,Keeling,D.J.,&Gillman,L.N.(2006).TheroadfromSantaRosalia:a fastertempoofevolutionintropicalclimates.ProceedingsoftheNational AcademyofSciences,103 (20),77187722. Wright,S.D.,Ross,H.A.,Keeling,D.J.,McBride,P.,&Gillman,L.N.(2011). Thermalenergyandtherateofgeneticevolutioninmarinefishes. Evolutionary Ecology,25 (2),525530. WWF.(2006).WildFinder:onlinedatabaseofspeciesdistributions(Version01.06). Wylie,J.L.,&Currie,D.J.(1993).Speciesenergytheoryandpatternsofspecies richness:I.Patternsofbird,angiosperm,andmammalspeciesrichnesson islands. BiologicalConservation,63 (2),137144. Yee,D.A.,&Juliano,S.A.(2007).Abundancematters:afieldexperimenttestingthe moreindividualshypothesisforrichness–productivityrelationships. Oecologia, 153 (1),153161. Zapata,F.A.,Gaston,K.J.,&Chown,S.L.(2003).Middomainmodelsofspecies richnessgradients:assumptions,methodsandevidence. JournalofAnimal Ecology,72 (4),677690. Zuur,A.F.,Ieno,E.N.,&Elphick,C.S.(2010).Aprotocolfordataexplorationto avoidcommonstatisticalproblems. MethodsinEcologyandEvolution,1 (1),3 14.

142 APPENDICES

Appendix 1.StudiesdeemedinadmissiblefortestingtheA–PSRR,andreasonsforexclusion.Studieswithsamplesizes<10arenotshown.(N=247)

Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert *

Alimov2002 a)Zooplankton I P A Primary ? ? *Somesamplesiteswerereservoirsorpower a&b b)Benthic production stationcoolingpondsindicatinganthropogenic invertebrates influence Polycheata I P M Benthic R F *Thesingle,instantaneousmeasurementof Ambroseetal. pigment benthicpigmentsusedisnotlikelytobeagood 2009 concentration estimateoftheannualproductivityofthe samplingsites(Ambroseetal2009) Bacheletetal. Macro I P M Biomass L ? *Unequalsampling(i.e.smallersamplesat 1996 invertebrates shallowerdepths) BadgleyandFox Mammals V H T AET C C *Otherstudiesanalysedmammalrichnessin 2000 NorthAmerica(e.g.Currie,1991andKilpatrick etal2006) Barbourand Fish V P A Latitude C C *Authorsnotethatspeciesrichnessissubjectto Brown1974 sourcesoferrorsincedataiscollatedfrom publishedrecordse.g.theAfricanlakeswere knowntobepoorlysampled*Controlledforarea *Nonnormalresiduals(p<0.01) Bárcenaetal. Birds V H A AET C C *Breedingspeciesrichness*Thestudyareaswere 2004 characterisedbyshortsummersandharsh,long winters.Therefore,anannualmeasureofAETis notappropriateasameasureofproductivityfor breedingbirds

143 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Beaverand Ciliated I P A TrophicStatus R ? *Trophicstatusisnotavalidproductivity Crisman1989 Protozoa surrogatesinceitisverylikelythatthenutrient inputhasananthropogeniccomponent*No statisticalregressionmodelcanbefittedtothe datasincetrophicstateiscategorical Bianchellietal. Mieofauna I P M Biopolymeric R F *Diversitymeasureisnotexplicit(i.e.richnessof 2010 carbon taxa) Blakeand Benthic I P M Depth R F *Unequalsampling.Theauthorsalsopointout Narayanaswamy infauna thatthesiteswereundersampled 2004 Blamiresetal. Birds V H T AET R C *Onlythepartialregressioncoefficientwas 2007 reportedmakingthedeterminationoftheformof therelationshipdifficult Bonnetal.2004 Birds V H ? NDVI R C *Numberofspeciespergridcellwasmeasuredas wellasnumberofspeciesperNDVIclass.After controllingforarea,bothhadapositive relationship*Thespeciesrichnessdatasourceis thesamesourceusedbyvanRensburgetal (2002)whousedadirectmeasureofproductivity (NPP) Braschleretal. a)Grasshoppers I P T Aboveground L F *Theareahasbeensubstantiallymodifiedfrom 2004a&b b)Gastropods plantbiomass beechforesttograsslandforcattlegrazing Brownand Rodents V H T Annual C F *Datawereduplicatedfromanotherstudyalready Davidson1977 Rainfall includedintheanalysis(Brown,1973) Chaseand Animals V/I P A Algalbiomass ? ? *LessconnecteddatawasreportedinChaseand Ryberg2004 accrual Leibold(2002)

144 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Chownand Procellariiform V H M Chla C C *Thehighestproductivitysiteswereseasonally Gaston1999 birds variableandsmall Chownetal. Birds V H T NPP R C *SamedataasvanRensburgetal.(2002) 2003 Cook1969 Birds V H ? Latitude C C *Thedataalmostcertainlyshowsapositive relationshipbut,thedatawerecategoricalmaking regressionimpossible Corlissetal. Benthic I P M SeaSurface C F *Twosamplingunitswereused*Theresiduals 2009 foraminifera Productivity arenotnormallydistributed(p>0.1) CossonSarradin Polycheata I P M Est.Primary R C *Theeutrophicsiteconsistedof4samples, etal.1998 Productivity whereastheoligotrophicandmesotrophicsites consistedof5samples;therefore,sampling regimevariedbymorethan10%*Additionaldata usedforanalyseswasfromanotherstudythat usedadifferentsamplingmethod(i.e.smaller samplingunit) Currie1991 a)Birds V H T Primary C C a)AnewerdatasetwasusedbyHurlbertand a&b b)Mammals Production Haskell(2003)forNorthAmericanbirds b)Thedataisnotevenlydistributedandasingle relationshipcannotbedetermined Danielsetal. Amphibians V P ? Latitude R C *Partsofthesampleareaweresignificantly 1992 influencedbyhumanactivities*Nonnormal residuals Davidowitzand Grasshoppers I P T Latitude C C *Thegroupstudiedarepredominantlyadaptedto Rosenzweig feedingofgrassand,thehumpportionofthe 1998 curveoccursinareasdominatedbygrassprairies. Thus,thehumpshapeisaresultofavailable habitat,notproductivity*Tootaxonomically restrictive

145 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Daviesetal. Birds V H A/T NDVI C C *Thestudypresentsmultivariablemodelsand 2007a datawasnotreanalysed*SpatialGLSregression model*Thereisnofigureavailableinorderto determinetheform*Storchetal(2006)also analysedglobalbirdrichness Daviesetal. Parrots V H T NPP C C *Itisdifficulttodeterminetheformsofthe 2007b relationshipswithnofigure Davisetal.2008 DungBeetles I P T Rainfall R C *Thesamplesiteswereonlivestockfarms Dean2000 Birds V H T Rainfall R C *LargeportionsoftheKarooaregrazedby domesticlivestock Death1995 Benthic I P A Epilithic L ? *MeanvaluesfromDeathandWinterbourne Invertebrate Carbon (1995) De'athand a)Hardcorals I P M Chla R C *Thestudyassessedtheinfluenceofwaterquality Fabricus2010 b)Phototrophic onreefhealth*Nutrientinputislargelyaresultof a–c octocorals anthropogenicactivityinthecatchmentsofinflow c)Heterotrophi rivers coctocorals Declercketal. a)Rotifers a)I P A Total R C *ResidualsofTPandrichnesscontrollingforarea 2005a–f b)Copepods b)I phosphorous andsubmergedmacrophytecover*Declercketal c)Cladocerans c)I (2005)usedasignificancelevelofp<0.1*Much d)Macro d)I ofthenutrientinputisfromanthropogenic invertebrates sources e)Fish e)V f)Rotifers f)I DinizFilhoetal. Birds(Owls) V H T AET C C *Datawerenotobtainedandnofigureis 2004 publishedmakingitdifficulttodeterminethe formoftherelationship

146 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * DinizFilhoetal. a)Mammals V H T AET R C *Therewasasignificantpositiverelationship 2008a–d b)Birds betweenAETandspeciesrichnessinmultiple c)Reptiles regressionmodelsbutnosimpleregression d)Amphibians coefficientsaregiven Dodson2008 Zooplankton I P A Chla L F *Artificialponds Dodsonetal. a)Rotifers I P A Pelagic ? ? *Threelakesareexcludedduetoexperimental 2000a–d b)Cladocera primary manipulationofnutrientloadings*Thestudy c)Copepods production includeslakesthathaddevelopmentintheir d)Fish catchmentswhichHoffmanandDodson(2005) showedinfluencedtherelationship d'Onghiaetal. Fish V P M Depth R C *Unequalsamplingeffort 2004 Fariñaetal.1997 Benthic I P M Depth R ? *Onlythecontinentalshelf(100200m)andupper Decapods slope(200500m)weresampledsuggestingthata fullrangeofdepthshasnotbeensampled*Also thestudysiteischaracterisedbyseasonal upwelling(e.g.Tilstoneetal1994)indicatingthat depthpersedoesnotreflecttheproductivity regime Fock2009 Pelagic I P M Average C C *Unequalsamplingeffort ichthyonekton annual Primary Production DeMasetal. Spiders I P T NDVI L F *Unequalsamplingeffort 2009 Follesaetal. Crustacea I P M Depth L C *Trawltimedifferedbetweendepths 2009 Gageetal.2004 Cumacea I P M Latitude C C *Differentsamplingunits

147 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Ganzhornetal. Lemurs V H T Annual R ? *Rainfallisapoorproductivitysurrogatein 1997 Rainfall Madagascarconsideringitssubtropicalclimate andthebroadgeographicalvariationinclimate acrosstheisland Ghilarovand Zooplankton I P A Biomassof R F *Thesamplingregimewasunevenwiththreeof Timonin1972 targettaxa thelakesbeingsampledthreetimesandtheother fourlakesonlysampledonce GonzalesTaboda Birds V H T NDVI R C *Threegrainspresentedwithnoqualitative etal.2007 differenceforallthreegrains.Thusthelargest grainwasincluded Grahametal. Ants I P T NPP L F *Thestudyincludessitesthathavesignificantly 2009 modifiedbyhumansandconsiderstheinfluence ofdisturbancei.e.intermediatedisturbance hypothesis Gutiérrez Copepods I P A Transparency L C *Lakesidedevelopmentinfluencedspecies Aguirreand richness.Therefore,rejectduetoanthropogenic SuarezMorales influence 2001 Haberletal. Birds V H T NPP R ? *UseshumanappropriationofNetPrimary 2005 Productionasthemeasureofproductivity indicatingstronghumaninfluenceinthestudy areawhich,isnotsurprisinginahighpopulation densityarealikeAustria HAcevedoand Birds V H T NDVI C C *Consideringseasonalrichnessandseasonal Currie2003 NDVIathirddegreepolynomialfitsthedata.But, relationshipswerepositiveasindicatedby LOWESStrendlines*Dataunavailableandfigure wastoodensetodigitise

148 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Hacking2007 Macrofauna I P A/T Biomass R F *Speciesrichnessandbiomassarestrongly influencedbyphysicalprocessesasindicatedby thestudy.Biomassthereforedoesnotrepresenta validsurrogate Hawkins2004 Birds V H T SummerGVI C C *SummerGVIwasusedratherthanannualGVI sincebreedingrichnesswasmeasured*Apositive relationshipisfavouredbecausethereisno downturnathighGVIlevels*Qualitatively similartoHurlbertandHaskell(2003) Hawkinsand Butterflies I P T AET C C *RichnessdatafromKudrna(2002) Porter2003 *Qualitativelyindifferentfromabove Hawkinsetal. Birds V H T AET C C *Thedatawasanalysedasglobalandregional 2003 datasets.Becausethereisnotaxonomicrestriction (i.e.allterrestrialbirds),theglobalanalysisis appropriate*Storchetal2006alsoperformeda globalanalysisofbirdrichnessandAETfor whichdatawasavailableforreanalysis Hawkinsetal. Birds V H T AET C C *Thereisnofiguretodeterminetheformofthe 2005 relationship Hawkinsetal. Birds V H T AET C C *SimilartoHawkinsetal.(2003)andStorchetal. 2007 (2006)inthatitcomparesglobalbirdrichness withAET Hessenetal. Pelagic I P A Chla R F *LOWESScurvedoesnotturndownindicatinga 2006 zooplankton decreasingpositive*Mostlakessampledwereof lowproductivitynotareflectingasufficient gradientofproductivity*Somelakeswere sampledmorethanothersindicatinguneven sampling

149 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Hobæketal. Crustacean I P A Algal R F *Manyofthelakesaresmallandsituatedinurban 2002 zooplankton biovolume orsuburbansurroundings,beingsubjectto influencesfromeutrophicationaswellas introductionofalienfishspecies.Inparticular, pike(Esoxlucius)wasintroducedinmanylakes around100–130yearsago.(Hobæketal2002) Hofetal.2008 Freshwater V/I P A Latitude C C *Althoughtheregionsdifferedinsize,areadid animals notinfluencespeciesrichness.However,some areaswerelarge,spanningbroadlatitudinal ranges.Thus,usingthelatitudinalmidpointisnot anidealproxyofproductivity Hoyerand Birds V H A Chla R C *SubsetofHoyerandCanfield(1994) Canfield1990 Hugoandvan Birds V H T NDVI R C *SamedataasvanRensburgetal(2002) Rensburg2008 Huston1985 Corals I P M Depth ? ? *Homeosymbiontzooxanthelleincoralsare reliantonlightwhichdecreaseswithdepth. Therefore,depthreflectsproductivity.However, inshallowerwater,environmentalstressishigh (e.g.waveactionandsedimentation)whichis detrimentaltocoraldiversityandimposesa strongerinfluencethandepthrelatedlight intensity

150 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Janzen1981 Wasps I P T Latitude C ? *InthecontinentalUSA,thelatitudinalrangeof sampling(i.e.from7050degreesN)doesnot reflectaconstantdecreaseinproductivitywith increasinglatitude*Usingasinglefamilyof parasiticwaspsistaxonomicallyrestrictive *Janzen(1981)statesthattherichnessofparasitic waspsishighlydependentonhostspecies Jarvinenand Birds V H A Biomass R C *Samplingregimeisnotconstantwithtransects Vaisanen1978 rangingbetween97and439km Jenningsetal. a)Freeliving I P M Latitude R C *Commercialtrawlingeffortwashigher,and 1999a&b epibenthic speciesrichnesswasloweratlowlatitudes fauna makingitdifficulttodeterminetheeffectof b)Attached productivityusinglatitude epibenthic fauna Jeppesenetal. a)Zooplankton a)I P A Total R F *Totalphosphorousisnotpresentedascontinuous 2000a&b b)Fish b)V phosphorous butasclasses*Phosphorousisnotagoodmeasure ofproductivitysinceathighconcentrationsit causeswaterbodiestogoeutrophicresultinginan oxygendeficit JetzandRahbek Birds V H ? NPP C C *Relatesspeciesrichnessofbirdswithdifferent 2002 rangesizestoproductivity*Nofigurepublished forallspecies Jetzetal.2009 Birds V H T AET C C *R2valuesobtainedfromPearsoncorrelations andrelationshipformsfromfigures*Storchetal (2006)alsoanalysedbirdsspeciesrichness,but usedequalareagridsquares Kasparietal. Ants I P T Net C C *Speciespertransect*Essentiallythesamedata 2000 aboveground asKasparietal(2000a)butatadifferentgrain productivity

151 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert *

Kaufmanand Mammals V H T Latitude C C *Moreappropriatestudiesusingdirectmeasures Willig1998 ofproductivityareavailable*TognelliandKelt (2004)usedAETformammalsinSouthAmerica Primates V H T Annual C ? *Rainfallisnotasuitablesurrogatefor Kayetal.1997 Rainfall productivity*Datainthestudyshowsthatrainfall andproductivity(indexedfromlitterfall)havea unimodalrelationshipinthisparticularhabitat type(Figure3inKayetal1997) Keiland a)Butterflies I P a)T AET R C a)SamedataasHawkinsandPorter(2003) Hawkins2009a b)Dragonflies b)A/T b)SamedataasKeiletal(2008) &b Keiletal.2008 Hoverflies I P ? AET C C *AETandrichnessvaluesweremeansforwhole countries*Samplingeffortvariesbetween countries KerrandPacker Beetles I P T NPP C C *Tootaxonomicallyrestrictive(oneof 1999 beetle) Kerretal.2001 Butterflies I P T NPP C C *HabitatheterogeneityandPETwerestronger predictorsofspeciesrichnesssoresultsofNPP vs.richnesswerenotreportedbytheauthors Kilpatricketal. Mammals V H T AET C C *Itwasnotpossibletodeterminetheformofthe 2006 relationship Kisslingetal. Frugivorous V H T NPP C C *Nonnormalresiduals(p<0.01)*Althoughthe 2009 birds quadraticissignificant,visualinspectionofthe relationshipdoesnotshowauform*Storchetal (2006)analysedglobalbirdrichness.Therefore,in essencethisisasubsetofthatdata. KlopandPrins a)Grazers V H T AET R C *Richnesswasinfluencedbyanthropogenicfires 2008a&b b)Browsers

152 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Kumschicketal. Ants I P T NPP R C *Ambientenergypredictsantrichness*Oneof 2009a thehabitattypesisclassifiedas'arableland' suggestinghumaninfluence Kumschicketal. Spiders I P T Latitude R C *Ahumpshapedrelationshipwaspredicteddueto 2009b bioticinteractionsinlowerlatitudes.Therefore, bioticinteractionsareconfounding *Taxonomicallyrestricted*Oneofthehabitat typesisclassifiedas'arableland'suggesting humaninfluence Lambsheadetal. Nematodes I P M Latitude R F *ProductivityincreasespolewardsintheNorth 2000 Atlantic(Campbell&Arup1992)*Unequal samplingeffort Lambsheadetal. Nematodes I P M Latitude R F *Differentsamplingunitswereusedbutthe 2002 authorsarguethattheresultswereunbiasedand conservativeforareasofhighdiversity*Thedata arenotevenlydistributedacrosstherangeof latitude(i.e.agapbetween8and22degrees North) Lassauand Wasps I P T NDVI R F *NDVIwasusedasameasureofhabitat Hochuli2007 complexitybutitisdifficulttodisentangle 'complexity'fromproductivityparticularlyatlocal scales*LOWESSlinedoenotcurveupwardatthe lowproductivityendindicatinganincreasing positive Lassauand Beetles I P T NDVI R F *NDVIwasusedasameasureofhabitat Hochuli2008 complexitybutitisdifficulttodisentangle 'complexity'fromproductivityparticularlyatlocal scales

153 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Lassauetal. Ants I P T NDVI R F *NDVIwasusedasameasureofhabitat 2005 complexitybutitisdifficulttodisentangle 'complexity'fromproductivityparticularlyatlocal scales*Asinglepointhadundueinfluenceonthe quadraticmodelatthelowproductivityend Leeetal.2004 Birds V H T NDVI R C *AnacceleratingpositiveisfavouredoveraU shapessincespeciesrichnessincreasesslightly whenNDVI<0.5anditispositivewhen NDVI>0.5(Leeetal.2004)*Somequadratshave ahighproportionbuiltupareasandspecies richnessdecreasedwithproportionofbuiltup area.Thus,decreasingNDVImayonlybe collinearwithhumandensitywhichnegatively influencesspeciesrichness Leibold1999 Zooplankton I P A TP R F *Fourofthepondssampledwereartificialbut Leibold(1999)arguesthattheyhavenotbeen disturbedforatleasteightyears*However,oneof thepondsisanabandoneddairywastesettling pondthatisextremelyeutrophic*Removalofthe pondwiththehighestphosphorousconcentration (assumedtobethedairywastesettlementpond) resultsinanonsignificantrelationship Loya1972 Corals I P M Depth L F *Samplingregimeisnotconstantrangingfrom17 transectsbetween3mand7mand9transects between20mand30m*Lowcoralrichnessat shallowdepthsisanartefactofdisturbance(e.g. waveaction)andnotagradientofproductivity.

154 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Mahonand Fish V P M Biomass L ? *Thesamplesites(tidepools)varyinvolume Mahon1994 *Thenumberofindividuals,biomassandspecies richnessdecreasewithdecreasingvolume*The studyrepresentsaspeciesareaeffect Malmqvistand Insects I P A ChlA,Seston L ? *Unabletoobtainafullcopyofthearticle Eriksson1995 Energy, Conductivity (PCAaxis) Maraunetal. Oribatidmites I P T Latitude C C *Latitudeswereestimatedfromthemedianofthe 2007 countryandtheauthorscautionagainststrong interpretationoftheresultssincesomecountries spanbroadlatitudinalranges Marinoneetal. Zooplankton I P A Chla R F *Thestudyinvestigatestheinfluenceof 2006 ultravioletradiation(UVR)onzooplankton communitiesandfindsequivocalevidencethat highlevelsofUVRinthewatercolumncan negativelyinfluencespeciesrichness.However, laketransparency(linkedtoproductivity)reduces UVRinthewatercolumnmakingitdifficultto uncoupletheeffects Marshalland Plethodontid V P A/T PCAaxis R C *RainfallbutnottemperaturehadaPCAloading Camp2006 salamanders (energy) suggestingPC1maynotbeasurrogatefor productivityandthepositiverelationshipmaybe anartefactoftherelianceofsalamandersonwater forreproduction*Thequadratictermis marginallynonsignificantbut,therelationshipis adeceleratingpositive

155 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Mathaisetal. Birds(Parrots) V H T AET C C *Comparedtheinfluenceofproductivityusing 2004 differentdatasources*Theresultsusingdifferent datasourceswerequantitativelysimilar*Davies etal(2007)usedoneofthesamedatasourcesand usedadirectmeasureofproductivity(NPP) McCain2003 Rodents V H T Latitude R C *Latitudedoesnotrepresentagradientof productivity McCormicketal. Macro I P A Phosphorous L F *Enrichmentisfromanthropogenicsources 2004 invertebrates McPhersonand Birds V H T NPP C C *AlthoughtheOLSequationinthesupplementary Jetz2007 dataindicatesacurvilinearrelationship,itis difficulttodetermineiftherelationshipis unimodaloradeceleratingpositive Meserveetal. Small V H T Latitude R F *Unequalsamplingeffort 1991 mammals Milneretal. Macro I P A Chla L F *Distancefromglacierandtemperaturehada 2001 invertebrates strongerinfluenceonspeciesrichnesssuggesting temperaturetoleranceismoreimportant Miserendino Macro I P A Chla R F *Anthropogenicnutrientinputfromurban, 2009 invertebrates agricultureandlivestockactivities Mooreetal.2002 Vertebrates V P/H ? NPP C C *UsesthesamedataasBalmfordetal.2001 (Birds, Mammals, Amphibians andSnakes)

156 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * MorenoRueda a)Birds V a)H T Rainfall L C *Onaverage29.6km2ofevery100km2square andPizzaro2007 b)Mammals b)H wasfarmland*"Waterstoredinsubsoilisan a–d c)Reptiles c)P importantdeterminantofproductivityinthestudy d)Amphibians d)P area,anditisnotnecessarilycorrelatedwith precipitation"(MorenoRuedaandPizzaro2007) *Environmentalheterogeneitywasmore importantthatclimatepredictors Mortonand Ants I P T Annual R F *DataduplicatedfromBrownandDavidson Davidson1988 Rainfall (1977a) Narayanaswamy Polychaetes I P M Depth L F *Differentsamplingunitswereuseddueto etal.2005 constraints*Therelationshipispositivebutthere isapeakindiversityat400m Nilssonand Birds V H A Phosphorous R C *Areahasastronginfluenceonspeciesrichness Nilsson1978 *Lakeshadshorelinedevelopmentindicating anthropogenicnutrientinput Oberteggeretal. Rotifers I P A TP L C *Nosinglevariableregressionwaspresented 2010 betweenspeciesrichnessandtotalphosphorous. Inaddition,giventhevariationintemperature alonganelevationalgradient,TPisnotagood proxyforproductivity O'Brienetal. Zooplankton I P A Chla L F *Chlorophyll ahadnorelationshipwithspecies 2004 richnessbutnostatisticswerereported Oindo2002a Herbivorous V H T NDVI R C *Usedthelandscaperichnessdatasinceituses mammals equalareagridscells*Thedataisnotevenly spreadacrossthefullrangeofproductivity Oindo2002b Herbivorous V H T NDVI R C *UsesasubsetoftheOindo(2002a)databutata mammals differentscale*Only144ofthereported378data pointscouldbedigitizedfromthepublished figure.But,theresultswerequalitativelysimilar

157 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Olinetal.2002 Fish V P A Total L C *Manyofthelakeshavehumansettlementsonthe phosphorous lakeshoresuggestingthatenrichmenthasa significantanthropogeniccomponent*Fiveofthe studylakeshavehad'massremoval'ofcyprinids, andonelakehasbeenbiomanipulated Patalas1971 Zooplankton I P A Chla L F *Arearelatespositivelywithrichnesssousing speciesarearesidualsismoreappropriate. *However,aftercontrollingforareathe relationshipisstillnonsignificant*Thesampling regimewasnotheldconstantthroughoutthe study.Twodifferentsamplingunitswereusedin differentyearsanddifferentlakesand,fourofthe lakesweresampledtwiceandsomeonlyonce Patersonand Nematodes I P A Depth R F *Thedataisnotevenlydistributedalongtherange Lambshead1995 ofdepth(i.e.alargegapbetween1800and 2875m).Alsooneofthesites(2875m)wasa permanentsitesampledfourtimesandmean richnesscalculated. Patten2004a& a)Bats V H T Vegetation C C *Aftercontrollingforarea,vegetationcoverhad b b)Birds cover noinfluenceonrichness*Vegetationcoverisnot agoodsurrogateforproductivity Pearsonand NorthAmerica T Annual C ? *Rainfallisnotasuitablesurrogatefor Carroll1998a–e a)Birds a)V a)H Rainfall productivityacrossNorthAmericasincerainfallis b)Butterflies b)I b)P confoundedbytemperatureinnorthernregions c)Tigerbeetles c)I c)P India d)Birds d)V d)H e)Tigerbeetles e)I e)P

158 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Peres1997 Primates V H T Biomass R ? *Thestudycomparestwodifferentforesttypes, terrafirmeandvarzea(floodedforuptohalfthe year)*Thedatadoesnotreflectaproductivity gradient Petersand Freeliving I P A Chla L F *Manyofthelakeshavehumansettlementsonthe Traunsperer2005 nematodes lakeshoresuggestingthatenrichmenthasa significantanthropogeniccomponent Pfeifferetal. Ants I P T Rainfall R C *Narrowrangeofrainfall(84197mm/yr) 2003 Phillipsetal. Birds V H T GPP C C *Digitizedfigureyielded1271comparedto1390 2009 reported.However,qualitativelytheresultsdid notdifferand,quantitatively,werealmost identical*NDVI,NPP,andGPPwerestrongly andpositivelycorrelated*Usedthesamebirddata usedbyHurlbertandHaskell(2003) Pianka1967 Lizards V P T WarmSeason R ? *Sitesvisitsandsamplingvaried(310times) Rainfall Pianka1971 Lizards V P T Annual R ? *Nomethodsforthelizardcensusareprovided. Rainfall However,methodsfollowPianka(1967)closely suggestingavariedsamplingregime Pierceetal.1994 Fish V P A Biomass L F *Richnessispositivelyrelatedtoarea(p=0.007). Therefore,usespeciesarearesiduals*Thelakes sampledareeitherincloseproximityoradjacent tohumansettlement(e.g.Memphremagog) indicatinganthropogenicinfluence.Galvez CloutierandSanchez(2007)showthatsomelakes inQuebecrequireeutrophiccontrolmeasuresdue tonutrientinputfromhumanactivities(e.g.Lakes WaterlooandRoxton)

159 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * PintoCoelhoet Crustacean I P A Chla C C *Unequalsamplingeffortandmethods al.2005 zooplankton Porter1972 Corals I P M Depth L ? *Inshallowerwater,environmentalstressishigh (e.g.waveactionandsedimentation)whichis detrimentaltocoraldiversityandimposesa strongerinfluencethandepthrelatedlight intensity Priceetal.1998 GallInsects I P T Latitude C ? *SamplingregimeisnotconstantwithArizona andMinasGeriassampled"intensively"and "intermittentlyeverywhereelse"(Priceetal. 1998,p.582)*Alsoforaglobalstudynositesin tropicalAfricaweresampledandonlyonesitein thetropicalPacificwassampled Priedeetal.2010 Fish V P M Depth R C *Unequalsamplingeffort Qian2008 Birds V H T AET C C *Multipleregressionresultsincludingaquadratic termforAETwerepresented,butwithoutafigure itisimpossibletodetermineiftherelationshipis adecreasingpositiveorunimodal*Storchetal 2006alsodidaglobalanalysisofbirdsandAET Qian2010a–d a)Mammals V a)H T AET C C *Nofigureorregressioncoefficientsavailablefor b)Birds b)H globalanalysis c)Amphibians c)P d)Reptiles d)P Randalland Fish V P A Habitat R F *Unequalsamplingeffort Minns2002 Productivity Index Rangeland Birds: V H T NPP(class) C C *Nodataorfigureavailable*ThemeasureofNPP DinizFilho2003 Falconiformes wascrude(i.e.categorical) (Global)

160 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Rangeland Birds: V H T NPP(class) C C *Nodataorfigureavailable*ThemeasureofNPP DinizFilho2004 Falconiformes wascrude(i.e.categorical)*Resultswere a–e a)Eurasia obtainedthroughspatialanalysis b)Africa c)Australia d)Neartic e)Neotropics Rebelo1992 Fish V P M Biomass L ? *Thewatershedofthelagoonhasanumberof anthropogenicinputsincludingpaperpulp factories,urbansewerageandcattleeffluent ReedandFleagle Primates V H T Annual C ? *Theauthorssuggestthatareainconfounding 1995a–d a)Asia Rainfall sinceAsiacontainsmanyislandstherefore b)South constrainingdiversityindependentlyfromrainfall America *AlsoAsiaissubjecttomonsoonalclimates c)Africa suggestingthatproductivityisnotstrongly d)Madagascar influencedbyrainfallatanannualscale **Rainfallisnotapreciseestimateofproductivity intropicalrainforests Reedetal.2006 Rodents V H T Rainfall R ? *Aportionofthedatawastakenfromastudy alreadyreported(Brown1973) Renaudetal. Benthic I P M Depth R F *Thetaxonclassificationistoocourseandnon 2006 Macrofauna specific Romboutsetal. Copepods I P M Chla C C *Unequalsamplingeffort 2009 Rompréetal. Birds V H T Rainfall L C *Constant,hightemperaturesuggestsrainfallis 2007 appropriatesurrogate*Muchoftheforestis fragmentedfromhumanactivity Rossettietal. Rotifers I P A Chla L F *Theriverbasinisdenselyinhabited,andcontains 2009 ahighproportionofagriculturallandand industrialactivity

161 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Rowhanietal. Birds V H ? EVI C C *UsedthesamebirddataasHurlbertandHaskell 2008 (2003) Royetal.1998 Gastropoda I P M SeaSurface ? ? *Seasurfacetemperatureisnotagoodsurrogate Temperature forproductivity.Marineproductivityiscomplex andinfluencedbymorethanjustambientenergy (KaustuvRoy,personalcommunication) Ruggiero1999 Mammals V H T NPP C C *Theoriginalstudyanalyseswerebasedon170 gridcellsbut,usingdatapointsdigitisedfromthe figureonly85wereobtained*Samedataas RuggieroandKitzberger2004 Ruggieroand Mammals V H T AET C C *SamedataasRuggiero(1999) Kitzberger2004 Sajanetal.2010 Nematodes I P M Depth R F *Thedepthrangecovers188metersyetthereisa largegapof73metersbetween123and196 meters,almostathirdoftheentiredepthrange Sandinetal. Fish V P M Chla R C *Itisdifficulttoseparatetheinfluenceof 2008 productivityfromtheinfluenceofreefisolation. Scheibe1987 Lizards V P T WarmSeason R ? *Theisalargevariationinaltitudebetweensites Rainfall (3102290m),andacorrelationmatrixidentifies thataltitudehasapositiveandnegative relationshipwithprecipitation(coldandwarm season)andtemperature(JanuaryandJuly) respectively*Rainfallisthereforeconfoundedby altitude Schragetal. Birds V H T NDVI R C *Alargeproportionofstudysitesconsistedof 2009 annualcroplandsandpasture Schratzberger Nematodes I P M Depth R F *Threeofthe19samplesitesconsistedoftwo, andRogers2006 notthreereplicates.Analysiswithoutthethese threesitesyieldedqualitativelysimilarresults

162 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Sellanesetal. a)Macrofauna I P M Chloroplastic R C *SamedataasQuirogaetal(2009) 2010a&b b)Megafauna pigments Setoetal.2004 a)Birds a)V a)H T summerNDVI L C *SamedataasBaileyetal2004 a&b b)Butterflies b)I b)P Shankerand Mammals V H T Biomass ? ? *Themajorityoftheareassurroundingsample Sukumar1998 sitesaredominatedbyexoticplantationspecies Shefteland Shrews V H T Pooled R F *Densityofshrewscorrelateswithfoodresource Hanski2002 abundance availability*Tootaxonomicallyrestrictive(i.e. singlegenus) Shepherd1998 Mammals V H T Latitude C ? *Thestudysitesdonotreflectagradientin productivitysincesitethestudysitesbetween30 and40degreesareinareasoflowproductivity relativetosomemorenortherlysites Sheppard1980 Corals I P M Depth ? ? *Theauthorsuggeststhatthe20mpeakin diversityresultsfromprotectionfromextreme weather,highturbulenceandnotinfluencedby siltladenupwellingandcoldcurrents Simpsonetal. Benthic I P A Biomass L ? *TheHudsonRiverflowsthroughindustrialand 1986 Invertebrate commercialareassuggestinganthropogenicinput. InthepastlargequantitiesofPCBshavebeen dischargedintothewaterwayupriverofthe samplesites. Standen1979 Earthworms I P T Annual L ? *Rainfallisnotareflectionofproductivityinthe Rainfall habitatssampled(i.e.highrainfall,low temperatures).Inaddition,rainfallisconfounded byelevation. StuartandRex Gastropods I P M Depth ? C *Unequalsamplingeffort 2009 Szareketal. Foramifera I P M Carbonflux R F *Threedifferentsamplingdeviceswereused 2009

163 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Takamuraetal. Macro I P A Chla L F *Chlorophyllconcentrationalonedoesnotreflect 2009 invertebrates productivityinthelakesincemacrophytescapture someofthenutrientsinthewatercolumn TalesandBerrebi Fish V P A Chla L C *Thereachofriversampledisbetweentwoweirs 2007 andtheriverbankislinedwitheitherhuman settlementsorfarmland Tedescoetal. Fish V P A NPP C C *Areahasastronginfluenceonspeciesrichness 2005 but,aftercontrollingforareathereisno relationshipwithproductivity*Tedescoetal (2005)suggestthatproductivitydoesnotvary enoughbetweenstudysitesforproductivityto haveavisibleeffect.Thus,anonsignificant relationshipisunsurprising Telloand Bats V H T NPP,annual C C *Energywasconsideredasacombinedmodel Stevens2010 precipitation containingrainfallandtemperatureinadditionto and NPP.Onlythe R2valuewasreportedmakingit temperature difficulttodeterminetheformoftherelationship Terribileand Coralsnakes V P T NPP C C *Tootaxonomicallyrestrictivebeingacladeina DinizFilho2009 singlefamily Terribileetal. Snakes V P T AET C C *Tootaxonomicallyrestrictivebeingonlyasingle 2009a&b a)Elapidae family*Analysedbyregiontoreduceeffectof b)Viperidae history*Didnotanalysethesquareswhere speciesrichnesswaszero

164 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Thomasand Mites I P T Mitebiomass R ? *Twoofthesites(partofatriplicate)were MacLean1988 influencedbyanoilspillandonesiteswasburned *Themajorityofsiteswerereplicateswithone takeninthewetandtheotherinthedryseason. Therefore,thestudydoesnotrepresentspatial variationindiversity Tolonenetal. a)Benthic I P A TP L F *Onethirdofthesiteshadnutrientloadingfrom 2005a Macro treatedsewageanddischargefromapulpmill invertebrates b)Zooplankton Werneretal. Amphibians V P A Proportion L F *Canopycoverisapoormeasureofproductivity 2007 canopycover acrosssuchasmallscale(525hectares) Whiteand Birds V H T NDVI C C *SamedataasHurlbertandHaskell(2003) Hurlbert2010 Whitesideand Cladocera I P A Phytoplankton L ? *Thedataisnotevenlydistributedalongtherange Harmsworth Production ofproductivity(i.e.alargegapbetween800and 1967 1400g/m2year) Wlodarska Benthic I P M Depth L F *Unequalsamplingeffort Kowalczuketal. Macrofauna 2004 YomTovand a)Birds V H T Rainfall R C *Unequalsamplingeffort Werner1996a–c b)Mammals c)Reptiles Zhaoetal.2006a Birds V H T NPP C C *Qianetal2009alsoanalysedbirdsinChina Zhaoetal.2006b Amphibians V P A/T NPP C C *R2and pvaluetakenfromsupplementarydata *Qianetal(2007)wasmoreextensive.

165 Reference Taxa Vert/ Thermy ¶ System ‡ Surrogate § Extent † Grain ‡‡ Reasons for exclusion and comments Invert * Zhaoetal.2006c Reptiles V P T NPP C C *R2and pvaluetakenfromsupplementarydata *Qianetal(2007)wasmoreextensive *Vert/Invert:V,vertebrate;I,invertebrate;V/I,both ¶ Thermy:H,homeotherm;P,poikilotherm ‡System:T,terrestrial;A,freshwateraquatic;M,marine;A/T,freshwateraquaticandterrestrial §Surrogate:NPP,netprimaryproduction;GPP,grossprimaryproduction;AET,actualevapotranspiration;PET,potentialevapotranspiration;NDVI, normalizeddifferencevegetationindex;EVI,enhancedvegetationindex;GVI,globalvegetationindex;TP,totalphosphorous;Chla,chlorophyll a concentration †Extent:L,localtolandscape(0–200km);R,regional(200–4000km);C,continentaltoglobal(>4000km) ‡‡Grain:F,fine;C,coarse

166 Appendix 2.Studiesincludedinthepresentmetaanalysis.(N=112)

§ Vert/ ¶ ‡ † ‡‡ 2 n Effect Quad. Reference Surrogate PSRR * Thermy System Extent Grain R Lin.AIC c Invert size AIC c

Aava2001 NPP US V H T C C 0.385 208 0.7258 664.32 646.524

Rain UM V H T R F 0.393 13 0.7363 51.08 49.788 Abramsky& Rosenzweig1984a Abramsky& Annualplant P V H T R F 0.494 12 0.8729 44.584 47.989 Rosenzweig1984b cover Ambroseetal. NPP P I P M R F 0.222 47 0.5116 32.851 35.205 2009 Andrews& AET DcP V H A/T C C 0.602 655 1.035 6223.608 6114.458 O'Brien2010 Baileyetal.2004 SummerNDVI P V H T L C 0.490 16 0.8673 72.809 75.665

Bellocq&Gómez AET AcP V H T R C 0.754 191 1.3263 464.86 477.807 Insausti2005 Blackburn& NPP DcP V H ? C C 0.600 116 1.0317 24.499 13.464 Gaston1996 Bonteetal.2004 PCAaxis P I P T R F 0.416 28 0.7667 214.785 217.35 (nutrients) Brown1973 AnnRain UM V H T R F 0.593 18 1.0205 66.513 58.885

Brown& AnnRain AcP I P T C F 0.580 19 1 70.334 67.47 Davidson1977 167 § Vert/ ¶ ‡ † ‡‡ 2 n Effect Quad. Reference Surrogate PSRR * Thermy System Extent Grain R Lin.AIC c Invert size AIC c Buckton& NPP DcP V H A/T C C 0.463 82 0.8299 8.476 14.034 Ormerod2002

Carniceretal. NDVI P V H T R C 0.249 310 0.548 2156.918 2158.728 2007 Chase&Leibold Algalbiomass DcP V/I P A R C 0.925 10 1.969 189.615 178.523 2002a accrual Chase&Leibold Algalbiomass UM V/I P A L F 0.380 30 0.7192 66.218 61.396 2002b accrual Chase&Ryberg Periphyon UM V/I P A R F 0.618 10 1.0612 62.293 59.436 2004a growth Chase&Ryberg Periphyon UM V/I P A R C 0.542 10 0.9421 64.218 62.589 2004b growth Chiba2007 DCAaxis UM I P T L F 0.346 86 0.6749 428.998 395.35

Clarke&Scruton Biomass P I P A R F 0.282 20 0.5916 126.202 129.068 1997 Cochraneetal. Watercolumn P I P M R F 0.216 47 0.5034 464.546 466.443 2009 productivity Costaetal.2007 NPP UM V P T R C 0.048 201 0.2227 1827.66 1821.594

Cowlishaw& Latitude AcP V H T C C 0.935 37 2.0432 160.693 80.252 Hacker1997a Cowlishaw& Latitude AcP V H T C C 0.933 35 2.0275 156.615 81.763 Hacker1997b 168 § Vert/ ¶ ‡ † ‡‡ 2 n Effect Quad. Reference Surrogate PSRR * Thermy System Extent Grain R Lin.AIC c Invert size AIC c Currie1991a NPP AcP V P ? C C 0.748 199 1.3124 2140.483 2014.238

Currie1991b NPP US V P ? C C 0.347 208 0.6762 2742.278 2734.636

Davidson1977 Rain P I P T R F 0.705 10 1.22 41.766 46.952

DelosRios& Chla NS I P A R C 0.172 14 0.4413 64.833 68.798 Soto2007 DeTrochetal. Fraction DcP I P M C F 0.531 54 0.9259 260.715 258.886 2006 Chla/TOM Death& Phytopigment DcP I P A L F 0.544 55 0.9451 399.436 388.901 Winterbourn1995 Death& Chla UM I P A L F 0.366 70 0.701 377.309 367.754 Zimmerman2005 Dingetal.2005 NPP DcP V H T L C 0.701 50 1.2119 303.974 289.717

Dingleetal.2000 Rainfall P I P T R C 0.515 33 0.9028 358.248 359.997

Dodson1991 Photosynthetic UM I P A C C 0.266 22 0.5705 125.79 122.629 flux Dodson1992 Phytoplankton DcP I P A C C 0.389 44 0.731 27.733 31.495 production Eggletonetal. NPP AcP I P T C C 0.468 46 0.8368 442.479 438.197 1994a

169 § Vert/ ¶ ‡ † ‡‡ 2 n Effect Quad. Reference Surrogate PSRR * Thermy System Extent Grain R Lin.AIC c Invert size AIC c Eggletonetal. NPP AcP I P T C C 0.458 41 0.8231 331.814 328.899 1994b Eggletonetal. NPP P I P T C C 0.443 32 0.8028 228.58 229.477 1994c Ellingsen&Gray Depth UM I P M R F 0.290 101 0.6021 942.975 910.597 2002 Escaravageetal. NPP N I P M R F 0.750 15 1.317 197.888 197.189 2009 Fribergetal.2009 Temp NS I P A L F 0.014 10 0.1189 60.077 60.842

Fuetal.2007a AET AcP V P T R C 36 1.6668 263.792 262.806 Fuetal.2007b AET P I P T R C 0.762 33 1.3452 203.078 203.523

Gardezi& PET AcP V P A R C 0.058 7885 0.2457 598.776 626.613 Gonzalez2008 GonzálezMegias Plantcover P I P T L F 0.383 10 0.7232 94.809 100.744 etal.2008 GonzálezTaboada NDVI UM V H T R C 0.127 194 0.3727 1353.093 1336.277 etal.2009 Gotelli&Ellison Latitude P I P T R C 0.315 22 0.6347 143.858 144.769 2002 Hawkins&Porter AET AcP I P T C C 0.819 162 1.4991 1477.675 1475.64 2003a

170 § Vert/ ¶ ‡ † ‡‡ 2 n Effect Quad. Reference Surrogate PSRR * Thermy System Extent Grain R Lin.AIC c Invert size AIC c Henningson& NPP DcP V H A/T C C 0.274 34 0.5811 187.675 186.558 Alerstam2005 Herzog&Kessler Canopyheight AcP V H T R C 0.650 13 1.1162 116.514 115.055 2006 Herzogetal.2005 Elevation P V H T L C 0.768 12 1.3598 107.449 112.076

Hoffman& NPP P I P A C C 0.666 10 1.145 88.437 90.053 Dodson2005 Hoyer&Canfield Integrated P V H A R C 0.257 46 0.5586 326.25 327.749 1994 phosphorous Hurlbert& NDVI P V H T C C 832 1.0596 1040.551 1056.1 Haskell2003 Jonssonetal.2001 CoarsePOM NS I P A R F 0.028 23 0.1689 104.363 106.063

Josefson& Biomass NS I P M R F 0.006 26 0.0776 260 262.813 Hansen2004 Kasparietal.2000 NAP P I P T C F 0.903 15 1.8345 49.244 49.437

Kasparietal.2004 NPP P I P T C F 0.195 96 0.4742 374.306 375.893

Keiletal.2008 AET DcP I P ? C C 0.563 143 0.9737 1014.409 1010.649

Kerr&Currie AET P I P A C C 0.749 251 1.3147 959.412 961.274 1999a

171 § Vert/ ¶ ‡ † ‡‡ 2 n Effect Quad. Reference Surrogate PSRR * Thermy System Extent Grain R Lin.AIC c Invert size AIC c Kohetal.2006 NDVI P V H T L C 0.253 141 0.5533 120.804 119.778

MacDonaldetal. Depth DcP I P M R F 0.562 24 0.9722 157.253 156.429 2010 MorenoRueda& AnnRain UM V H T R C 0.099 5070 0.3257 47724.168 47365.77 Pizzaro2009 Morton& AnnRain NS I P T R F 0.090 19 0.3095 86.684 89.897 Davidson1988 Oberdorffetal. NPP AcP V P A C ? 0.194 292 0.4728 300.681 296.854 1995 Owen1988a NPP DcP V H T R C 0.338 189 0.6645 914.818 824.208

Owen1988b NPP DcN V H T R C 0.564 189 0.9752 886.756 851.773

Owen&Dixon AnnRain(DCA UM V P ? R ? 0.374 139 0.7114 717.61 690.081 1989a Axis) Owen&Dixon AnnRain(DCA N V P T R C 0.263 148 0.5666 1217.513 1194.104 1989b Axis) Owen&Dixon AnnRain(DCA US V P ? R C 0.327 54 0.6503 257.997 264.483 1989c Axis) Owen&Dixon AnnRain(DCA NS V P T R C 0.019 189 0.1387 1190.99 1193.069 1989d Axis) Owen&Dixon AnnRain(DCA P V P ? R C 0.720 98 1.2509 430.005 431.529 1989e Axis)

172 § Vert/ ¶ ‡ † ‡‡ 2 n Effect Quad. Reference Surrogate PSRR * Thermy System Extent Grain R Lin.AIC c Invert size AIC c Pearson&Carroll AnnRain P V H T R C 0.463 67 0.8299 629.16 630.169 1998a(birds) Pearson&Carroll AnnRain AcP I P T R C 0.699 67 1.2079 666.786 650.876 1998b(butterflies) Pearson&Carroll AnnRain P I P T R C 0.194 0.4728 423.094 424.65 1998c(tiger 67 beetles) PérezMendozaet Depth US I P M R F 0.559 10 0.9676 75.671 75.671 al.2003 Pouillyetal.2006 Elevation P V P A L C 0.560 12 0.9692 78.979 82.013

Poulinetal.2003 Hostbiovolume P I P A/T C C 0.218 131 0.5061 796.528 797.869

Powneyetal.2010 AET US V P T C C 0.146 751 0.4025 5838.608 5808.162

NPP P V P T C C 0.675 205 1.1617 42.886 40.871 Qianetal.2007a Qianetal.2007b NPP AcP V P T C C 0.564 202 0.9752 2.075 4.286

Quirogaetal. Depth UM V/I P M R C 0.511 15 0.897 138.986 131.539 2009 Renaudetal.2006 Depth P I P M R F 0.327 16 0.6503 113.69 114.695

173 § Vert/ ¶ ‡ † ‡‡ 2 n Effect Quad. Reference Surrogate PSRR * Thermy System Extent Grain R Lin.AIC c Invert size AIC c Rex1981a Depth UM I P M ? ? 0.706 16 1.222 87.206 75.301

Rex1981b Depth UM V P M ? ? 0.226 28 0.517 131.076 127.534

Rex1981c Depth UM I P M ? ? 0.601 25 1.0333 155.09 135.047

Rex1981d Depth UM I P M ? ? 0.246 63 0.544 323.851 312.944

Rex1981e Depth UM I P M ? ? 0.445 21 0.8055 117.098 111.332

Rex1981f Depth NS I P M ? ? 0.243 12 0.54 51.615 53.702

Rodríguezetal. AET DcP V P ? R C 0.633 184 1.0865 93.535 88.022 2005 Rosaetal.2008 NPP P I P M C C 0.560 17 0.9692 144.112 146.526

Rowe2009a EVI P V H T L C 0.451 19 0.8136 110.569 112.496

Rowe2009b EVI NS V H T L C 0.044 16 0.2129 102.053 105.537

Rowe2009c EVI US V H T L C 0.549 16 0.9526 79.182 77.643

Rowe2009d EVI NS V H T L C 0.019 17 0.1387 102.295 104.47

174 § Vert/ ¶ ‡ † ‡‡ 2 n Effect Quad. Reference Surrogate PSRR * Thermy System Extent Grain R Lin.AIC c Invert size AIC c Ruggiero& AET AcP V H T C C 0.721 1535 1.253 1796.435 1809.34 Hawkins2008 Sandersetal.2007 NPP N I P T L C 0.276 22 0.5837 139.024 139.544

Schlacheretal. Depth NS I P M R F 0.194 14 0.4728 112.529 116.524 2007 StLoisetal.2009 NDVI DcP V H T L C 0.633 42 1.0865 248.354 234.912

Storchetal.2006 AET DcP V H ? C C 0.546 16455 0.9481 195927.065 194677.9

Symonds& AET DcP V P T R C 0.302 67 0.6177 605.526 601.855 Johnson2008 Tedescoetal. Rateoflitter DcP V P A L C 0.720 14 1.2509 72.084 70.422 2007 decomposition Tognelli&Kelt AET P V H T C C 0.659 1828 1.1323 14594.328 14627.18 2004 Tsurimetal.2009 Annualplant DcP V H T L C 0.435 23 0.792 102.763 96.312 cover Ulrich2004 Biomass P I P T L F 0.861 92 1.6431 975.37 969.578 vanRensburget NPP P V H T R C 0.516 101 0. 7183 1124.207 1125.352 al.2002 Verschuyletal. NDVI DcP V H T R C 0.463 270 0.8299 1279.629 1270.088 2008

175 § Vert/ ¶ ‡ † ‡‡ 2 n Effect Quad. Reference Surrogate PSRR * Thermy System Extent Grain R Lin.AIC c Invert size AIC c Ward1986 Biomass DcP I P A L ? 0.572 11 0.9875 108.323 110.022

Whiteside& Phytoplankton N I P A L F 0.806 20 1.4606 34.544 35.564 Harmsworth1967 Production Wollenburg& Carbonflux UM I P M C F 0.603 37 1.0366 306.789 281.966 Kuhnt2000 WooddWalkeret Latitude DcP I P M C C 0.656 171 1.1268 958.259 956.736 al.2002 Wright1983 NPP P V H A/T C C 0.265 28 0.5692 339.413 342.092

Zhaoetal.2006 AET AcP V P A C C 0.495 95 0.8743 87.831 87.048

*Vert/Invert:V,vertebrate;I,invertebrate;V/I,both

¶ Thermy:H,homeotherm;P,poikilotherm

‡System:T,terrestrial;A,freshwateraquatic;M,marine;A/T,freshwateraquatic&terrestrial

†Extent:L,localtolandscape(0–200km);R,regional(200–4000km);C,continentaltoglobal(>4000km)

‡‡Grain:F,fine;C,coarse

176 REFERENCES FOR APPENDICES

Aava,B.(2001).Canresourceusebethelinkbetweenproductivityandspeciesrichnessin mammals? BiodiversityandConservation,10 (12),20112022. Abramsky,Z.,&Rosenzweig,M.L.(1984).Tilman'spredictedproductivity–diversity relationhsipshownindesertrodents. Nature,309 ,150151. Alimov,A.F.(2001).Studiesonbiodiversityintheplankton,benthos,andfishcommunities, andtheecosystemsoffreshwaterbodiesdifferinginproductivity. BiologyBulletin, 28 (1),7583. AmbroseJr.,W.G.,Renaud,P.E.,Cochrane,S.J.K.,Denisenko,S.G.,&Skardhamar,J. (2009).PolychaetediversitypatternsontwoArcticshelves:impactsoficeandprimary production?Zoosymposia,2 ,457485. Andrews,P.,&O'Brien,E.M.(2010).MammalSpeciesRichnessinAfrica.InL.Werdelin &B.Sanders(Eds.), CenozoicMammalsofAfrica .California:TheUniversityof CaliforniaPress. Bachelet,G.,deMontaudouin,X.,&Dauvin,J.C.(1996).Thequantitativedistributionof subtidalmacrozoobenthicassemblagesinArcachonBayinrelationtoenvironmental factors:amultivariateanalysis. Estuarine,CoastalandShelfScience,42 (3),371391. Badgley,C.,&Fox,D.L.(2000).EcologicalbiogeographyofNorthAmericanmammals: speciesdensityandecologicalstructureinrelationtoenvironmentalgradients. Journal ofBiogeography,27 ,14371467. Bailey,S.A.,HornerDevine,M.C.,Luck,G.,Moore,L.A.,Carney,K.M.,Anderson,S.,et al.(2004).Primaryproductivityandspeciesrichness:relationshipsamongfunctional guilds,residencygroupsandvagilityclassesatmultiplespatialscales. Ecography, 27 (2),207217. Barbour,C.D.,&Brown,J.H.(1974).Fishspeciesdiversityinlakes. TheAmerican Naturalist,108 (962),473489. Bárcena,S.,Real,R.,Olivero,J.,&MarioVargas,J.(2004).Latitudinaltrendsinbreeding waterbirdspeciesrichnessinEuropeandtheirenvironmentalcorrelates. Biodiversity andConservation,13 (11),19972014. Barnett,A.,&Beisner,B.E.(2007).Zooplanktonbiodiversityandlaketrophicstate: explanationsinvokingresourceabundanceanddistribution. Ecology,88 (7),16751686. Beaver,J.R.,&Crisman,T.L.(1989).Analysisofthecommunitystructureofplanktonic ciliatedprotozoarelativetotrophicstateinFloridalakes. Hydrobiologia,174 (3),177 184. Bellocq,M.I.,&GómezInsausti,R.(2005).Raptorialbirdsandenvironmentalgradientsin thesouthernNeotropics:atestofspeciesrichnesshypotheses. AustralEcology,30 (8), 892898. Bianchelli,S.,Gambi,C.,Zeppilli,D.,&Danovaro,R.(2010).Metazoanmeiofaunaindeep seacanyonsandadjacentopenslopes:alargescalecomparisonwithfocusontherare taxa. DeepSeaResearchPartI:OceanographicResearchPapers,57 (3),420433. Blackburn,T.M.,&Gaston,K.J.(1996).Spatialpatternsinthespeciesrichnessofbirdsin theNewWorld. Ecography,19 (4),369376. Blake,J.A.,&Narayanaswamy,B.E.(2004).Benthicinfaunalcommunitiesacrossthe WeddellSeaBasinandSouthSandwichSlope,Antarctica. DeepSeaResearchPartII: TopicalStudiesinOceanography,51 (1416),17971815. Blamires,D.,deOliveira,G.,deSouzaBarreto,B.,&DinizFilho,J.A.F.(2007).Habitat useanddeconstructionofrichnesspatternsinCerradobirds. ActaOecologica,33 (1), 97104.

177 Bonn,A.,Storch,D.,&Gaston,K.J.(2004).Structureofthespecies–energyrelationship. ProceedingsoftheRoyalSocietyofLondonB,271 ,16851691. Bonte,D.,Criel,P.,Vanhoutte,L.,VanThournout,I.,&Maelfait,J.P.(2004).The importanceofhabitatproductivity,stabilityandheterogeneityforspiderspecies richnessincoastalgreydunesalongtheNorthSeaanditsimplicationsfor conservation. BiodiversityandConservation,13 (11),21192134. Braschler,B.,Zschokke,S.,Dolt,C.,Thommen,G.H.,Oggier,P.,&Baur,B.(2004).Grain dependentrelationshipsbetweenplantproductivityandinvertebratespeciesrichness andbiomassincalcareousgrasslands. BasicandAppliedEcology,5 (1),1524. Brown,J.H.(1973).Speciesdiversityofseedeatingdesertrodentsinsanddunehabitats. Ecology,54 (4),775787. Brown,J.H.,&Davidson,D.W.(1977).Competitionbetweenseedeatingrodentsandants indesertecosystems. Science,196 (4292),880882. Brown,J.H.,&Davidson,D.W.(1977).Competitionbetweenseedeatingrodentsandants indesertecosystems. Buckton,S.T.,&Ormerod,S.J.(2002).Globalpatternsofdiversityamongthespecialist birdsofriverinelandscapes. FreshwaterBiology,47 (4),695709. Carnicer,J.,Brotons,L.,Sol,D.,&Jordano,P.(2007).Communitybasedprocessesbehind speciesrichnessgradients:contrastingabundance–extinctiondynamicsandsampling effectsinareasoflowandhighproductivity. GlobalEcologyandBiogeography,16 (6), 709719. Carnicer,J.,&DíazDelgado,R.(2008).Geographicdifferencesbetweenfunctionalgroups inpatternsofbirdspeciesrichnessinNorthAmerica. ActaOecologica,33 (2),253264. Chase,J.M.,&Ryberg,A.(2004).Connectivity,scaledependence,andtheproductivity– diversityrelationship. EcologyLetters,7 ,676683. Chase,J.M.,&Ryberg,W.A.(2004).Connectivity,scaledependence,andtheproductivity– diversityrelationship. EcologyLetters,7 (8),676683. Chiba,S.(2007).Speciesrichnesspatternsalongenvironmentalgradientsinislandland molluscanfauna. Ecology,88 (7),17381746. Chown,S.L.,&Gaston,K.J.(1999).Patternsinprocellariiformdiversityasatestof speciesenergytheoryinmarinesystems. EvolutionaryEcologyResearch,1 ,365373. Chown,S.L.,vanRensburg,B.J.,Gaston,K.J.,Rodrigues,A.S.L.,&vanJaarsveld,A.S. (2003).Energy,speciesrichness,andhumanpopulationsize:conservationimplications atanationalscale. EcologicalApplications,13 (5),12331241. Clarke,K.D.,&Scruton,D.A.(1997).Thebenthiccommunityofstreamrifflesin Newfoundland,Canadaanditsrelationshiptoselectedphysicalandchemical parameters. JournalofFreshwaterBiology,12 (1),113121. Cochrane,S.K.J.,Denisenko,S.G.,Renaud,P.E.,Emblow,C.S.,AmbroseJr,W.G., Ellingsen,I.H.,etal.(2009).Benthicmacrofaunaandproductivityregimesinthe BarentsSeaEcologicalimplicationsinachangingArctic.JournalofSeaResearch, 61 (4),222233. Cook,R.E.(1969).VariationinspeciesdensityofNorthAmericanbirds. Systematic Zoology,18 (1),6384. Corliss,B.H.,Brown,C.W.,Sun,X.,&Showers,W.J.(2009).Deepseabenthicdiversity linkedtoseasonalityofpelagicproductivity. DeepSeaResearchPartI: OceanographicResearchPapers,56 (5),835841. CossonSarradin,N.,Sibuet,M.,Paterson,G.L.J.,&Vangriesheim,A.(1998).Polychaete diversityattropicalAtlanticdeepseasites:environmentaleffects. MarineEcology ProgressSeries,165 ,173185.

178 Costa,G.C.,Nogueira,C.,Machado,R.B.,&Colli,G.R.(2007).Squamaterichnessinthe BrazilianCerradoanditsenvironmental–climaticassociations. Diversityand Distributions,13 (6),714724. Cowlishaw,G.,&Hacker,J.E.(1997).Distribution,diversity,andlatitudeinAfrican primates. TheAmericanNaturalist,150 (4),505512. Currie,D.J.(1991).Energyandlargescalepatternsofanimalandplantspeciesrichness. TheAmericanNaturalist,137 (1),2749. Daniels,R.J.R.(1992).GeographicaldistributionpatternsofamphibiansintheWestern Ghats,India. JournalofBiogeography,19 (5),591529. Davidowitz,G.,&Rosenzweig,M.L.(1998).Thelatitudinalgradientofspeciesdiversity amongNorthAmericangrasshoppers(Acrididae)withinasinglehabitat:atestofthe spatialheterogeneityhypothesis. JournalofBiogeography,25 (3),553560. Davidson,D.W.(1977).Speciesdiversityandcommunityorganizationindesertseedeating ants. Ecology,58 (4),711724. Davies,R.G.,Irlich,U.M.,Chown,S.L.,&Gaston,K.J.(2010).Ambient,productiveand windenergy,andoceanextentpredictglobalspeciesrichnessofprocellariiform seabirds. GlobalEcologyandBiogeography,19 (1),98110. Davies,R.G.,Orme,C.D.L.,Storch,D.,Olson,V.A.,Thomas,G.H.,Ross,S.G.,etal. (2007).Topography,energyandtheglobaldistributionofbirdspeciesrichness. ProceedingsoftheRoyalSocietyB:BiologicalSciences,274 (1614),11891197. Davies,R.G.,Orme,C.D.L.,Webster,A.J.,Jones,K.E.,Blackburn,T.M.,&Gaston,K.J. (2007).Environmentalpredictorsofglobalparrot(Aves:Psittaciformes)species richnessandphylogeneticdiversity. GlobalEcologyandBiogeography,16 (2),220 233. Davis,A.L.V.,Scholtz,C.H.,&Chown,S.L.(1999).Speciesturnover,community boundariesandbiogeographicalcompositionofdungbeetleassemblagesacrossan altitudinalgradientinSouthAfrica. JournalofBiogeography,26 (5),10391055. DeLosRíos,P.,&Soto,D.(2007).Crustacean(CopepodaandCladocera)zooplankton richnessinChileanPatagonianlakes. Crustaceana,80 ,285296. DeMas,E.,Chust,G.,Pretus,J.L.,&Ribera,C.(2009).Spatialmodellingofspider biodiversity:mattersofscale. BiodiversityandConservation,18 ,19451962. DeTroch,M.,VanGansbeke,D.,&Vincx,M.(2006).Resourceavailabilityandmeiofauna insedimentoftropicalseagrassbeds:localversusglobaltrends. MarineEnvironmental Research,61 (1),5973. Dean,W.R.J.(2000).FactorsaffectingbirddiversityintheKaroo,SouthAfrica. South AfricanJournalofScience,96 ,609615. De'ath,G.,&Fabricius,K.(2010).Waterqualityasaregionaldriverofcoralbiodiversity andmacroalgaeontheGreatBarrierReef. EcologicalApplications,20 (3),840850. Death,R.G.(1995).Spatialpatternsinbenthicinvertebratecommunitystructure:productsof habitatstabilityoraretheyhabitatspecific? FreshwaterBiology,33 (3),455467. Death,R.G.,&Winterbourn,M.J.(1995).Diversitypatternsinstreambenthicinvertebrate communities:theinfluenceofhabitat stability. Ecology,76 (5),14461460. Death,R.G.,&Zimmermann,E.M.(2005).Interactionbetweendisturbanceandprimary productivityindeterminingstreaminvertebratediversity. Oikos,111 (2),392402. Declerck,S.,Vandekerkhove,J.,Johansson,L.,Muylaert,K.,CondePorcuna,J.M.,Vander Gucht,K.,etal.(2005).Multigroupbiodiversityinshallowlakesalonggradientsof phosphorusandwaterplantcover. Ecology,86 (7),19051915.

179 Ding,T.S.,Yuan,H.W.,Geng,S.,Lin,Y.S.,&Lee,P.F.(2005).Energyflux,bodysize anddensityinrelationtobirdspeciesrichnessalonganelevationalgradientinTaiwan. GlobalEcologyandBiogeography,14 (4),299306. Dingle,H.,Rochester,W.A.,&Zalucki,M.P.(2000).Relationshipsamongclimate,latitude andmigration:Australianbutterfliesarenottemperatezonebirds. Oecologia,124 (2), 196207. DinizFilho,J.A.F.,Bini,L.M.,Vieira,C.M.,Blamires,D.,Terribile,L.C.,Bastos,R.P., etal.(2008).SpatialpatternsofterrestrialvertebratespeciesrichnessintheBrazilian Cerrado. ZoologicalStudies,47 (2),146157. DinizFilho,J.A.F.,Rangel,T.F.L.V.B.,&Hawkins,B.A.(2004).Atestofmultiple hypothesesforthespeciesrichnessgradientofSouthAmericanowls. Oecologia,140 , 633638. Dodson,S.I.(1991).SpeciesrichnessofcrustaceanzooplanktoninEuropeanlakesof differentsizes. InternationalAssociationofTheoreticalandAppliedLimnology,24 (2), 12231229. Dodson,S.I.(1992).Predictingcrustaceanzooplanktonspeciesrichness. Limnologyand Oceanography,37 (4),848856. Dodson,S.I.(2008).BiodiversityinsouthernWisconsinstormwaterretentionponds: correlationswithwatershedcoverandproductivity. LakeandReservoirManagement, 24 (4),370380. Dodson,S.I.,Arnott,S.E.,&Cottingham,K.L.(2000).Therelationshipinlake communitiesbetweenprimaryproductivityandspeciesrichness.[26622679]. Ecology, 81 (10). d'Onghia,G.,Politou,C.Y.,Bozzano,A.,Lloris,L.,Rotllant,G.,Sión,L.,etal.(2004). DeepwaterfishassemblagesintheMediterraneanSea. ScientiaMarina,68 (S3),8799. Eggleton,P.,Williams,P.H.,&Gaston,K.J.(1994).Explainingglobaltermitediversity: productivityorhistory? BiodiversityandConservation,3 ,318330. Ellingsen,K.,&Gray,J.S.(2002).Spatialpatternsofbenthicdiversity:istherealatitudinal gradientalongtheNorwegiancontinentalshelf? JournalofAnimalEcology,71 (3), 373389. Escaravage,V.,Herman,P.M.J.,Merckx,B.,WlodarskaKowalczuk,M.,Amouroux,J.M., Degraer,S.,etal.(2009).Distributionpatternsofmacrofaunalspeciesdiversityin subtidalsoftsediments:biodiversityproductivityrelationshipsfromtheMacroBen database. MarineEcologyProgressSeries,382 ,253264. Fariña,A.C.,Freire,J.,&GonzálezGurriarán,E.(1997).Megabenthicdecapodcrustacean assemblagesontheGaliciancontinentalshelfandupperslope(northwestSpain). MarineBiology,127 ,419434. Fock,H.O.(2009).DeepseapelagicichthyonektondiversityintheAtlanticOceanandthe adjacentsectoroftheSouthernOcean. GlobalEcologyandBiogeography,18 ,178191. Follesa,M.C.,Porcu,C.,Gastoni,A.,Mulas,A.,Sabatini,A.,&Cau,A.(2009).Community structureofbathyaldecapodcrustaceansoffSouthEasternSardiniandeepwaters (CentralWesternMediterranean). MarineEcology,30 (S1),188199. Friberg,N.,DybkjæR,J.B.,Olafsson,J.S.,Gislason,G.M.,Larsen,S.E.,&Lauridsen,T. L.(2009).Relationshipsbetweenstructureandfunctioninstreamscontrastingin temperature. FreshwaterBiology,54 (10),20512068. Fu,C.,Wang,J.,Pu,Z.,Zhang,S.,Chen,H.,Zhao,B.,etal.(2007).Elevationalgradientsof diversityforlizardsandsnakesintheHengduanMountains,China. Biodiversityand Conservation,16 (3),707726.

180 Gage,J.D.,Lambshead,P.J.D.,Bishop,J.D.D.,Stuart,C.T.,&Jones,N.S.(2004). LargescalebiodiversitypatternofCumacea(Peracarida:Crustacea)inthedeep Atlantic. MarineEcologyProgressSeries,277 ,181196. Ganzhorn,J.U.,Malcomer,S.,Andrianantoanina,O.,&Goodman,S.M.(1997).Habitat characteristicsandlemurspeciesrichnessinMadagascar. Biotropica,29 (3),331343. Gardezi,T.,&Gonzalez,A.(2008).Scaledependenceofspeciesenergyrelationships: evidencefromfishesinthousandsoflakes. TheAmericanNaturalist,171 (6),800815. Ghilarov,A.M.,&Timonen,A.G.(1972).Relationsbetweenbiomassandspeciesdiversity inmarineandfreshwaterzooplanktoncommunties. Oikos,23 ,190196. GonzálezMegías,A.,Gómez,J.M.,&SánchezPiñero,F.(2008).Factorsdetermining beetlerichnessandcompositionalonganaltitudinalgradientinthehighmountainsof theSierraNevadaNationalPark(Spain). Ecoscience,15 (4),429441. GonzálezTaboada,F.,Nores,C.,&ÁngelÁlvarez,M.(2007).Breedingbirdspecies richnessinSpain:assessingdiversityhypothesisatvariousscales. Ecography,30 (2), 241250. Gotelli,N.J.,&Ellison,A.M.(2002).Biogeographyataregionalscale:determinantsofant speciesdensityinNewEnglandbogsandforests. Ecology,83 (6),16041609. Graham,J.H.,Krzysik,A.J.,Kovacic,D.A.,Duda,J.J.,Freeman,D.C.,Emlen,J.M.,etal. (2009).Speciesrichness,equitability,andabundanceofantsindisturbedlandscapes. EcologicalIndicators,9 (5),866877. GutiérrezAguirre,M.A.,&SuárezMorales,E.(2001).Diversityanddistributionof freshwatercopepods(Crustacea)insoutheasternMexico. Biodiversityand Conservation,10 (5),659672. Haberl,H.,Plutzar,C.,Erb,K.H.,Gaube,V.,Pollheimer,M.,&Schulz,N.B.(2005). Humanappropriationofnetprimaryproductionasdeterminantofavifaunadiversityin Austria. Agriculture,Ecosystems&Environment,110 (34),119131. HAcevedo,D.,&Currie,D.J.(2003).Doesclimatedeterminebroadscalepatternsof speciesrichness?Atestofthecausallinkbynaturalexperiment. GlobalEcologyand Biogeography,12 (6),461473. Hacking,N.(2007).Effectsofphysicalstateandlatitudeonsandybeachmacrofaunaof easternandsouthernAustralia. JournalofCoastalResearch,23 (4),899910. Hawkins,B.A.(2004).Summervegetation,deglaciationandtheanomalousbirddiversity gradientineasternNorth America. GlobalEcologyandBiogeography,13 (321325). Hawkins,B.A.,DinizFilho,J.A.F.,Jaramillo,C.A.,&Soeller,S.A.(2007).Climate, nicheconservatism,andtheglobalbirddiversitygradient. TheAmericanNaturalist, 170 ,S1627. Hawkins,B.A.,DinizFilho,J.A.F.,&Soeller,S.A.(2005).Waterlinksthehistoricaland contemporarycomponentsoftheAustralianbirddiversitygradient. Journalof Biogeography,32 ,10351042. Hawkins,B.A.,Field,R.,Cornell,H.V.,Currie,D.J.,Guégan,J.F.,Kaufman,D.M.,etal. (2003).Energy,water,andbroadscalegeographicpatternsofspeciesrichness. Ecology,84 (12),31053117. Hawkins,B.A.,&Porter,E.E.(2003).Water–energybalanceandthegeographicpatternof speciesrichnessofwesternPalearcticbutterflies. EcologicalEntomology,28 ,678686. Henningsson,S.S.,&Alerstam,T.(2005).Patternsanddeterminantsofshorebirdspecies richnessinthecircumpolarArctic. JournalofBiogeography,32 (3),383396. Herzog,S.K.,&Kessler,M.(2006).Localvs.regionalcontrolonspeciesrichness:anew approachtotestforcompetitiveexclusionatthecommunitylevel. GlobalEcologyand Biogeography,15 (2),163172.

181 Herzog,S.K.,Kessler,M.,&Bach,K.(2005).TheelevationalgradientinAndeanbird speciesrichnessatthelocalscale:afoothillpeakandahighelevationplateau. Ecography,28 (2),209222. Hessen,D.O.,Faafeng,B.A.,Smith,V.H.,Bakkestuen,V.,&Walseng,B.(2006). Extrinsicandintrinsiccontrolsofzooplanktondiversityinlakes. Ecology,87 (2),433 443. Hobæk,A.,Manca,M.,&Andersen,T.(2002).Factorsinfluencingspeciesrichnessin lacustrinezooplankton. ActaOecologica,23 (3),155163. Hof,C.,Brändle,M.,&Brandl,R.(2008).LatitudinalvariationofdiversityinEuropean freshwateranimalsisnotconcordantacrosshabitattypes. GlobalEcologyand Biogeography,17 ,539546. Hoffman,M.D.,&Dodson,S.I.(2005).Landuse,primaryproductivity,andlakeareaas descriptorsofzooplanktondiversity. Ecology,86 (1),255261. Hoyer,M.V.,&CanfieldJr.,D.E.(1990).Limnologicalfactorsinfluencingbirdabundance andspeciesrichnessonFloridalakes. LakeandReservoirManagement,6 (2),133141. Hoyer,M.V.,&CanfieldJr.,D.E.(1994).BirdabundanceandspeciesrichnessonFlorida lakes:influenceoftrophicstatus,lakemorphology,andaquaticmacrophytes. Hydrobiologia,297/280 ,107119. Hugo,S.,&vanRensburg,B.J.(2008).Themaintenanceofapositivespatialcorrelation betweenSouthAfricanbirdspeciesrichnessandhumanpopulationdensity. Global EcologyandBiogeography,17 ,611621. Hurlbert,A.H.,&Haskell,J.P.(2003).Theeffectofenergyandseasonalityonavianspecies richnessandcommunitycomposition. TheAmericanNaturalist,161 (1),8497. Huston,M.A.(1985).Patternsofspeciesdiversityoncoralreefs. AnnualReviewsinEcology andSystematics,16 ,149177. Janzen,D.H.(1981).ThepeakinNorthAmericanichneumonidspeciesrichnesslies between38degreesand42degreesN. Ecology,62 (3),532537. Jarvinen,O.,&Vaisanen,R.A.(1978).EcologicalzoogeographyofNorthEuropeanwaders, orwhydosomanywadersbreedintheNorth. Oikos,30 (496507). Jennings,S.,Lancaster,J.,Woolmer,A.,&Cotter,J.(1999).Distribution,diversityand abundanceofepibenthicfaunaintheNorthSea. JournaloftheMarineBiological AssociationoftheUnitedKingdom,79 (3),385399. Jeppesen,E.,PederJensen,J.,SØndergaard,M.,Lauridsen,T.,&Landkildehus,F.(2000). Trophicstructure,speciesrichnessandbiodiversityinDanishlakes:changesalonga phosphorusgradient. FreshwaterBiology,45 (2),201218. Jetz,W.,Kreft,H.,Ceballos,G.,&Mutke,J.(2009).Globalassociationsbetweenterrestrial producerandvertebrateconsumerdiversity. ProceedingsoftheRoyalSocietyB: BiologicalSciences,276 (1655),269278. Jetz,W.,&Rahbek,C.(2002).Geographicrangesizeanddeterminantsofavianspecies richness. Science,297 (5586),15481551. Jonsson,M.,Malmqvist,B.,&Hoffsten,P.O.(2001).Leaflitterbreakdownratesinboreal streams:doesshredderspeciesrichnessmatter?FreshwaterBiology,46 (2),161171. Josefson,A.B.,&Hansen,J.L.S.(2004).SpeciesrichnessofbenthicmacrofaunainDanish estuariesandcoastalareas. GlobalEcologyandBiogeography,13 (3),273288. Kaspari,M.,O'Donnell,S.,&Kercher,J.R.(2000).Energy,density,andconstraintsto speciesrichness:antassemblagesalongaproductivitygradient. TheAmerican Naturalist,155 (2),280293. Kaspari,M.,Ward,P.S.,&Yuan,M.(2004).Energygradientsandthegeographic distributionoflocalantdiversity. Oecologia,140 (3),407413.

182 Kaufman,D.M.,&Willig,M.R.(1998).Latitudinalpatternsofmammalianspeciesrichness intheNewWorld:theeffectsofsamplingmethodandfaunalgroup. Journalof Biogeography,25 (4),795805. Kay,R.F.,Madden,R.H.,VanSchaik,C.,&Higdon,D.(1997).Primatespeciesrichnessis determinedbyplantproductivity:implicationsforconservation. Proceedingsofthe NationalAcademyofSciences,94 (24),1302313027. Keil,P.,Dziock,F.,&Storch,D.(2008).Geographicalpatternsofhoverfly(Diptera, Syrphidae)functionalgroupsinEurope:inconsistencyinenvironmentalcorrelatesand latitudinaltrends. EcologicalEntomology,33 (6),748757. Keil,P.,&Hawkins,B.A.(2009).Gridsversusregionalspecieslists:arebroadscale patternsofspeciesrichnessrobusttotheviolationofconstantgrainsize? Biodiversity andConservation,18 ,31273137. Keil,P.,Simova,I.,&Hawkins,B.A.(2008).Waterenergyandthegeographicalspecies richnesspatternofEuropeanandNorthAfricandragonflies(Odonata). ConservationandDiversity,1 (3),142150. Kerr,J.T.,&Currie,D.J.(1999).Therelativeimportanceofevolutionaryandenvironmental controlsonbroadscalepatternsofspeciesrichnessinNorthAmerica Ecoscience,6 (3), 329337. Kerr,J.T.,&Packer,L.(1999).TheenvironmentalbasisofNorthAmericanspeciesrichness patternsamongEpicauta(Coleoptera:Meloidae). BiodiversityandConservation,8 (5), 617628. Kerr,J.T.,Southwood,T.R.E.,&Cihlar,J.(2001).Remotelysensedhabitatdiversity predictsbutterflyspeciesrichnessandcommunitysimilarityinCanada. Proceedingsof theNationalAcademyofSciences,98 (20),1136511370. Kilpatrick,A.M.,Mitchell,W.A.,Porter,W.P.,&Currie,D.J.(2006).Testinga mechanisticexplanationforthelatitudinalgradientinmammalianspeciesrichness acrossNorthAmerica. EvolutionaryEcologyResearch,8 ,333344. Kissling,W.D.,Böhning–Gaese,K.,&Jetz,W.(2009).Theglobaldistributionoffrugivory inbirds. GlobalEcologyandBiogeography,18 (2),150162. Klop,E.,&Prins,H.H.T.(2008).DiversityandspeciescompositionofWestAfrican ungulateassemblages:effectsoffire,climateandsoil. GlobalEcologyand Biogeography,17 (6),778787. Koh,C.N.,Lee,P.F.,&Lin,R.S.(2006).Birdspeciesrichnesspatternsofnorthern Taiwan:primaryproductivity,humanpopulationdensity,andhabitatheterogeneity. DiversityandDistributions,12 (5),546554. Kumschick,S.,SchmidtEntling,M.H.,Bacher,S.,Hickler,T.,Entling,W.,&Nentwig,W. (2009).WaterlimitationprevailsoverenergyinEuropeandiversitygradientsof sheetwebspiders(Araneae:Linyphiidae). BasicandAppliedEcology,10 ,754762. Kumschick,S.,SchmidtEntling,M.H.,Bacher,S.,Hickler,T.,Espadaler,X.,&Nentwig, W.(2009).Determinantsoflocalant(Hymenoptera:Formicidae)speciesrichnessand activitydensityacrossEurope. EcologicalEntomology,34 (6),748754. Lambshead,P.J.D.,Brown,C.J.,Ferrero,T.J.,Mitchell,N.J.,Smith,C.R.,Hawkins,L. E.,etal.(2002).Latitudinaldiversitypatternsofdeepseamarinenematodesand organicfluxes:atestfromthecentralequatorialPacific. MarineEcologyProgress Series,236 ,129135. Lambshead,P.J.D.,Tietjen,J.,Ferrero,T.,&Jensen,P.(2000).Latitudinaldiversity gradientsinthedeepseawithspecialreferencetoNorthAtlanticnematodes. Marine EcologyProgressSeries,194 ,159167.

183 Lassau,S.A.,Cassis,G.,Flemons,P.K.J.,Wilkie,L.,&Hochuli,D.F.(2005).Usinghigh resolutionmultispectralimagerytoestimatehabitatcomplexityinopencanopy forests:canwepredictantcommunitypatterns? Ecography,28 (4),495504. Lassau,S.A.,&Hochuli,D.F.(2007).Associationsbetweenwaspcommunitiesandforest structure:dostronglocalpatternsholdacrosslandscapes? AustralEcology,32 ,656 662. Lassau,S.A.,&Hochuli,D.F.(2008).Testingpredictionsofbeetlecommunitypatterns derivedempiricallyusingremotesensing. DiversityandDistributions,14 (1),138147. Lee,P.F.,Ding,T.S.,Hsu,F.H.,&Geng,S.(2004).Breedingbirdspeciesrichnessin Taiwan:distributionongradientsofelevation,primaryproductivityandurbanization. JournalofBiogeography,31 (2),307314. Leibold,M.A.(1999).Biodiversityandnutrientenrichmentinpondplanktoncommunities. EvolutionaryEcologyResearch,1 (1),7395. Loya,Y.(1972).CommunitystructureandspeciesdiversityofhermatypiccoralsatEilat, RedSea. MarineBiology,13 ,100123. MacDonald,I.R.,Bluhm,B.A.,Iken,K.,Gagaev,S.,&Strong,S.(2010).Benthic macrofaunaandmegafaunaassemblagesintheArcticdeepseaCanadaBasin. Deep SeaResearchPartII:TopicalStudiesinOceanography,57 (12),136152. Mahon,R.,&Mahon,S.D.(1994).Structureandresilienceofatidepoolfishassemblyat Barbados. EnvironmentalBiologyofFishes,41 ,171190. Malmqvist,B.,&Eriksson,Å.(1995).BenthicinsectsinSwedishlakeoutletstreams: patternsinspeciesrichnessandassemblagestructure. FreshwaterBiology,34 ,285296. Maraun,M.,Schatz,H.,&Scheu,S.(2007).Awesomeorordinary?Globaldiversitypatterns oforibatidmites. Ecography,30 (2),209216. Marinone,M.C.,Marque,S.M.,Suárez,D.A.,Diéguez,M.d.C.,Pérez,P.,DeLosRíos, P.,etal.(2006).UVradiationasapotentialdrivingforceforzooplanktoncommunity structureinPatagonianlakes. PhotochemistryandPhotobiology,82 (4),962971. Marshall,J.L.,&Camp,C.D.(2006).Environmentalcorrelatesofspeciesandgenetic richnessinlunglesssalamanders(familyplethodontidae). ActaOecologica,29 (1),33 44. Mathias,P.V.C.,Mendonça,C.V.,Rangel,T.F.L.V.B.,&DinizFilho,J.A.F.(2004). SensitivityofmacroecologicalpatternsofSouthAmericanparrotstodifferencesindata sources. GlobalEcologyandBiogeography,13 (3),193198. McCain,C.M.(2003).NorthAmericandesertrodents:atestofthemiddomaineffectin speciesrichness. JournalofMammalogy,84 (3),967980. McCormick,P.V.,Shuford,R.B.E.,&Rawlik,P.S.(2004).Changesinmacroinvertebrate communitystructureandfunctionalongaphosphorusgradientintheFlorida Everglades. Hydrobiologia,529 (1),113132. McPherson,J.M.,&Jetz,W.(2007).Typeandspatialstructureofdistributiondataandthe perceiveddeterminantsofgeographicalgradientsinecology:thespeciesrichnessof Africanbirds. GlobalEcologyandBiogeography,16 (5),657667. Meserve,P.L.,Kelt,D.A.,&Martinez,D.R.(1991).Geographicalecologyofsmall mammalsincontinentalChileChico,SouthAmerica.JournalofBiogeography,18 (2), 179187. Milner,A.M.,Taylor,R.C.,&Winterbourn,M.J.(2001).Longitudinaldistributionof macroinvertebratesintwoglacierfedNewZealandrivers. FreshwaterBiology,46(12), 17651775. Miserendino,L.M.(2009).Effectsofflowregulation,basincharacteristicsandlanduseon macroinvertebratecommunitiesinalargearidPatagonianriver. Biodiversityand Conservation,18 (7),19211943.

184 Moore,J.L.,Manne,L.,Brooks,T.,Burgess,N.D.,Davies,R.,Rahbek,C.,etal.(2002). ThedistributionofculturalandbiologicaldiversityinAfrica. ProceedingsoftheRoyal SocietyofLondon.SeriesB:BiologicalSciences,269(1501),16451653. MorenoRueda,G.,&Pizarro,M.(2007).Therelativeinfluenceofclimate,environmental heterogeneity,andhumanpopulationonthedistributionofvertebratespeciesrichness insoutheasternSpain. ActaOecologica,32 (1),5058. MorenoRueda,G.,&Pizarro,M.(2009).Relativeinfluenceofhabitatheterogeneity, climate,humandisturbance,andspatialstructureonvertebratespeciesrichnessin Spain. EcologicalResearch,24 ,335344. Morton,S.R.,&Davidson,D.W.(1988).Comparativestructureofharvesterant communitiesinaridAustraliaandNorthAmerica. EcologicalMonographs,58 (1),19 38. Narayanaswamy,B.E.,Bett,B.J.,&Gage,J.D.(2005).Ecologyofbathyalpolychaete faunaatanArcticAtlanticboundary(FaroeShetlandChannel,NortheastAtlantic. MarineBiologyResearrch,1(1),2032. Nilsson,S.G.,&Nilsson,I.N.(1978).Breedingbirdcommunitydensitiesandspecies richnessinlakes. Oikos,312 ,214221. Oberdorff,T.,Guégan,J.F.,&Hugueny,B.(1995).Globalscalepatternsoffishspecies richnessinrivers. Ecography,18 (4),345352. Obertegger,U.,Thaler,B.,&Flaim,G.(2010).Rotiferspeciesrichnessalonganaltitudinal gradientintheAlps. GlobalEcologyandBiogeography,19 (6),895904. O'Brien,W.J.,Barfield,M.,Bettez,N.D.,Gettel,G.M.,Hershey,A.E.,McDonald,M.E., etal.(2004).Physical,chemical,andbioticeffectsonarcticzooplanktoncommunities anddiversity. LimnologyandOceanography,49 (4),12501261. Oindo,B.O.(2002).PatternsofherbivorespeciesrichnessinKenyaandcurrentecoclimatic stability. BiodiversityandConservation,11 (7),12051221. Oindo,B.O.(2002).Predictingmammalspeciesrichnessandabundanceusingmulti temporalNDVl. PhotogrammetricEngineeringandRemoteSensing,68 (6),623629. Olin,M.,Rask,M.,Ruuhljärvi,J.,Kurkilahti,M.,AlaOpas,P.,&Ylönen,O.(2002).Fish communitystructureinmesotrophicandeutrophiclakesofsouthernFinland:the relativeabundancesofpercidsandcyprinidsalongatrophicgradient. JournalofFish Biology,60 (3),593612. Owen,J.G.(1988).Onproductivityasapredictorofrodentandcarnivorediversity. Ecology, 69 (4),11611165. Owen,J.G.,&Dixon,J.R.(1989).AnecogeographicanalysisoftheherpetofaunaofTexas. TheSouthwesternNatutralist,34 (2),165180. Palomäki,R.,&Paasavirta,L.(1993).Speciesrichnessofmacrozoobenthos,especially chironomidcommunities,inthelittoralzoneofsomeFinnishlakes. Annual ZooologicalFennici,30 ,209214. Patalas,K.(1971).CrustaceanplanktoncommunitiesinfortyfivelakesintheExperimental LakesArea,northwesternOntario. JournaloftheFisheriesBoardofCanada,28 (2), 231244. Paterson,G.L.J.,&Lambshead,P.J.D.(1995).Bathymetricpatternsofpolychaete diversityintheRockallTrough,northeastAtlantic. DeepSeaResearchPartI: OceanographicResearchPapers,42 (7),11991214. Patten,M.A.(2004).CorrelatesofspeciesrichnessinNorthAmericanbatfamilies. Journal ofBiogeography,31 (6),975985. Pearson,D.L.,&Carroll,S.S.(1998).Globalpatternsofspeciesrichness:spatialmodelsfor conservationplanningusingbioindicatorandprecipitationdata. ConservationBiology, 12 (4),809821.

185 Peres,C.A.(1997).PrimatecommunitystructureattwentywesternAmazonianfloodedand unfloodedforests. JournalofTropicalBiology,13 (3),381405. PérezMendoza,A.Y.,HernándezAlcántara,P.,&SolísWeiss,V.(2003).Bathymetric distributionanddiversityofdeepwaterpolychaetousannelidsintheSigsbeeBasin, northwesternGulfofMexico. Hydrobiologia,496 (1),361370. Peters,L.,&Traunspurger,W.(2005).Speciesdistributionoffreelivingnematodesand othermeiofaunainlittoralperiphytoncommunitiesoflakes. Nematology,7 (2),267 280. Pfeiffer,M.,Chimedregzen,L.,&Ulykpan,K.(2003).Communityorganizationandspecies richnessofants(Hymenoptera/Formicidae)inMongoliaalonganecologicalgradient fromsteppetoGobidesert. JournalofBiogeography,30 (12),19211935. Phillips,L.B.,Hansen,A.J.,&Flather,C.H.(2008).Evaluatingthespeciesenergy relationshipwiththenewestmeasuresofecosystemenergy:NDVIversusMODIS primaryproduction. RemoteSensingofEnvironment,112 (9),35383549. Pianka,E.R.(1967).Onlizardspeciesdiversity:NorthAmericanflatlanddeserts. Ecology, 48 (3),334351. Pianka,E.R.(1971).LizardspeciesdensityintheKalahariDesert. Ecology,52 (6),1024 1029. Pierce,C.L.(1994).LittoralfishcommunitiesinsouthernQuebeclakes:relationshipswith limnologicalandpreyresources CanadianJournalofFisheriesandAquaticScience,51(11281138). PintoCoelho,R.,PinelAlloul,B.,Méthot,G.,&Havens,K.E.(2004).Crustacean zooplanktoninlakesandreservoirsoftemperateandtropicalregions:variationwith trophicstatus. CanadianJournalofFisheriesandAquaticSciences,62 (2),348361. Porter,J.W.(1972).PatternsofspeciesdiversityinCaribbeanreefcorals. Ecology,53 (4), 745748. Pouilly,M.,Barrera,S.,&Rosales,C.(2006).Changesoftaxonomicandtrophicstructureof fishassemblagesalonganenvironmentalgradientintheUpperBeniwatershed (Bolivia). JournalofFishBiology,68 (1),137156. Poulin,R.,Mouillot,D.,&GeorgeNascimento,M.(2003).Therelationshipbetweenspecies richnessandproductivityinmetazoanparasitecommunities. Oecologia,137 (2),277 285. Powney,G.D.,Grenyer,R.,Orme,C.D.L.,Owens,I.P.F.,&Meiri,S.(2010).Hot,dryand different:Australianlizardrichnessisunlikethatofmammals,amphibiansandbirds. GlobalEcologyandBiogeography,19 (3),386396. Price,P.W.,Fernandes,G.W.,Lara,A.C.F.,Brawn,J.,Barrios,H.,Wright,M.G.,etal. (1998).Globalpatternsinlocalnumberofinsectgallingspecies. Journalof Biogeography,25 (3),581591. Priede,I.G.,Godbold,J.A.,King,N.J.,Collins,M.A.,Bailey,D.M.,&Gordon,J.D.M. (2010).DeepseademersalfishspeciesrichnessinthePorcupineSeabight,NEAtlantic Ocean:globalandregionalpatterns. MarineEcology,31 (1),247260. Qian,H.(2008).Effectsofhistoricalandcontemporaryfactorsonglobalpatternsinavian speciesrichness. JournalofBiogeography,35 (8),13621373. Qian,H.(2010).Environment–richnessrelationshipsformammals,birds,reptiles,and amphibiansatglobalandregionalscales. EcologicalResearch,25 (3),629637. Qian,H.,Wang,X.,Wang,S.,&Li,Y.(2007).Environmentaldeterminantsofamphibian andreptilespeciesrichnessinChina. Ecography,30 (4),471482. Quiroga,E.,Sellanes,J.,Arntz,W.E.,Gerdes,D.,Gallardo,V.A.,&Hebbeln,D.(2009). BenthicmegafaunalanddemersalfishassemblagesontheChileancontinentalmargin:

186 Theinfluenceoftheoxygenminimumzoneonbathymetricdistribution. DeepSea ResearchPartII:TopicalStudiesinOceanography,56(16),11121123. Randall,R.G.,&Minns,C.K.(2002).Comparisonofahabitatproductivityindex(HPI)and anindexofbioticintegrity(IBI)formeasuringtheproductivecapacityoffishhabitatin nearshoreareasoftheGreatLakes. JournalofGreatLakesResearch,28 (2),240255. Rangel,T.F.L.V.B.,&DinizFilho,J.A.F.(2004).Worldwidepatternsinspeciesrichness offalconiformes:analyticalnullmodels,geometricconstraints,andthemiddomain effect. BrazillianJournalofBiology,64 (2),299208. Rangel,T.F.L.V.B.,&FelizolaDinizFilho,J.A.(2003).Spatialpatternsinspecies richnessandthegeometricconstraintsimulationmodel:aglobalanalysisofmid domaineffectinFalconiformes. ActaOecologica,24 (4),203207. Rebelo,J.(1992).TheIchthyofaunaandAbioticHydrobiologialenvironmentoftheRiade Aveiro,Portugal. Estuaries,15 (3),403413. Reed,A.W.,Kaufman,G.A.,&Kaufman,D.W.(2006).Speciesrichness–productivity relationhsipforsmallmammalsalongadesert–grasslandcontinuum:differential responsesoffunctionalgroups. JournalofMammalogy,87 (4),777783. Reed,K.E.,&Fleagle,J.G.(1995).Geographicandclimaticcontrolofprimatediversity. ProceedingsoftheNationalAcademyofSciences,99 ,78747876. Renaud,P.E.,Ambrose,J.W.G.,Vanreusel,A.,&Clough,L.M.(2006).Nematodeand macrofaunaldiversityincentralArcticOceanbenthos. JournalofExperimentalMarine BiologyandEcology,330 (1),297306. Rex,M.A.(1981).Communitystructureinthedeepseabenthos. AnnualReviewsinEcology andSystematics,12 ,331353. Rodríguez,M.Á.,Belmontes,J.A.,&Hawkins,B.A.Energy,waterandlargescalepatterns ofreptileandamphibianspeciesrichnessinEurope. ActaOecologica,28 (1),6570. Rombouts,I.,Beaugrand,G.,Ibaňez,F.,Gasparini,S.,Chiba,S.,&Legendre,L.(2009). Globallatitudinalvariationsinmarinecopepoddiversityandenvironmentalfactors. ProceedingsoftheRoyalSocietyB:BiologicalSciences,276 (1670),30533062. Rompré,G.,DouglasRobinson,W.,Desrochers,A.,&Angehr,G.(2007).Environmental correlatesofaviandiversityinlowlandPanamarainforests. JournalofBiogeography, 34 (5),802815. Rosa,R.,Dierssen,H.M.,Gonzalez,L.,&Seibel,B.A.(2008).Largescalediversity patternsofcephalopodsintheAtlanticopenoceananddeepsea. Ecology,89 (12), 34493461. Rossetti,G.,Viaroli,P.,&Ferrari,I.(2009).Roleofabioticandbioticfactorsinstructuring themetazoanplanktoncommunityinalowlandriver. RiverResearchandApplications, 25 (7),814835. Rowe,R.J.(2009).Environmentalandgeometricdriversofsmallmammaldiversityalong elevationalgradientsinUtah. Ecography,32 (3),411422. Rowhani,P.,Lepczyk,C.,Linderman,M.,Pidgeon,A.,Radeloff,V.,Culbert,P.,etal. (2008).VariabilityinEnergyInfluencesAvianDistributionPatternsAcrosstheUSA. Ecosystems,11 (6),854867. Roy,K.,Jablonski,D.,Valentine,J.W.,&Rosenberg,G.(1998).Marinelatitudinaldiversity gradients:Testsofcausalhypotheses. ProceedingsoftheNationalAcademyof Sciences,95 (7),36993702. Ruggiero,A.(1999).Spatialpatternsinthediversityofmammalspecies:atestofgeographic areahypothesisinSouthAmerica. Ecoscience,6 (3),338354. Ruggiero,A.,&Hawkins,B.A.(2008).Whydomountainssupportsomanyspeciesof birds? Ecography,31 (3),306315.

187 Ruggiero,A.,&Kitzberger,T.(2004).Environmentalcorrelatesofmammalspeciesrichness inSouthAmerica:effectsofspatialstructure,taxonomyandgeographicrange. Ecography,27 (4),401417. Sajan,S.,Joydas,T.,&Damodaran,R.(2010).Depthrelatedpatternsofmeiofaunaonthe Indiancontinentalshelfareconservedatreducedtaxonomicresolution. Hydrobiologia, 652 (1),3947. Sanders,N.J.,Lessard,J.P.,Fitzpatrick,M.C.,&Dunn,R.R.(2007).Temperature,butnot productivityorgeometry,predictselevationaldiversitygradientsinantsacrossspatial grains. GlobalEcologyandBiogeography,16 (5),640649. Sandin,S.A.,Vermeij,M.J.A.,&Hurlbert,A.H.(2008).IslandbiogeographyofCaribbean coralreeffish. GlobalEcologyandBiogeography,17 (6),770777. Schiebe,J.S.(1987).Climate,competitionandthestructureoftemperatelizardcommunities. Ecology,68 (5),14241436. Schlacher,T.A.,SchlacherHoenlinger,M.A.,Williams,A.,Althaus,F.,Hooper,J.N.A.,& Kloser,R.(2007).Richnessanddistributionofspongemegabenthosincontinental margincanyonsoffsoutheasternAustralia. 340 ,7388. Schrag,A.M.,Zaccagnini,M.E.,Calamari,N.,&Canavelli,S.(2009).Climateandlanduse influencesonavifaunaincentralArgentina:Broadscalepatternsandimplicationsof agriculturalconversionforbiodiversity. Agriculture,Ecosystems&Environment, 132 (12),135142. Schratzberger,M.,Warr,K.,&Rogers,S.I.(2006).Patternsofnematodepopulationsinthe southwesternNorthSeaandtheirlinktoothercomponentsofthebenthicfauna. JournalofSeaResearch,55 (2),113127. Sellanes,J.,Neira,C.,Quiroga,E.,&Teixido,N.(2010).Diversitypatternsalongandacross theChileanmargin:acontinentalslopeencompassingoxygengradientsandmethane seepbenthichabitats. MarineEcology,31 (1),111124. Seto,K.C.,Fleishman,E.,Fay,J.P.,&Betrus,C.J.(2004).Linkingspatialpatternsofbird andbutterflyspeciesrichnesswithLandsatTMderivedNDVI. InternationalJournalof RemoteSensing,25 (20),43094324. Shanker,K.,&Sukumar,R.(1998).Communitystructureanddemographyofsmallmammal populationsininsularmontaneforestsinsouthernIndia. Oecologia,116 ,243251. Sheftel,B.I.,&Hanski,I.(2002).Speciesrichness,relativeabundancesandhabitatuseof localassemblagesofSorexshrewsinEurasianborealforests. ActaTheriologica, 47 (S1),6979. Shepherd,U.L.(1998).Acomparisonofspeciesdiversityandmorphologicaldiversity acrosstheNorthAmericanlatitudinalgradient. JournalofBiogeography,25 ,1929. Sheppard,C.R.C.(1980).Coralcover,zonationanddiversityonreefslopesofchagosatolls, andpopulationstructuresofthemajorspecies. MarineEcologyProgressSeries,2 (193 205). Simpson,K.W.(1986).OrganismsubstraterelationshipsinthemainchanneloftheLower HudsonRiver. JournaloftheNorthAmericanBethologicalSociety,5(1),4157. Standen,V.(1979).Factorsaffectingthedistributionoflumbricids(Oligochaeta)in associationsatpeatandmineralsitesinnorthernEngland. Oecologia,42 (3),359374. StLouis,V.,Pidgeon,A.M.,Clayton,M.K.,Locke,B.A.,Bash,D.,&Radeloff,V.C. (2009).Satelliteimagetextureandavegetationindexpredictavianbiodiversityinthe ChihuahuanDesertofNewMexico. Ecography,32 (3),468480. Storch,D.,Davies,R.G.,Zajíček,S.,Orme,C.D.L.,Olson,V.,Thomas,G.H.,etal. (2006).Energy,rangedynamicsandglobalspeciesrichnesspatterns:reconcilingmid domaineffectsandenvironmentaldeterminantsofaviandiversity. EcologyLetters, 9(12),13081320.

188 Stuart,C.T.,&Rex,M.A.(2009).Bathymetricpatternsofdeepseagastropodspecies diversityin10basinsoftheAtlanticOceanandNorwegianSea. MarineEcology, 30 (2),164180. Symonds,M.R.E.,&Johnson,C.N.(2008).SpeciesrichnessandevennessinAustralian birds. TheAmericanNaturalist,171 (4),480490. Szarek,R.,Kuhnt,W.,Kawamura,H.,&Nishi,H.(2009).Distributionofrecentbenthic foraminiferaalongcontinentalslopeoftheSundaShelf(SouthChinaSea). Marine Micropaleontology,71 (12),4159. Takamura,N.,Ito,T.,Ueno,R.,Ohtaka,A.,Wakana,I.,Nakagawa,M.,etal.(2009). Environmentalgradientsdeterminingthedistributionofbenthicmacroinvertebratesin LakeTakkobu,Kushirowetland,northernJapan. EcologicalResearch,24 (2),371381. Tales,E.,&Berrebi,R.(2007).Controlsoflocalyoungoftheyearfishspeciesrichnessin floodplainwaterbodies:potentialeffectsofhabitatheterogeneity,productivityand colonisation–extinctionevents. EcologyofFreshwaterFish,16 (2),144154. Tedesco,P.A.,Oberdorff,T.,Lasso,C.A.,Zapata,M.,&Hugueny,B.(2005).Evidenceof historyinexplainingdiversitypatternsintropicalriverinefish. Journalof Biogeography,32 (11),18991907. Tedesco,P.A.,Oberdorff,T.,Lasso,C.A.,Zapata,M.,&Hugueny,B.(2005).Evidenceof historyinexplainingdiversitypatternsintropicalriverinefish. Journalof Biogeography,32 (11),18991907. Tello,J.S.,&Stevens,R.D.(2010).Multipleenvironmentaldeterminantsofregional speciesrichnessandeffectsofgeographicrangesize. Ecography,33,796808. Terribile,L.,OlallaTárraga,M.,MoralesCastilla,I.,Rueda,M.,Vidanes,R.,Rodríguez,M., etal.(2009).Globalrichnesspatternsofvenomoussnakesrevealcontrastinginfluences ofecologyandhistoryintwodifferentclades. Oecologia,159 (3),617626. Terribile,L.C.,&DinizFilho,J.A.F.(2009).SpatialpatternsofspeciesrichnessinNew Worldcoralsnakesandthemetabolictheoryofecology. ActaOecologica,35 (2),163 173. Thomas,R.H.,&MacLeanJr.,S.F.(1988).CommunitystructureinsoilAcarialonga latitudinaltransectofTundrasitesinNorthernAlaska. Pedobiologia,31 ,113138. Tognelli,M.F.,&Kelt,D.A.(2004).Analysisofdeterminantsofmammalianspecies richnessinSouthAmericausingspatialautoregressivemodels. Ecography,27 (4),427 436. Tolonen,K.T.,Holopainen,I.J.,Hämäläinen,H.,RahkolaSorsa,M.,Ylöstalo,P., Mikkonen,K.,etal.(2005).Littoralspeciesdiversityandbiomass:concordanceamong organismalgroupsandtheeffectsofenvironmentalvariables. Biodiversityand Conservation,14 (4),961980. Tsurim,I.,Abramsky,Z.,&Kotler,B.P.(2009).Thestructureofwinterbirdcommunitiesin thenorthernNegevshrubsteppe:relatingspeciescompositiontohabitatstructure. IsraelJournalofEcologyandEvolution,55 (1),4161. Ulrich,W.(2004).AllometricecologicaldistributionsinalocalcommunityofHymenoptera. ActaOecologica,25 (3),179186. Verschuyl,J.P.,Hansen,A.J.,McWethy,D.B.,Sallabanks,R.,&Hutto,R.L.(2008).Isthe effectofforeststructureonbirddiversitymodifiedbyforestproductivity? Ecological Applications,18 (5),11551170. Ward,J.V.(1986).Altitudinalzonationinarockymountainstream. Archivefor Hydrobiology,S74 (2),133199. Werner,E.E.,Skelly,D.K.,Relyea,R.A.,&Yurewicz,K.L.(2007).Amphibianspecies richnessacrossenvironmentalgradients. Oikos,116 ,16971712.

189 White,E.P.,&Hurlbert,A.H.(2010).Thecombinedinfluenceofthelocalenvironmentand regionalenrichmentonbirdspeciesrichness. TheAmericanNaturalist,175 (2),E3543. Whiteside,M.C.,&Harmsworth,R.V.(1967).Speciesdiversityinchydorid(cladocera) communities. Ecology,48 (4),664667. WlodarskaKowalczuk,M.,Kendall,M.A.,Weslawski,J.M.,Klages,M.,&Soltwedel,T. (2004).Depthgradientsofbenthicstandingstockanddiversityonthecontinental marginatahighlatitudeicefreesite(offSpitsbergen,791N). DeepSeaResearchPart I:OceanographicResearchPapers,51 ,19031914. Wollenburg,J.E.,&Kuhnt,W.(2000).Theresponseofbenthicforaminiferstocarbonflux andprimaryproductionintheArcticOcean. MarineMicropaleontology,40 (3),189 231. WooddWalker,R.S.,Ward,P.,&Clarke,A.(2002).Largescalepatternsindiversityand communitystructureofsurfacewatercopepodsfromtheAtlanticOcean. Marine EcologyProgressSeries,236 ,189203. Wright,D.H.(1983).Speciesenergytheory:anextensionofspeciesareatheory. Oikos, 41 (3),496506. YomTov,Y.,&Werner,Y.L.(1996).Environmentalcorrelatesofgeographicaldistribution ofterrestrialvertebratesinIsrael.IsraelJournalofZoology,42 (2),307315. Zhao,S.,Fang,J.,Peng,C.,&Tang,Z.(2006).Therelationshipsbetweenterrestrial vertebratespeciesrichnessinChina’snaturereservesandenvironmentalvariables. CanadianJournalofZoology,84 ,13681374. Zhao,S.,Fang,J.,Peng,C.,Tang,Z.,&Piao,S.(2006).Patternsoffishspeciesrichnessin China'slakes. GlobalEcologyandBiogeography,15 (4),386394.

190