ANNALS OF AGRARIAN SCIENCE, vol. 13, no. 2, 2015 ИЗВЕСТИЯ АГРАРНОЙ НАУКИ, Том 13, Ном. 2, 2015

AGRONOMY AND AGROECOLOGY АГРОНОМИЯ И АГРОЭКОЛОГИЯ

PECULIARITIES OF ANDOSOLS OF THE ADJARA-TRIALETI RANGE

T.F. Urushadze, T.O. Kvrivishvili Agricultural University of , Mikheil Sabashvili Institute of Soil Science, Agrichemistry and Melioration 240, David Aghashenebeli Ave., , 0131, Georgia; [email protected]; [email protected] Received: o4.03.15; accepted: 12.05.15

The research aimed at identifying the correlation between some of the soils in the volcanic zone of high mountains and one of the groups of WRB – andosols. The paper gives the description of andosols spread in volcanic zones of The Adjara-Trialeti mountains. Andosols areal involves mountain-meadow soils which are formed on andesite- basalts, andesites and diabases. Volcanic rocks formed on andosols, like their world analogues , are characterized by the upper horizons of the dark (sometimes black) color, well -expressed grain structure, loose structure, light texture and> 10% of sediment fractions content, acidic reaction, deep humifi cation, in the upper horizons mostly ³5% humus content, high absorption capacity and unsaturation of bases. The study confi rmed the identifi cation of mountain-meadow soils with andosols by andik / vitrik recorded in their profi les. According to WRB diagnostic criteria, vitric properties prevail in the studied soils, evidenced by the volume weight, oxalate soluble one and a half rust, phosphorus detention and organic carbon quantitative indicators. Ecological, morphological, physical, physical-chemical and chemical properties of the studied soilscorrelate with one of WRB group of soils - andosols.

INTRODUCTION landscape, but a soil, as an independent, natural-historical Soil classifi cation in accordance with the development of body. science is improving and becoming perfect. Identifi cation At the time, the Georgian Society of soil science held a of separate soil taxonomy and nomenclature is a complex ,,Field Colloquium“ with the participation of the world›s and often diffi cult issue. Despite the fact that the national leading soil scientists. Related issues to reconciliation classifi cation of soils in Georgia has a long history, in of international classifi cation with the national one were order to integrate into the international soil space, it was discussed in the fi eld conditions. On the basis of the joint necessary to study soils on the basis of WRB. research a soil map was published in the scale 1: 500 The idea of WRB is to unite the world national 000, the soil legend had the national names reconciled classifi cations and create a common “soil language”. It with WRB soil groups [3]. In 2005, N84 version of WRB refers to the common characteristics of the soils, which was published in Georgian [1], which has contributed to will be reconciled with the national systems [1]. The the evaluation of soil resources of Georgia according to theoretical concept of temporary classifi cation (WRB) lies the international classifi cation (2006-2014). Based on the in the soilgenesis principle, i.e. grouping of soils will be gained experience, some of the local soils were correlated performed on the basis of estimation of the genetic profi les with the WRB groups [4, 5]. of soils [2]. This principle allows to diagnosesoil taxonomy. The purpose of the research was to determine the Georgian landscapes and soils are quite diverse. Local soil correlation of the soils in high mountainous volcanic zone formation conditions determine the abundance of certain with one of the WRB groups of soils-andosols. Andosols are types of soil subtypes, names and types. Some of the formed from the primary formations of volcanic eruptions landscape names of soils of local classifi cation (mountain- and are based on special properties colloidal fractions [6]. meadow, mountain-forest soils) need changing regarding Their total area makes 110 million hectares i.e. less than the profi le-genetic classifi catory logic. Such changes are 1% of the whole land[7]. In general, andosols are formed necessary, since the object of the classifi cation is not a on the hilly and mountainous terrain in a wide thermal

44 range, under different vegetation [8]. Fast weathering Soil forming rocks are represented by Andesite-Basalt of porous substrate promotes accumulation of organic- (Gujareti, Goderdzi Pass), andesites (Andesite, Tsikhisjvari, mineral compounds and formation of non-crystal minerals, Tabatskhuri, Tskhratskaro, Goderdzi Pass) and diabase in particular, alophan and imogolite [9]. Andosols are (Tskhratskaro). characterized by existence of one or more andic or vitric Gujareti area (prof. B-4) andosols are spread on weakly horizons. Diagnostic criteria for andic properties: ≥2%; wavy plains. It has a profi le of the building: A1’-A «1- Diagnostic criteria for vitric properties: 0,05-2 mm or 0.2- BC1- B C 2. At the top, dark brown (7,5 Y R 3/2; 7,5Y R 3 0.25 mm size fractions with ≥ 5% volcanic glass content; / 2.5) horizonstructure is fi ne-granule, mechanical structure ≥0,4% Alox +1/2 F eox; Detention of phosphates ≥ 25%; is clay and a profi le does not boil up under the infl uence <25% organic carbon. of 10% HCI. It must be noted that if the research soils have most of the In Andesite area (prof.b -9) andosols are formed on andezites criteria of andic and vitric properties , then they must be onthe intermountain sloping plains, the profi le building attributed to the group of andosols. is characterized by A1’-A»1-B1-B2-BC. The humus horizons are blackish and very dark brown(10YR2,5/1,5; OBJECTIVES AND METHODS 10YR2,5/2). They are fi ne-grained structure, powder The central part of the Adjara-Trialeti ridge was selected texture, non-skeleton, loamy mechanical composition. Rust as the study area . In Georgia Neogene-anthropogenic cutanesare observed in the depth of horizons. Horizons do volcanic formations occupy a huge area in the central part of not boil up under the infl uence of 10% HCI. the Adjara-Trialeti ridge, which is bordered by the volcanic Tskhratskaro area andosols (prof.b- 11, prof. b-14) are region of South Georgia.Volcanogenic and volcanogenic- spread on diabase, andezites and have the following sedimentary formations of Neogene-anthropogenic age structure:A-BC-C, A-B-BC1-BC2.Black color (2,5Y2,5 are observed in the central part of the ridge, in - / 1) humus horizons are characterized by: fi ne-grained region. Neogene-anthropogenic volcanism structure, powder texture, loamy mechanical composition. products are mainly represented by andesites, andesite- Rock fragments have not been observed in profi les and basalts, basalts, dolerites; Less-dacite, rhyolite as well as they do not boil up under the infl uence of 10% HCI. obsidians, volcanic ash, volcanic sands. In Tabatskuri area (prof.b -12) andosols are formed on The study area is marked by cold and dry continental andezites , the profi le building is A1’-A»1-B-BC. The top climate [10]. Vegetation is subalpine meadow, which part is very dark brown or very dark grey-brown(10YR2/2; includes meadow, meadow-steppe type plants, dense 10YR3/2). They are fi ne-grained structure, powder texture. bushes ( juniper, willow, etc.) [11]. Soil cover is dominated Rock fragments have not been observed in profi les, by mountain-meadow soils. They are spread up to 1800 including BC horizons and they do not boil up under the (2000) -3200 m (3,500) m a.s.l. infl uence of 10% HCI. During fi eld description of soils FAO international Andosols formed on andezites and andesite-Basalts standards were used[12]. diagnostic features of (Goderdzi Pass) are characterized by the following andosols were established(oxalate soluble A1 + 1/2 Fe; structure: A- AB-B1-B2-BC2 (prof. g-3) or A- AB-B C- C phosphorus retention; organic C [13]. In the soil samples (prof. g -4). The upper horizons are dark brown and dark were determined: mechanical composition by sodium yellowish-brown (10YR 3/3; 10YR3/4), lump structure, pyrophosphate method, the humus by I. Tiurin method, loamy, powder or dense structure. with F. Simakov’s and B. Nikitin’s modifi cations, Thus, the upper horizons of andosols are of dark tint, by pH potentiometric method, absorbed bases by loamy, loose structure, well-marked grain structure, which trilonometricmethod, exchange hydrogen with K. Gedroits is also indicated by various authors [15-16]. method [14] The study area andosols are characterized by relatively light texture, in particular, average and heavy loamy soils RESULTS AND ANALYSIS (Table 1) , in humus horizons of this soil group (Gujareti The paper presents the description of andosols in the - prof. B-4, andesite-prof. B 9, Tskhratskaro - prof. B-14) vicinities of Gujareti ( prof. b -4), andesite (prof.b clay and sediment fractions are decreased. -9), Tskhratskaro (prof.b -11), (-14 prof.b), Tabatskuri Goderdzi pass andosolsare characterized by a certain (prof.b -12) and Goderdzi Pass (prof . g-3), (prof. g-4). regularity of the distribution of physical clay fraction

45 : <0.01 mm content increases in depth. At the bottom of retention and organic C. the profi le we observed a gradual increase of <0.001 mm On the basis of analytical data andic / vitric diagnostic fraction. criteria were observed in the research soil. Thus, the research soils are characterized by loamy In the central part of the Adjara-Trialeti ridge the volume granulometric structure. The same mechanical composition weight of andosols ranges between 0.8 - 1.3 g cm3 (Table. has been recorded by various researchers [17]. 2). Humus horizons are characterized by relatively low Andosol area reaction is acidic (Table. 1). pH (H2O) index. In the deeper profi les the volume weight increases, indicators vary within 5,05-6,6. 1n KCI drain the soil which is associated with a decrease in humus. reaction changes from 5.1 to 3.35. In the upper horizons Gujareti (prof. B-4), Tabatskuri (prof. B -12) and soil acidity is relatively high compared with the deeper Tskhratskaro (prof. B-14) humus horizon volume weightis horizons. less than 0.9 g / cm3 and correspond to andic criteria. Andosols are distinguished by deep humifi cation (Table 1). Most of the deeper horizons are distinguished by vitric In the top horizons maximum amount of humusis 6.91 volumetric weight (0,9-1,2 g / cm3) [4]. Low volume (prof. g-3) or 9,91 (prof. B-4)% (Table. 1). In deeper weight in andosols may be due to the formation of strong horizons the content of humus declines, but at the depth of micro-aggregates, large accumulation of organic matters 70 cm it reaches 3.85% (Tabatskhuri «-prof. B -12). and high microporosity [6]. Andosols possess high absorption capacity. This is The maximum quantity of organic C (5,75-5,56%) was determined by increased humus, sediment fractions observed (Table. 2) in the organogenic horizons (A ‘/ A «and content, from mineral composition - alophans [18]. A) of the research soils (Gujareti - prof. B-4; Tskhratskaro Total number of exchange cations is high in the vicinities - prof. B-14). The change of the quantity of organic carbon of Gujareti (prof. B-4); Andesite (prof. B -9), Tskhratskaro is correlated with the change of humus amount and tend to (prof. B -11) and Tabatskuri (prof. B -12) - 52,04-29,86 decrease in depth . mg.equ . per 100 g. soil (Table. 1). In Tskhratskaro (prof. Alox + 1/2 Feox indicator is one of the important B-14) we observed the reduction in the absorption capacity. diagnostic criteria to determine andic features, which also The sum of absorbed cations decreases and reaches a differentiates vitric from andic. The gradation of iron- minimum at BC2horizon - 18.2 mg.equ.per 100 g. soil. aluminum combination extracted in oxalic acid is much In Goderdzi pass andosols the absorption capacity varies lower in vitric properties compared with andic, which within 37,76-19,65 mg.equ. The sum of the absorbed clearly indicates the low quality of weathering of volcanic cations is relatively high in humus horizon (prof. g -4), glass [6] which gradually decreases with depth. In Gujareti (prof. B-4) vicinity andosol humic horizons , Andosol absorption complex is unsaturated with bases. In maximum quantities of A1 and 1/2 Fe is not signifi cantly the composition of the absorbed bases Ca predominates Mg different from each other and in deeper horizons their (Table. 1). Maximum amount of exchange calcium is 61- decline is observed (Table. 2). In Andesite area (at minimum. 74%, absorbed magnesium is within 18-39% . -9 B) in upper horizons 1/2 FeOxoften dominates. In some Hydrogen is quite high (32-34%) in the andosols in the of the soil profi les (Tskhratskaro - prof. B 11, prof. B-14) vicinity of Tabatskuri (Tabatskhuri - prof. B -12). It is over the entire depth the amount of Alox is increased. also increased in prof. B-14 (Tskhratskaro) humus horizon In Tabatskuri area (prof. B -12) oxalate extracted F e / 2 (17%). In Goderdzi pass andosols the hydrogen content is content is relatively high - 0,83 - 0,89%. Total amount of 13 - 28%. oxalate-soluble one and a half rusts corresponds to vitric The soils of the territory under study by the National diagnostic parameter (≥0,4%) [4]. Classifi cation belong to mountain-meadow soils. In Vitric feature, in particular, phosphorus fi xation higher than order to identify andosols diagnostic featuresin these 25%, was recorded in the most of the soils of the volcanic soils the following parameters were taken: Volume rocks in the central part of the Adjara-Trialeti ridge (Table. weight, soluble in oxalate A1 + 1/2 Fe; Phosphorus 2).

46 11 11 15 19 24 13 16 16 14 19 12 18 17 13 14 16 16 20 23 19 38 45 47 36 39 41 47 50 40 44 46 37 38 39 45 49 48 37 36 32 <0,01 <0,001 - 5 3 3 6 5 2 4 2 4 3 3 2 2 2 17 21 25 34 32 18 39 30 31 32 28 33 35 30 24 25 32 27 22 32 37 37 34 32 34 65 56 67 66 62 67 65 61 49 51 41 44 71 74 65 60 61 64 66 66 Ca Mg H Total % from total 43,11 38,11 26,07 31,97 30,37 18,20 42,02 40,57 40,72 35,56 34,83 29,86 43,59 36,40 45,20 42,18 45,50 45,15 52,04 47,87 + - 2 1 1 1 H 4,6 1,7 0,8 0,6 2,6 2,2 0,8 1,2 1,2 0,8 0,8 7,40 9,90 9,80 11,60 2+ 4,57 9,15 5,63 9,15 8,80 7,04 8,10 Mg 11,27 11,61 12,32 13,37 14,15 14,08 10,56 14,43 15,84 16,89 15,49 16,90 16,19 Absorbed cations mg. Equ. per100 g. soil 2+ 11,97 16,90 17,95 20,42 26,05 27,10 28,16 24,64 30,59 27,10 29,57 25,34 27,81 17,60 19,36 14,43 13,02 28,86 34,14 31,68 % 9,58 1,67 1,34 1,12 9,91 7,58 3,86 1,45 4,74 4,74 2,27 1,72 1,67 8,46 6,14 5,26 3,58 5,50 2,88 2,74 Humus, 4,7 4,3 4,7 4,7 4,6 4,2 4,2 4,3 3,4 4,7 4,8 5,1 3,56 4,15 4.75 4,25 4,35 3,55 3,35 3,35 pH O 1nKCl Ca 2 5,1 6,0 6,0 5,9 6,0 6,1 6,1 5,9 5,8 5,8 6,1 6,0 4,5 4,6 4,6 6,4 6,6 H 5,65 4,65 6,25 -23-40 -40-68 ’-0-12 ’-0-20 ’-0-15 1 2 -40-55 -55-62 1 1 1 »-12-23 »-20-40 »-15-25 1 2 1 1 1 A-0-18 A-0-18 B-18-35 B-25-55 C-35-60 A A A B B depth, cm BC-35-55 BC-62-80 BC-55-70 BC-18-35 A A A BC BC BC2-55-75 General characteristics of AndosolsG General characteristics of B-9 B-11 B-14 B-12 BB-4 Gujareti Andeziti Tabatskuri Tskhratskaro Tskhratskaro Prof., location Horizons, Table 1. Table

47 12 26 24 26 23 19 24 25 30 38 46 50 54 46 50 51 53 58 14 13 26 26 28 26 23 16 26 25 26 19 21 27 30 21 24 21 61 61 55 53 45 44 56 60 53 23,11 23,11 37,76 30,61 27,46 26,17 21,97 19,65 28,95 5,4 4,2 7,0 6,0 7,2 5,6 4,4 4,4 6,0 9,3 6,7 8,01 5,21 4,83 7,02 4,09 7,07 4,83 11,9 9,67 11,16 23,06 18,60 15,25 12,28 17,48 12,28 6,54 5,53 2,84 1,59 6,91 5,76 4,30 2,38 1,35 4,0 4,2 4,2 4,5 4,3 4,4 4,4 4,35 4,35 5,3 5,2 5,2 5,5 5,5 5,05 5,25 5,35 5,32 – 28 42 – 42 56 1 2 A - 0 – 19 A A - 0 – 15 A C – 58 - 75 Β Β AB - 19 – 44 AB - 15 – 28 BC – 44 58 BC – 56 70 G-4 G-3

48 The volume weight of Goderdzi pass andosols from the increases. The volume weight characteristic of Andic the upper horizons slightly increases to deeper horizons and (<0.9 g / cm3) were formed on andesite soil (prof. G-3) ranges from 0.89to 1.2 g / cm3 (Table 3). Thehumus humus horizon.The volume weight specifi c to Vitric, (> horizons, which contain high amounts of organic carbon 0.9 g / cm3, in particular, 0,9-1,2 g / cm3) are characteristic are distinguished by relatively low. In soil deep profi les, for surface and deep horizons of soil profi les. together with the reduction of humus, volume weight

Table 2. Diagnostic criteria of Andosols in the research soils Oxalate soluble

Prof., Volume weight, g/cm3 Org. C % Pretention Al,% Fe,% cm %

location Horizons,

A’ 1-0-12 0,8 5,75 24,83 0,35 0,49

BB-4 A»1-12-23 0,87 4,40 29,08 0,38 0,46

Gujareti BC1-23-40 0,98 2,24 Not det. Not det. Not det.

BC2-40--68 1,3 0,84 23,41 0,32 0,41

A’ 1-0-20 0,96 2,75 40,30 0,52 1,14

B-9 A»1-20-40 0,96 2,75 42,14 0,55 1,19

Andeziti B1–40–55 1,23 1,32 41,53 0,53 0,78

B2-55–62 1,3 1,00 Not det. Not det. Not det. BC-62-80 1,3 0,97 36,94 0,55 0,70 B-11 A –0–18 0,93 3,19 26,29 0,62 0,33 Tskhratskaro BC-18-35 1,01 1,67 28,50 0,56 0,40 C-35-60 1,02 1,59 25,13 0,66 0,36

A’ 1-0-15 0,84 4,91 58,96 0,62 0,83

B-12 A»1-15-25 0,9 3,56 64,90 0,69 0,89

Tabatskuri B1–25–55 0,94 3,05 Not det. Not det. Not det. BC-55-70 0,99 2,08 67,19 0,72 0,87

A –0–18 0,81 5,56 72,81 0,85 0,55 B-14 B-18-35 1,1 0,97 33,54 0,37 0,27

Tskhratskaro B C1-35-55 1,1 0,78 Not det. Not det. Not det.

BC2-55-75 1,1 0,65 52,43 0,65 0,28

In Goderdzi pass andosols the organic carbon (0,55-6,23%) 0,43% . In Andesite-basalt formed soils Alox ranges is less than 25% and corresponds with andosol diagnostic between 2,12% to 0,33 , F e / 2 increases from 0.16 to criteria (Table 3). In soils formed on Andesite-basalt (prof. 0.45%. Oxalatesoluble Fe2O3is increased in upper horizons G -4) the content of org. C is relatively lower than in and gradually decreases with depth. A similar pattern can soils formed on andesites (prof. G-3). The relatively high be observed in the distribution of Alox. AlOx+1/2FeOxis amount of org. C is accumulated in upper horizons and in higher than 2% (Table. 3) in andesite formed soil (prof. the depth its content is gradually decreasing. G -3) AB, B1, B2 and in andesite-basalt formed soil In Andosol horizons oxalatesoluble aluminum is increased (prof. G-4) AB horizons. In Humus and deep (B C and C) compared to the oxalate extracted one and a half iron horizons the sum of oxalate soluble one and a half rust is (Table. 3). In soils formed on Andesite formed the content less than 2% . of Aloxranges between 0,79-2,05% , F e/2 makes 0,3-

49 Table 3. Andosol diagnostic criteria in the soils of Goderdzi Pass

Prof. # Horizon, cm Volume Oxalate soluble Pretention org.C% weight, g/cm3 Al+1/2Fe % % A-0-15 0,89 1,93 93,30 6,23 AB-15-28 0,93 2,35 95,73 4,13

G-3 B1-28-42 0,94 2,45 94,90 3,16 B2-42-56 1,04 2,29 92,26 2,62 BC-56-70 1,2 1,09 59,77 1,18 A-0-19 0,91 1,15 62,70 4,66 AB-19-44 0,94 2,57 96,53 3,78 G-4 BC-44-58 0,96 0,90 47,70 1,35 C-58-75 0,99 0,49 27,29 0,55

Andic diagnostic criteria (A l o x + 1/2 F e ox≥2%) are CONCLUSION inherent to soils formed on volcanic effusives - AB, B1, B2 In Georgia andosols are spread in the central part of the (prof. G -3), AB (prof. G-3) and AB (prof. G -4) horizons. Adjara-Trialeti ridge and the volcanic region of South In A, B C (prof. G-3) and A, B C, C ( prof. G-4) horizons Georgia; Andosol area involves mountain-meadow soils, were observed vitric diagnostic criteria (A l o x + 1/2 F which are formed on andesite-basalts, andesites and eox≥0,4%). diabazes. Goderdzi pass soils have a high ability to retain phosphorus Andosols are characterized by dark color of upper horizons, (Table. 3). In most ofthe horizons of Andesite formed soil well expressed grain structure, loose structure, medium and (prof. G-3) absorption of P is more than 90%. According heavy loamy texture, acid reaction, profound humifi cation to one of the main diagnostic criteria (P retention ≥ 85%), and increased humus content in the upper horizons, high all the soil horizons, except deep BC horizon, display andic absorption capacity and unsaturation of bases. feature. Phosphate sorption ability is relatively low in soils M According to WRB diagnostic criteria, derived from andesite-basalt (prof. G -4). In AB horizon P vitricproperties prevail in andosols, that is evidenced by the retention is more than 95%, respectively, only this horizon quantitative indicators of volume weight, oxalate soluble holds andic properties. The rest of the horizons, with the one and a half rust, phosphorus detention and organic ability to absorb phosphate (≥25%), meet vitric diagnostic carbon. criteria. Ecological, morphological, physical, physical-chemical Goderdzi pass relatively acidic weathering conditions and chemical properties of the studied soils correlate contribute to the strengthening of leaching, soil unsaturation with one of WRB group of soils - andosols. However, it with bases, increased content of one and a half rust. When is noteworthy, that the areal of this group may also cover in the soil A l ox + 1/2 F eox≥2%, then P retention is high other volcanic zones of Georgia. and phosphate binding ability exceeds 90%. In andosols formed on andesite the (prof. G-3) andic REFERENCES features prevails. Therefore, most of the horizons building 1. World Reference Base for Soil Resources // GFA- the profi le are classifi ed as andic. In andesite-basalt formed Terra Systems, Tbilisi, 2005, 126 pp. andosol (prof. G -4) profi les dominate vitric diagnostic 2. World Reference Base for Soil Resources // criteria and are classifi ed as vitric horizon. FAO,Rome, 2006. 144 pp. Study area andosols formed on volcanic rocks , like their 3. Soil Map of Georgia in Scale1:500 000, under world analogues , are characterized by the dark coloring Editorship of T. F. Urushadze // Cartographic production, of upper horizons (sometimes black) , well expressed Tbilisi, 1999. grain structure, loose structure [16],. relatively light texture 4. T.F. Urushadze, W.U. H. Blum, E. V Sanadze, T. O. and> 10% of the amount of sediment fractions [19 ], acid Kvrivishvili. Andosols of Georgia // Pochvovedenie, 9, reaction, deep humifi cation, in the upper horizons, mostly ³ 2011, pp. 1056-1063 (in Russian). 5% humus content, which is characteristic of soils formed on 5. T. F. Urushadze, T. O. Kvrivishvili and E. V. Sanadze. volcanic effusive rocks [20]. Andosols are distinguished by An Experience in Using the World Reference Base for Soil high absorption capacity and unsaturation with bases [21]. Resources for the Soils of Western Georgia // Eurasian Soil The identifi cation of the studiedmountain-meadow soils Science, Vol. 47, No. 8, 2014, pp. 752–760. withandosols is confi rmed by andic / vitric features in their 6. Sadao Shoji, Masami Nanzyo, Randy A. Dahlgrn profi les. and Paul Quantin. Evalution and Proposed Revision of

50 Criteria for Andosols in the World Reference Base for Soil 15. Baumler R., Zech W. Charachterization of Andosols Recourses // Soil Science. Vol. 161, # 9, 1996, pp.604-615. Developed from Non-volcanic Material in Eastern Nepal // 7. T. Urushadze, E. Sanadze, T. Kvrivishvili, A. Soil Science, 3, vol.158, 1994, 211-217 pp. Kanchaveli, N. Mumladze. Andosols of Georgia // 16. Lafuente A. Lopez, Asenjo I. Valverde, Huecas C. “Mtsignobari” ,Tbilisi, 2009, 169 pp. (in Georgian). Gonzolez. Soils Developed in Diapered Environment in 8. Duchaufour P. Ecological Atlas of Soils of the World Mediterranean area: Sector North of the Iberia Peninsula // Masson Publishing USA, 1978, 320 pp. // Soil Science and Plant Anal., 20, # 7-8, 1993, pp.1180- 9. Targulyan V.O., Gerasimova M.I. World Correlative 1199. Base of Soil Resources: the Basis for the International 17. Hunter C.R., B.E. Frazierand, A.J. Busacca. Lytell Classifi cation and Correlation of soils // “Association Series: A Nonvolcanic Andisol // Soil Science Society of of Scientifi c Journals KMK, Moscow, 2007, 278 pp. (in America, Vol. 51 № 1, 1987, pp. 376-383. Russian). 18. Gradusov B. P. Mineralogy and Total Absorption 10. Kordzakhia M. Climate of Georgia // Acad. of Capacity of Soils // Proc. Rep. II Congress of Soil Society., Sciences of GSSR, Tbilisi, 1961, 217 pp. (in Georgian). Book 2, 1996, pp. 361-362 11. Mahkatadze L.B., Urushadze T.F. Subalpine Forests 19. Kleber Makkus, Mukutta Christian, Jahn Reinhold. of the Caucasus // „Lesnaya Promishlennost“, M., 1972, Andosols in Germany-Pedogenesis and Properties // 210 pp. (in Russian). Catena, 56, 2004, pp.67-83. 12. Blume H. P. Guidlelines for Soil Description // FAO, 20. Glazovskaya M.A. Stable Humus in Pyroclastic Rome, 2006, 97 pp. Overburden and Volcanic Soils of Eastern Kamchatka // 13. Blakemore L.C., Searle P.L., Daly B.K. Methods for Pochvovedenie, 11, 1998, pp. 1289-1302 (in Russian). Chemical Analysis of Soils // New Zealand Soil Bureau 21. Delphine Aran, Michel Gury, Emmanuel Jeanroy. Scientifi c Report 80, 1987, 103 pp. Organo-Metallic Complexes in an Andosol: a Comparative 14. Soil Science under Editorship of I.S. Kauricheva // Study with a Cambisol and Podzol // Geoderma vol. 99, “Kolos”, Moscow,1973, 274 pp. (in Russian). 2001, pp. 65-79.

ОСОБЕННОСТИ АНДОСОЛЕЙ АДЖАРО-ТРИАЛЕТСКОГО ХРЕБТА

Т.Ф. Урущадзе, Т.О. Квривишвили

Целью исследования было установление корреляции распространенных в некоторых вулканических зонах высокогорных почв с одной из групп Мировой коррелятивной базе почвенных ресурсов. В статья дана характеристика андосолей, распространенных в вулканической зоне Аджаро-Триалетского хребта. Ареалу андосолей соответствуют горно-луговые почвы, которые формируются на андезито-базальтах, андезитах и диабазах. Сформированные на вулканических породах исследованной территории андосоли подобно мировым аналогам, характеризуются темной окраской (иногда черной) верхних горизонтов, хорошо выраженной зернистой структурой, рыхлым строением, относительно легким механическим составом с содержанием ила >10%, кислой реакцией, глубокой гумусированностью, высоким содержанием гумуса в верхних горизонтах, что характерно для развитых на вулканических эффузивных породах почв. Андосоли выделяются высокой емкостью поглощения и ненасыщенностью основаниями. Идентификацию исследованных горно-луговых почв с андосолями подтверждают зафиксированные в их профилях андик/витрик свойств по Мировой коррелятивной базе почвенных ресурсов. В исследованных почвах преобладают витрик свойства, что подтверждается показателями объемного веса, растворимых в оксалате полуторных окислов, связывания фосфора и органического углерода. Распространенные на исследованной территории почвы по экологии, морфологии, физическим, физико-химическим и химическим свойствам находятся в корреляции с одной из группы Мировой коррелятивной базы почвенных ресурсов – андосолями. Не исключено, что ареал этой почвенной группы может быть отмечен в других вулканических зонах страны.

51