Proceedings of the 6Th Australian Space Science Conference Canberra 19-21 July, 2006

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the 6Th Australian Space Science Conference Canberra 19-21 July, 2006 Proceedings of the 6th Australian Space Science Conference Canberra 19-21 July, 2006 Australian Space Science Conference Series 1st Edition Published in Australia in 2007 by National Space Society of Australia Ltd GPO Box 7048 Sydney NSW 2001 Fax: 61 (02) 9988-0262 email: [email protected] website: http://www.nssa.com.au Copyright © 2007 National Space Society of Australia Ltd All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission from the publisher. ISBN 13: 978-0-9775740-0-1 Editor: Wayne Short Distributed on CD-Rom Proceedings of the 6th Australian Space Science Conference, 2006 Page i Page ii Proceedings of the 6th Australian Space Science Conference, 2006 Preface A large number of the presenters at the conference later submitted completed academic papers which form the basis of the conference proceedings. All papers published in these proceedings, have been subject to a peer review process whereby a scholarly judgement by suitable individuals determined if the paper was suitable to be published. In some cases, paper not initially accepted were revised until deemed suitable. The editor would like to give special thanks to those scholars who participated in the peer review process. Finally I would like to thank our sponsors for their support and the Organising Committee for giving generously of their time and efforts. We trust that you will find the 2006 Conference Proceedings enjoyable and informative. Responsibility for the content of each paper lies with its author(s). The publisher(s) also retain copyright over the text. Papers appear in the Conference proceedings with permission of the authors. Wayne Short Chairman, 6th Australian Space Science Conference Deputy Chairman, National Space Society of Australia (NSSA) March 2007 Proceedings of the 6th Australian Space Science Conference, 2006 Page iii Conference Background The Australian Space Science Conference (ASSC) is the focus of scientific cooperation and discussion in Australia on research relating to space. It is a peer reviewed forum for space scientists, engineers, educators and industry. The conference is of relevance to a very broad cross section of the space community, and therefore generates an enlightening and timely exchange of ideas and perspectives. It is set against the backdrop of new opportunities for international collaboration, particularly NASA’s plans to return to the Moon and go on to Mars, and provides a venue to explore how Australian research can fit into these emerging plans and those of other countries. The scope of the conference covers fundamental and applied research that applies to space technologies, and includes the following: • Astronomy & Astrophysics • Astrobiology • Space life sciences • Space vehicles • Microgravity applications • Satellite technologies & applications The 6th ASSC was held in conjunction with the 9th Australian Space Development Conference at the Canberra Hyatt hotel, Australia between July 19 and 21, 2006. The 2006 conference consisted of a series of presentations from various researchers with topics that underline the diversity of endeavours and disciplines that encompass Space Science Research in Australia. A call for papers was issued in February 2006 and researchers were invited to submit abstracts for consideration. A review was initially conducted to ensure only topics relevant to the conference were included. In all, the conference had over 30 presenters. Appendix A has a copy of the full 6th ASSC conference program. Page iv Proceedings of the 6th Australian Space Science Conference, 2006 Table of Contents Using Mars Global Surveyor and Mars Odyssey telemetry to Anania EM, reconstruct the volcano-tectonic history of Phaethontis region, Caprarelli G, pages 1-16 Mars Lake M The Inner Solar System Cataclysm, the Origin of Life, and the Bailey J Return to the Moon pages 17-22 Probing the Atmosphere of Venus using Infrared Spectroscopy Bailey J pages 23-27 Caprarelli G, Pondrelli M, Mars Express High Resolution Stereo Camera: results of Di Lorenzo S, observations of north Tyrrhena Terra, Mars pages 28-43 Marinangeli L, Ori GG, Neukum G Cromarty J, Data Mining Techniques for GAIA Data Processing and Bil C, Analysis pages 44-60 Hill R, Thompson L Held J, Brown I, Mission planning for Space debris Retrieval pages 61-76 Vainstein I Preliminary Graphical and Statistical Analysis of Lunar Iron Jackson N, (FeO) and Titanium (TiO ): Results of Megaregolith and pages 77-99 Carter B 2 Subsurface Investigations Lineweaver C, Estimating the composition of extrasolar terrestrial planets pages 100-108 Robles J Mordech J, Nano-Satellite Design for Inflatable Antenna System Prototype pages 109-116 Thompson L Demonstration Norman M, SpudisP, Why on Earth are we going back to the Moon? pages 117-126 SchmittH, Pieters C Parrot N, Intelligent control of liquid-fuelled bi-propellant premix rocket pages 127-175 Held J motors Robles J, How anomalous is the Sun? pages 176-181 Lineweaver C Ward N R, Reduced Gravity Testing and Research at Queensland pages 182-189 Steinberg T A University of Technology A Conservative, Practical Architecture for Exploration-Focused Willson D, Manned Mars Missions Using Chemical Propulsion, Solar pages 190-215 Clarke J Power, and ISRU. Proceedings of the 6th Australian Space Science Conference, 2006 Page v Page vi Proceedings of the 6th Australian Space Science Conference, 2006 Using Mars Global Surveyor and Mars Odyssey data to reconstruct the volcano-tectonic history of Phaethontis region, Mars. Erin M. Anania 1, Graziella Caprarelli 1, Michael Lake 2 and Di Lorenzo Stefano 3 1 Department of Environmental Sciences, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia 2 Computational Research Support Unit, Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia 3 International Research School of Planetary Sciences, Università d’Annunzio, Viale Pindaro 42, 65127 Pescara, Italy Summary: In this paper we present part of an ongoing study of telemetry data of Phaethontis, a region in the western hemisphere of Mars’s Southern Highlands. In particular, we focus on an approximately 57,000 km2 area in Gorgonum Chaos. We selected THEMIS visual, MOC narrow angle and MOLA data available from the Arizona State University and Malin Space Science Systems web-sites. We carried out multi-level processing of THEMIS and MOC data using the ISIS software, and processed MOLA gridded data by the GMT software. After processing, we input the images into ArcGIS software. We observed, identified and described, both 2- and 3-dimensionally, impact craters, chaotic and polygonal terrains, grabens and gullies. These landforms suggest a complex geological history involving sedimentary and tectonic processes, such as meteoritic impact, the presence of underground water and ice, desiccation or freezing of wet sediments, at least two episodes of extension, and recent aeolian activity. Keywords: Mars, Phaethontis, Gorgonum Chaos, remote sensing, MOLA, MOC, THEMIS, GIS Introduction Mars is the most accessible and hence practical planet of our solar system open to direct scientific study. The understanding and continued study of Mars aids in extending our knowledge of other planetary bodies and systems, the Earth included. By exploring the similarities and differences between the Earth and Mars, facts, knowledge and theories of Earth systems can be applied to similar Martian systems, to either challenge or confirm our understanding. On a larger scale, comparative planetology provides a foundation on which to base different theories and models of planetary evolution, refining our comprehension of the formation and history of our own planet and solar system. The scientific study of Mars has been largely driven by curiosity, and has been mostly conducted by remote sensing. This study aims to reconstruct the geological history of Gorgonum Chaos, in the Phaethontis region of Mars, by identifying, describing, mapping and analysing morphological features of the region. Phaethontis is located in the south-west of the planet, centred on 48°S, 210°E, and defined by latitude 30-65°S and planetocentric longitude 180-240°E (Figure 1). This large region has so far been poorly studied despite the existence of a substantial database for the area. Gorgonum Chaos is located Proceedings of the 6th Australian Space Science Conference, 2006 Page 1 Figure 1. MOLA map of Mars. Major geographical features are indicated. The black box indicates the location of the Phaethontis Quadrant. Gorgonum Chaos is a very small area (not identifiable at the scale of this figure) close to the NW corner of Phaethontis. at latitude 35-40°S and longitude 190-195°E. Based on its proximity to the Tharsis plateau, this study focuses on understanding the volcanic and tectonic features of the region. The abundant gullies, valleys and channels of Gorgonum Chaos have been previously studied primarily in relation to the search for water on Mars [1-3]. To date little attention has been given to considering the volcano-tectonic features and processes of this area. For this study we used data collected by scientific instruments on NASA’s Martian satellites Mars Global Surveyor (MGS) and Mars Odyssey. From MGS, altimetry data from the Mars Orbiter Laser Altimeter (MOLA) and narrow angle images from the Mars Orbiter Camera (MOC) were used. From Mars Odyssey, visual images from the Thermal Emission Imaging System (THEMIS) were used. Mars Odyssey THEMIS visual images were used as context images for MGS MOC narrow angle images. For consistency, Mars Odyssey THEMIS visual images with resolution of 17m/pixel only were used, and this resolution was chosen as it was the best available resolution for THEMIS data providing the clearest, most detailed description possible of the study area. Again for consistency and detail, MGS MOC narrow angle images with an average resolution of 3m/pixel only were used as this resolution was the best available for the MOC narrow angle images taken in the study area.
Recommended publications
  • Towards a Classification System of Terrestrial Planets
    7RZDUGVD&ODVVL¿FDWLRQ6\VWHPRI7HUUHVWULDO3ODQHWV Charles H. Lineweaver and Jose A. Robles Planetary Science Institute, Research School of Astronomy and Astrophysics, Research School of Earth Sciences, The Australian National University, Canberra ACT 0200 Australia. Abstract: The focus of extrasolar planet searches has become the detection of habitable terrestrial planets. Planetary mass and orbit have large and obvious effects on habitability. Since the chemical compositions of terrestrial planets also play an important role in habitability, we propose the creation RIDFODVVL¿FDWLRQV\VWHPIRU(DUWKOLNHSODQHWVEDVHGRQWKHDEXQGDQFHVRIHOHPHQWVPRVWLPSRUWDQW IRUKDELWDELOLW\:HGHVFULEHWKHPHWKRGRORJ\IRUWKHFUHDWLRQRIVXFKDFODVVL¿FDWLRQV\VWHPEDVHG on the observed chemical abundances of stars. Keywords: Terrestrial planet formation, Solar system, chemical composition Introduction %DFNJURXQGIRUWKH&UHDWLRQRID3ODQHW&ODVVL¿FDWLRQ6\VWHP 6FLHQWL¿FXQGHUVWDQGLQJRIDJURXSRIQHZREMHFWVEHJLQVZLWKDXVHIXOFODVVL¿FDWLRQVFKHPH)RU a century astronomers have relied on the Hertzsprung-Russell diagram to classify stars according to their colour and magnitude. In the Hertzsprung-Russell diagram the Sun is seen to be part of the PDLQVHTXHQFHRIK\GURJHQEXUQLQJVWDUV$QDQDORJRXVFODVVL¿FDWLRQV\VWHPIRUSODQHWVKDV\HWWR emerge. In our Solar System we have: small rocky planets close to the Sun (Mercury, Venus, Earth, Mars, asteroids), the gas giants (Jupiter and Saturn), then the ice giants (Uranus and Neptune) and ¿QDOO\DVZDUPRIVPDOOGLUW\VQRZEDOOV 3OXWRDQGFRPSDQ\ 7KLVUXGLPHQWDU\RUELWDOUDGLXV
    [Show full text]
  • The Search for Another Earth – Part II
    GENERAL ARTICLE The Search for Another Earth – Part II Sujan Sengupta In the first part, we discussed the various methods for the detection of planets outside the solar system known as the exoplanets. In this part, we will describe various kinds of exoplanets. The habitable planets discovered so far and the present status of our search for a habitable planet similar to the Earth will also be discussed. Sujan Sengupta is an 1. Introduction astrophysicist at Indian Institute of Astrophysics, Bengaluru. He works on the The first confirmed exoplanet around a solar type of star, 51 Pe- detection, characterisation 1 gasi b was discovered in 1995 using the radial velocity method. and habitability of extra-solar Subsequently, a large number of exoplanets were discovered by planets and extra-solar this method, and a few were discovered using transit and gravi- moons. tational lensing methods. Ground-based telescopes were used for these discoveries and the search region was confined to about 300 light-years from the Earth. On December 27, 2006, the European Space Agency launched 1The movement of the star a space telescope called CoRoT (Convection, Rotation and plan- towards the observer due to etary Transits) and on March 6, 2009, NASA launched another the gravitational effect of the space telescope called Kepler2 to hunt for exoplanets. Conse- planet. See Sujan Sengupta, The Search for Another Earth, quently, the search extended to about 3000 light-years. Both Resonance, Vol.21, No.7, these telescopes used the transit method in order to detect exo- pp.641–652, 2016. planets. Although Kepler’s field of view was only 105 square de- grees along the Cygnus arm of the Milky Way Galaxy, it detected a whooping 2326 exoplanets out of a total 3493 discovered till 2Kepler Telescope has a pri- date.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Kuchner, M. & Seager, S., Extrasolar Carbon Planets, Arxiv:Astro-Ph
    Extrasolar Carbon Planets Marc J. Kuchner1 Princeton University Department of Astrophysical Sciences Peyton Hall, Princeton, NJ 08544 S. Seager Carnegie Institution of Washington, 5241 Broad Branch Rd. NW, Washington DC 20015 [email protected] ABSTRACT We suggest that some extrasolar planets . 60 ML will form substantially from silicon carbide and other carbon compounds. Pulsar planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk’s C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune- mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures. arXiv:astro-ph/0504214v2 2 May 2005 Subject headings: astrobiology — planets and satellites, individual (Mercury, Jupiter) — planetary systems: formation — pulsars, individual (PSR 1257+12) — white dwarfs 1. INTRODUCTION The recent discoveries of Neptune-mass extrasolar planets by the radial velocity method (Santos et al. 2004; McArthur et al. 2004; Butler et al. 2004) and the rapid development 1Hubble Fellow –2– of new technologies to study the compositions of low-mass extrasolar planets (see, e.g., the review by Kuchner & Spergel 2003) have compelled several authors to consider planets with chemistries unlike those found in the solar system (Stevenson 2004) such as water planets (Kuchner 2003; Leger et al.
    [Show full text]
  • Our Earth Is the Carbon Planet, Life Planet. Carbon Enables Life
    Our Earth is The Carbon Planet, Life Planet. Carbon Enables Life Letter to the Editor & To all Honourable Members of Parliament Carbon is the universe’s fourth most abundant element after hydrogen, helium, oxygen. It’s one of the least abundant elements in Earth's crust. Carbon has three main forms: - Diamond - among hardest materials - Graphite - soft - Amorphous - non-crystalline, powdery. Carbon forms more compounds than any other element - almost ten million organic compounds, a tiny fraction of its possible compounds. Carbon is the chemical basis of all known life and present in all known life forms. Trees, animals, bacteria… Life on Earth was possible because of carbon, evolved with carbon and depends on carbon. In human bodies, after oxygen, carbon is the second most abundant element - 18.5%. Life cycles: carbon is the key component in biology, many vital processes such as photosynthesis and bodily processes (breathing, digestion) Carbon occurs naturally throughout the atmosphere, crust, oceans and life forms. Humans depend on carbon for food, energy, shelter, transport. The IPCC and governments falsely frame carbon as black pollution using: - language - ‘emissions’, ‘carbon pollution’, ‘fugitive emissions’; - costly, useless bureaucratic measurement ingraining carbon as pollution; - tax; - glossy advertisements misrepresenting carbon using sinister black animations and footage of third world industry; - schools indoctrinating children. Carbon is natural, essential and ‘green’. Carbon dioxide is invisible. We’re carbon. We need carbon. Carbon is not humanity’s enemy. It’s ‘a girl’s best friend’. Carbon is not pollution. It’s essential to life. The issue is not CO2. The issue is the IPCC.
    [Show full text]
  • Mapping and Planetary Spatial Infrastructure Team
    The Ol Doinyo Lengai volcano, Tanzania, as an analogue for Carbon Planets Jani Radebaugh, Rory Barnes, Jeff Keith Department of Geological Sciences, Brigham Young University, Department of Physics, University of Washington Field Analogues are Valuable • Knowledge of landforms on other planets is incomplete • Similar physics, materials can be found on Earth • Earth landscapes can yield important information about other planets MEDUSA FOSSE FORMATION, MARS DUNHUANG, CHINA, 40 N 93 E Field Analogues are Valuable • Knowledge of landforms on other planets is incomplete • Similar physics, materials can be found on Earth • Earth landscapes can yield important information about other planets TITAN Field Analogues are Valuable • Knowledge of landforms on other planets is incomplete • Similar physics, materials can be found on Earth • Earth landscapes can yield important information about other planets DUNHUANG, CHINA, 40 N 93 E Field Analogues are Valuable • Yardangs: Wind important, but also bedrock, rainfall, gravels LUT DESERT, IRAN Field Analogues of exoplanets?? • We’ve yet to even “see” an exoplanet • They are planetary surfaces worth studying as we do for our solar system TRAPPIST-1 Carbon Planets • Postulated to form in carbon-rich nebular environments (Seager and Kuchner 2005) • When C/O>0.8 in the disk (Bond et al. 2010) • May reach >75% carbon in the habitable zone! ARTIST LUYTEN Carbon Planets • Even in our solar system, carbon is enriched in certain locations • Mercury may have had graphite crust on magma ocean (Peplowski et al. 2016) Mercury MESSENGER M-dwarf Carbon Planets • Carbon planets orbiting M-dwarf stars could spend millions/billions of years closer than the habitable zone during pre-main-sequence (e.g.
    [Show full text]
  • SCIENCE CHINA Spectral Analysis of Two Solar Twins and the Colors of The
    SCIENCE CHINA Physics, Mechanics & Astronomy • Research Paper • March 2010 Vol.53 No.3: 579–585 doi: 10.1007/s11433-009-0228-5 Spectral analysis of two solar twins and the colors of the Sun ZHAO ZhengShi1,2, CHEN YuQin1, ZHAO JingKun1 & ZHAO Gang1* 1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China Received April 24, 2009; accepted June 8, 2009 High resolution (R~40,000) and high signal-to-noise ratio (>150) spectra of two solar twins, HD146233 and HD195034, are obtained with the Coude Echelle Spectrograph at the 2.16 m telescope of the National Astronomical Observatories of Chinese Academy of Sciences (Xinglong, China). Based on the detailed spectrum match, comparisons of chemical composition and chromospheric activity, HD146233 and HD195034 are confirmed that they are similar to the Sun except for lithium abundance, which is higher than the solar value. Moreover, among nine solar twin candidates (including HD146233 and HD195034) found in the previous works, we have picked out six good solar twin candidates based on newly-derived homogenous parameters, and collected their colors in the Johnson/Cousins, Tycho, 2MASS and StrÖmgren system from the literature. The average color are (B-V)⊙=0.644 mag, (V-Ic)⊙=0.707 mag, (BT-VT)⊙=0.725 mag, (J-H)⊙=0.288 mag, (H-K)⊙=0.066 mag, (v-y)⊙=1.028 mag, (v-b)⊙=0.619 mag, (u-v)⊙=0.954 mag and (b-y)⊙=0.409 mag, which represent the solar colors with higher precision than pre- vious works.
    [Show full text]
  • Universe's First Life Might Have Been Born on Carbon Planets 7 June 2016
    Universe's first life might have been born on carbon planets 7 June 2016 be carbon-based, like life on Earth, so this also bodes well for the possibility of life in the early universe," she adds. The primordial universe consisted mostly of hydrogen and helium, and lacked chemical elements like carbon and oxygen necessary for life as we know it. Only after the first stars exploded as supernovae and seeded the second generation did planet formation and life become possible. Mashian and her PhD thesis advisor Avi Loeb (Harvard-Smithsonian Center for Astrophysics) examined a particular class of old stars known as carbon-enhanced metal-poor stars, or CEMP stars. These anemic stars contain only one hundred- thousandth as much iron as our Sun, meaning they formed before interstellar space had been widely In this artist's conception, a carbon planet orbits a seeded with heavy elements. sunlike star in the early universe. Young planetary systems lacking heavy chemical elements but relatively rich in carbon could form worlds made of graphite, "These stars are fossils from the young universe," carbides and diamond rather than Earth-like silicate explains Loeb. "By studying them, we can look at rocks. Blue patches show where water has pooled on how planets, and possibly life in the universe, got the planet's surface, forming potential habitats for alien started." life. Christine Pulliam (CfA). Sun image: NASA/SDO Although lacking in iron and other heavy elements compared to our Sun, CEMP stars have more carbon than would be expected given their age. Our Earth consists of silicate rocks and an iron This relative abundance would influence planet core with a thin veneer of water and life.
    [Show full text]
  • Green Growth: Restorative Economics for a Post-Carbon Planet
    www.ecologicalcitizen.net LONG ARTICLE Green growth: Restorative economics for a post-carbon planet Economic growth is driving ecological degradation on a scale that poses an existential Joshua Farley threat to civilization. Gross domestic product now provides a better measure of costs than of benefits. We must transition to clean energy and simultaneously restore degraded About the author global ecosystems. Neither of these activities are amenable to market allocation: ecological Joshua is Professor of restoration provides collective benefits and requires collective decision making, while the Community Development value of green technologies is maximized when the required knowledge has a price of zero, and Applied Economics, and in which case markets will not provide it. We thus need an economic transition towards Fellow, Gund Institute for Ecological Economics, at institutions based on cooperation and reciprocity. One option that can help instigate the the University of Vermont necessary transition is a common asset trust, in which R&D into green technologies is (Burlington, VT, USA). funded collectively then freely available to all. This low-cost initial step can help to spur the cooperation required to address larger challenges. Citation Farley J (2020) Green growth: he world currently confronts a growth since then has increased the use of Restorative economics for series of interrelated ecological fossil fuels. Alternative energy sources – a post-carbon planet. The Ecological Citizen 3(Suppl B): and economic crises. Biodiversity such as solar, wind and geothermal – are T 23–33. sustains our ecosystems and all the services available as finite flows, and our capacity they generate, yet is currently being depleted to capture them is currently inadequate to Keywords at unprecedented levels.
    [Show full text]
  • CEMP Stars: Possible Hosts to Carbon Planets in the Early Universe
    CEMP stars: possible hosts to carbon planets in the early Universe The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Mashian, Natalie, and Abraham Loeb. 2016. “CEMP Stars: Possible Hosts to Carbon Planets in the Early Universe.” Monthly Notices of the Royal Astronomical Society 460 (3) (May 1): 2482–2491. doi:10.1093/mnras/stw1037. Published Version 10.1093/mnras/stw1037 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:32750969 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Mon. Not. R. Astron. Soc. 000, 1{11 (2015) Printed 29 April 2016 (MN LATEX style file v2.2) CEMP stars: possible hosts to carbon planets in the early universe Natalie Mashian1?, Abraham Loeb1y 1Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 29 April 2016 ABSTRACT We explore the possibility of planet formation in the carbon-rich protoplanetary disks of carbon-enhanced metal-poor (CEMP) stars, possible relics of the early Uni- verse. The chemically anomalous abundance patterns ([C/Fe] ≥ 0.7) in this subset of low-mass stars suggest pollution by primordial core-collapsing supernovae (SNe) ejecta that are particularly rich in carbon dust grains. By comparing the dust-settling timescale in the protoplanetary disks of CEMP stars to the expected disk lifetime (as- suming dissipation via photoevaporation), we determine the maximum distance rmax from the host CEMP star at which carbon-rich planetesimal formation is possible, as a function of the host star's [C/H] abundance.
    [Show full text]
  • AGA5802 High Resolution Spectroscopy: Echelle • Echelle Spectrographs • Applications
    AGA5802 High resolution spectroscopy: echelle • Echelle spectrographs • Applications Bibliography: To Measure the Sky, Kitchin, Lena and others ... Prof. Jorge Meléndez 1 How to achieve a high spectral resolution (high dispersion) using a grating 1. Use a grating of higher resolution (>> 1000 lines/mm) or increase fCOL 2. Work at high order m echelle s 2 High resolution 1: grating with many lines/mm + increase fCOL grating Slit Collimator Problem : small spectral coverage © Roy & Clarke 3 High resolution 1: grating with many lines/mm + increase fCOL Exemplo: espectrógrafo Coudé OPD (LNA) R (600nm) Å 12 000 1130 353 30 000 997 27 000 221 50 000 563 25 000 91 120 000 4 Comparison : Echelle HIRES coverage 4000Å ou 40 times High resolution 2: echelle spectrograph © Kitchin Echelle grating • Blazing angle is increased to optimize the observation of high orders (m ~ 30-150) better resolution • Typical grating 31 lines/mm • Problem: order overlapping? 5 Solution for mixing of the orders: cross disperser (prism or grating) cross disperser (grating or prism) CCD6 Example : HIRES spectrograph at KECK Cross disperser could be a grating or a prism; useful to split the orders 7 Echelle orders 8 Echelle orders : extracted 9 Echelle spectrographs Cross-disperser: can we use a prism instead of a grating? 10 2017-05-03 s 2017-05-03 11 Musicos: echelle grating + prism(s) 12 MUSICOS at Pic de Château-Renard http://www.astrosurf.com/thizy/musicos/musicos.htm 13 MUSICOS: blue setup MUSICOS: red setup 14 http://www.lna.br/opd/instrum/musicos.html Blue: 3800
    [Show full text]
  • A Photometric and Spectroscopic Survey of Solar Twin Stars Within 50
    Astronomy & Astrophysics manuscript no. Porto-de-Mello-et-al-Solar-Twin-Survey˙PREPRINT c ESO 2018 July 7, 2018 A photometric and spectroscopic survey of solar twin stars within 50 parsecs of the Sun: I. Atmospheric parameters and color similarity to the Sun G. F. Porto de Mello1, R. da Silva1,⋆, L. da Silva2 and R. V. de Nader1,⋆⋆ 1 Universidade Federal do Rio de Janeiro, Observat´orio do Valongo, Ladeira do Pedro Antonio 43, CEP: 20080-090 Rio de Janeiro, RJ, Brazil e-mail: [email protected],[email protected],[email protected] 2 Observat´orio Nacional, Rua Gen. Jos´eCristino 77, CEP: 20921-400, Rio de Janeiro, Brazil e-mail: [email protected] Received; accepted ABSTRACT Context. Solar twins and analogs are fundamental in the characterization of the Sun’s place in the context of stellar measurements, as they are in understanding how typical the solar properties are in its neighborhood. They are also important for representing sunlight observable in the night sky for diverse photometric and spectroscopic tasks, besides being natural candidates for harboring planetary systems similar to ours and possibly even life-bearing environments. Aims. We report a photometric and spectroscopic survey of solar twin stars within 50 parsecs of the Sun. Hipparcos absolute mag- nitudes and (B V)Tycho colors were used to define a 2σ box around the solar values, where 133 stars were considered. Additional stars resembling− the solar UBV colors in a broad sense, plus stars present in the lists of Hardorp, were also selected. All objects were ranked by a color-similarity index with respect to the Sun, defined by uvby and BV photometry.
    [Show full text]