A Mendelian Randomization Study of Metabolite Profiles, Fasting Glucose

Total Page:16

File Type:pdf, Size:1020Kb

A Mendelian Randomization Study of Metabolite Profiles, Fasting Glucose Diabetes Volume 66, November 2017 2915 A Mendelian Randomization Study of Metabolite Profiles, Fasting Glucose, and Type 2 Diabetes Jun Liu,1 Jan Bert van Klinken,2 Sabina Semiz,3,4 Ko Willems van Dijk,2,5 Aswin Verhoeven,6 Thomas Hankemeier,1,7,8 Amy C. Harms,7,8 Eric Sijbrands,9 Nuala A. Sheehan,10 Cornelia M. van Duijn,1,6 and Aysxe Demirkan1,5 Diabetes 2017;66:2915–2926 | https://doi.org/10.2337/db17-0199 GENETICS/GENOMES/PROTEOMICS/METABOLOMICS Mendelian randomization (MR) provides us the opportunity paths to and from glucose and type 2 diabetes and underline to investigate the causal paths of metabolites in type 2 the value of additional information from high-resolution meta- diabetes and glucose homeostasis. We developed and bolomics over classic biochemistry. tested an MR approach based on genetic risk scoring for plasma metabolite levels, utilizing a pathway-based sensi- tivity analysis to control for nonspecificeffects.Wefocused Type 2 diabetes is a progressive metabolic disease character- on 124 circulating metabolites that correlate with fasting ized by hyperglycemia, initially as a result of insulin resistance glucose in the Erasmus Rucphen Family (ERF) study (n = and in later stages also as a result of insulin insufficiency. Type 2 2,564) and tested the possible causal effect of each me- diabetes is also associated with dyslipidemia, including higher tabolite with glucose and type 2 diabetes and vice versa. circulating concentrations of triglycerides and lower concen- We detected 14 paths with potential causal effects by MR, trations of HDL cholesterol. In addition, several circulating following pathway-based sensitivity analysis. Our results molecules have previously been shown to be dysregulated in suggest that elevated plasma triglycerides might be par- type 2 diabetes, including phospholipids, branched-chain amino tially responsible for increased glucose levels and type 2 acids, keto-acid metabolites, and other metabolites such as acyl- diabetes risk, which is consistent with previous reports. carnitines (1–3). However, the causal paths between these Additionally, elevated HDL components, i.e., small HDL triglycerides, might have a causal role of elevating glucose metabolites and glucose/type 2 diabetes in humans remain levels. In contrast, large (L) and extra large (XL) HDL lipid unclear from observational studies and require randomized fi components, i.e., XL-HDL cholesterol, XL-HDL–free cho- controlled trials that are dif cult to conduct. lesterol, XL-HDL phospholipids, L-HDL cholesterol, and As an alternative, Mendelian randomization (MR) is an L-HDL–free cholesterol, as well as HDL cholesterol seem instrumental variable method that has gained popularity over to be protective against increasing fasting glucose but not the last decade to investigate causal effects of traits using against type 2 diabetes. Finally, we demonstrate that genetic genetic predictors. MR uses the principle that the allocation predisposition to type 2 diabetes associates with increased of genetic variants that affect a specifictraitfromparentsto levels of alanine and decreased levels of phosphatidylcholine offspring is random and unrelated to factors other than the alkyl-acyl C42:5 and phosphatidylcholine alkyl-acyl C44:4. trait (4). Furthermore, associations between the genotype Our MR results provide novel insight into promising causal and the outcome will not be affected by reverse causation 1Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands 9Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the 2Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands Netherlands 10Department of Health Sciences, University of Leicester, Leicester, U.K. 3 Genetics and Bioengineering Program, Faculty of Engineering and Natural Sci- Corresponding author: Aysxe Demirkan, [email protected]. ences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina Received 15 February 2017 and accepted 19 August 2017. 4Department of Biochemistry and Clinical Analysis, Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina This article contains Supplementary Data online at http://diabetes 5Department of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands .diabetesjournals.org/lookup/suppl/doi:10.2337/db17-0199/-/DC1. 6Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, © 2017 by the American Diabetes Association. Readers may use this article as the Netherlands long as the work is properly cited, the use is educational and not for profit, and the 7Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, work is not altered. More information is available at http://www.diabetesjournals Leiden University, Leiden, the Netherlands .org/content/license. 8Netherlands Metabolomics Centre, Leiden University, Leiden, the Netherlands 2916 Mendelian Randomization Study Diabetes Volume 66, November 2017 because disease will occur after the meiosis. MR has pre- markers including subfractions of lipoproteins, triglycerides, viously been used to determine whether metabolic markers phospholipids, ceramides, amino acids, acyl-carnitines, and such as classic blood lipids are causally involved in type 2 small intermediate compounds, which throughout this arti- diabetes (5–11) and has yielded contradicting results. One clewillbereferredas“metabolites,” were measured either reason for this could be that these studies are affected by by NMR spectrometry or by MS. The platforms used in this the heterogeneous nature of the metabolic markers chosen, research are the following: 1) liquid chromatography-MS such as in the example of total HDL cholesterol, which in (LC-MS) (116 positively charged lipids comprising 39 tri- reality consists of a collection of different-sized HDL parti- glycerides, 47 phosphatidylcholines, 8 phosphatidylethanol- cles possibly with different functions. This may dilute the amines, 20 sphingolipids, and 2 ceramides available in up to causal effects of single nucleotide polymorphisms (SNPs) 2,638 participants) measured in the Netherlands Meta- when only combined (total) HDL is considered. However, bolomics Centre, Leiden, using the method described previ- false signals may also be due to pleiotropic effects of the ously (18); 2) electrospray-ionization MS (ESI-MS) (in total, chosen genetic variants leading to possibly invalid instru- 148 phospholipids and sphingolipids comprising 16 plas- mental variables. As high-throughput analyses techniques mologens, 72 phosphatidylcholines, 27 phosphatidyletha- improve, the quantification of circulating molecules is becom- nolamines, 24 sphingolipids, and 9 ceramides available in ing ever more detailed and precise. For instance, instead of up to 878 participants) measured in the Institute for Clin- LDL cholesterol, HDL cholesterol, and total triglycerides de- ical Chemistry and Laboratory Medicine, University Hospi- termined by routine clinical biochemistry, lipoprotein particle tal Regensburg, Regensburg, Germany, using the method size distribution and content as well as tens of biochemical described previously (14); 3) small molecular compounds components can now be measured using nuclear magnetic res- window-based NMR spectroscopy (NMR-COMP) (41 mole- onance (NMR) spectroscopy– and mass spectrometry (MS)- cules comprising 29 low–molecular weight molecules and based approaches (12,13). These additional measures offer 12 amino acids available in up to 2,639 participants) mea- an opportunity to gain novel insight into the pathogenesis of sured in the Center for Proteomics and Metabolomics, Leiden diseases like type 2 diabetes. With the knowledge of genetic University Medical Center (19,20); 4) lipoprotein window- determinants of metabolites gained from genome-wide asso- based NMR spectroscopy (NMR-LIPO) (104 lipoprotein par- ciation studies (GWAS) (14–16), one can use MR for causal ticle subfractions comprising 28 VLDL components, 30 HDL inference given the specific conditions encoded in Fig. 1. In components, 35 LDL components, 5 IDL components, and the current study, with the aim of unraveling potentially 6 plasma totals available in up to 2,609 participants) mea- causal metabolic paths that underlie the observed associa- sured in the Center for Proteomics and Metabolomics, Leiden tions, we used genetic predictors from published metabolite University Medical Center (lipoprotein subfraction concen- GWAS, guided by pathway-based evidence to select instru- trations were determined by the Bruker algorithm [Bruker mental variables, and performed MR between selected met- BioSpin GmbH, Germany] [16]); and 5) AbsoluteIDQ p150 abolic markers and glucose/type 2 diabetes. Kit of Biocrates Life Sciences AG (153 molecules comprising 14 amino acids, 91 phospholipids, 14 sphingolipids, 33 acyl- RESEARCH DESIGN AND METHODS carnitines, and hexose available in up to 989 participants) Study Population measured with the experiments carried out at the Meta- The observational associations between metabolites and bolomics Platform of the Genome Analysis Center at the fasting glucose/type 2 diabetes were tested in the Erasmus Helmholtz Zentrum München, Germany, per manufacturer Rucphen Family (ERF) study, which is a prospective family- instructions (15). The laboratories had no access to pheno- based study with 3,465 individuals in the southwest of the type information. Netherlands. The study protocol for ERF was approved by the medical ethics board of the Erasmus
Recommended publications
  • Mendelian Randomization Study on Amino Acid Metabolism Suggests Tyrosine As Causal Trait for Type 2 Diabetes
    nutrients Article Mendelian Randomization Study on Amino Acid Metabolism Suggests Tyrosine as Causal Trait for Type 2 Diabetes Susanne Jäger 1,2,* , Rafael Cuadrat 1,2, Clemens Wittenbecher 1,2,3, Anna Floegel 4, Per Hoffmann 5,6, Cornelia Prehn 7 , Jerzy Adamski 2,7,8,9 , Tobias Pischon 10,11,12 and Matthias B. Schulze 1,2,13 1 Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; [email protected] (R.C.); [email protected] (C.W.); [email protected] (M.B.S.) 2 German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; [email protected] 3 Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA 4 Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany; fl[email protected] 5 Human Genomics Research Group, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; per.hoff[email protected] 6 Institute of Human Genetics, Division of Genomics, Life & Brain Research Centre, University Hospital of Bonn, 53105 Bonn, Germany 7 Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; [email protected] 8 Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany 9 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive,
    [Show full text]
  • STRING V10: Protein–Protein Interaction Networks, Integrated
    Published online 28 October 2014 Nucleic Acids Research, 2015, Vol. 43, Database issue D447–D452 doi: 10.1093/nar/gku1003 STRING v10: protein–protein interaction networks, integrated over the tree of life Damian Szklarczyk1, Andrea Franceschini1, Stefan Wyder1, Kristoffer Forslund2, Davide Heller1, Jaime Huerta-Cepas2, Milan Simonovic1, Alexander Roth1, Alberto Santos3, Kalliopi P. Tsafou3, Michael Kuhn4,5, Peer Bork2,*, Lars J. Jensen3,* and Christian von Mering1,* 1Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland, 2European Molecular Biology Laboratory, 69117 Heidelberg, Germany, 3Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen N, Denmark, 4Biotechnology Center, Technische Universitat¨ Dresden, 01062 Dresden, Germany and 5Max Planck Institute of Molecular Cell Biology and Downloaded from Genetics, 01062 Dresden, Germany Received September 15, 2014; Accepted October 07, 2014 ABSTRACT INTRODUCTION http://nar.oxfordjournals.org/ The many functional partnerships and interactions For a full description of a protein’s function, knowledge that occur between proteins are at the core of cel- about its specific interaction partners is an important pre- lular processing and their systematic characteriza- requisite. The concept of protein ‘function’ is somewhat hi- tion helps to provide context in molecular systems erarchical (1–4), and at all levels in this hierarchy, interac- biology. However, known and predicted interactions tions between proteins help to describe and narrow down a protein’s function: its three-dimensional structure may are scattered over multiple resources, and the avail- become meaningful only in the context of a larger pro- able data exhibit notable differences in terms of qual- tein assembly, its molecular actions may be regulated by at University of Aarhus on January 22, 2015 ity and completeness.
    [Show full text]
  • Mendelian Randomization Studies of Coffee and Caffeine Consumption
    Cornelis, M. C., & Munafo, M. R. (2018). Mendelian randomization studies of coffee and caffeine consumption. Nutrients, 10(10), [1343]. https://doi.org/10.3390/nu10101343 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.3390/nu10101343 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via MDPI at DOI: 10.3390/nu10101343. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ nutrients Review Mendelian Randomization Studies of Coffee and Caffeine Consumption Marilyn C. Cornelis 1,* and Marcus R. Munafo 2 1 Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA 2 MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, UK Centre for Tobacco and Alcohol Studies, School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-312-503-4548 Received: 31 August 2018; Accepted: 17 September 2018; Published: 20 September 2018 Abstract: Habitual coffee and caffeine consumption has been reported to be associated with numerous health outcomes. This perspective focuses on Mendelian Randomization (MR) approaches for determining whether such associations are causal.
    [Show full text]
  • A Mendelian Randomization Study
    nutrients Article The Homocysteine and Metabolic Syndrome: A Mendelian Randomization Study Ho-Sun Lee 1,2 , Sanghwan In 2 and Taesung Park 3,* 1 Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; [email protected] 2 Forensic Toxicology Division, Daegu Institute, National Forensic Service, Andong-si 39872, Gyeongsangbuk-do, Korea; [email protected] 3 Department of Statistics, Seoul National University, Seoul 08826, Korea * Correspondence: [email protected] Abstract: Homocysteine (Hcy) is well known to be increased in the metabolic syndrome (MetS) incidence. However, it remains unclear whether the relationship is causal or not. Recently, Mendelian Randomization (MR) has been popularly used to assess the causal influence. In this study, we adopted MR to investigate the causal influence of Hcy on MetS in adults using three independent cohorts. We considered one-sample MR and two-sample MR. We analyzed one-sample MR in 5902 individuals (2090 MetS cases and 3812 controls) from the KARE and two-sample MR from the HEXA (676 cases and 3017 controls) and CAVAS (1052 cases and 764 controls) datasets to evaluate whether genetically increased Hcy level influences the risk of MetS. In observation studies, the odds of MetS increased with higher Hcy concentrations (odds ratio (OR) 1.17, 95%CI 1.12–1.22, p < 0.01). One-sample MR was performed using two-stage least-squares regression, with an MTHFR C677T and weighted Hcy generic risk score as an instrument. Two-sample MR was performed with five genetic variants (rs12567136, rs1801133, rs2336377, rs1624230, and rs1836883) by GWAS data as the instrumental Citation: Lee, H.-S.; In, S.; Park, T.
    [Show full text]
  • Testosterone in Female Depression: a Meta-Analysis and Mendelian Randomization Study
    biomolecules Article Testosterone in Female Depression: A Meta-Analysis and Mendelian Randomization Study Dhruba Tara Maharjan 1, Ali Alamdar Shah Syed 2,*, Guan Ning Lin 1 and Weihai Ying 1,* 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; [email protected] (D.T.M.); [email protected] (G.N.L.) 2 Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China * Correspondence: [email protected] (A.A.S.S.); [email protected] (W.Y.) Abstract: Testosterone’s role in female depression is not well understood, with studies reporting con- flicting results. Here, we use meta-analytical and Mendelian randomization techniques to determine whether serum testosterone levels differ between depressed and healthy women and whether such a relationship is casual. Our meta-analysis shows a significant association between absolute serum testosterone levels and female depression, which remains true for the premenopausal group while achieving borderline significance in the postmenopausal group. The results from our Mendelian randomization analysis failed to show any causal relationship between testosterone and depression. Our results show that women with depression do indeed display significantly different serum levels of testosterone. However, the directions of the effect of this relationship are conflicting and may be due to menopausal status. Since our Mendelian randomization analysis was insignificant, the differ- ence in testosterone levels between healthy and depressed women is most likely a manifestation of the disease itself. Further studies could be carried out to leverage this newfound insight into better Citation: Maharjan, D.T.; Syed, diagnostic capabilities culminating in early intervention in female depression.
    [Show full text]
  • Reactome Pathway Analysis
    Fabregat et al. BMC Bioinformatics (2017) 18:142 DOI 10.1186/s12859-017-1559-2 SOFTWARE Open Access Reactome pathway analysis: a high- performance in-memory approach Antonio Fabregat1,2, Konstantinos Sidiropoulos1, Guilherme Viteri1, Oscar Forner1, Pablo Marin-Garcia3,4, Vicente Arnau5,6, Peter D’Eustachio7, Lincoln Stein8,9 and Henning Hermjakob1,10* Abstract Background: Reactome aims to provide bioinformatics tools for visualisation, interpretation and analysis of pathway knowledge to support basic research, genome analysis, modelling, systems biology and education. Pathway analysis methods have a broad range of applications in physiological and biomedical research; one of the main problems, from the analysis methods performance point of view, is the constantly increasing size of the data samples. Results: Here, we present a new high-performance in-memory implementation of the well-established over- representation analysis method. To achieve the target, the over-representation analysis method is divided in four different steps and, for each of them, specific data structures are used to improve performance and minimise the memory footprint. The first step, finding out whether an identifier in the user’s sample corresponds to an entity in Reactome, is addressed using a radix tree as a lookup table. The second step, modelling the proteins, chemicals, their orthologous in other species and their composition in complexes and sets, is addressed with a graph. The third and fourth steps, that aggregate the results and calculate the statistics, are solved with a double-linked tree. Conclusion: Through the use of highly optimised, in-memory data structures and algorithms, Reactome has achieved a stable, high performance pathway analysis service, enabling the analysis of genome-wide datasets within seconds, allowing interactive exploration and analysis of high throughput data.
    [Show full text]
  • Designs Combining Instrumental Variables with Case-Control: Estimating Principal Strata Causal Effects
    The International Journal of Biostatistics Volume 8, Issue 1 2012 Article 2 Designs Combining Instrumental Variables with Case-Control: Estimating Principal Strata Causal Effects Russell T. Shinohara, Johns Hopkins University Constantine E. Frangakis, Johns Hopkins University Elizabeth Platz, Johns Hopkins University Konstantinos Tsilidis, University of Ioannina Recommended Citation: Shinohara, Russell T.; Frangakis, Constantine E.; Platz, Elizabeth; and Tsilidis, Konstantinos (2012) "Designs Combining Instrumental Variables with Case-Control: Estimating Principal Strata Causal Effects," The International Journal of Biostatistics: Vol. 8: Iss. 1, Article 2. DOI: 10.2202/1557-4679.1355 ©2012 De Gruyter. All rights reserved. Designs Combining Instrumental Variables with Case-Control: Estimating Principal Strata Causal Effects Russell T. Shinohara, Constantine E. Frangakis, Elizabeth Platz, and Konstantinos Tsilidis Abstract The instrumental variables framework is commonly used for the estimation of causal effects from cohort samples. However, the combination of instrumental variables with more efficient designs such as case-control sampling requires new methodological consideration. For example, as the use of Mendelian randomization studies is increasing and the cost of genotyping and gene expression data can be high, the analysis of data gathered from more cost-effective sampling designs is of prime interest. We show that the standard instrumental variables analysis does not appropriately estimate the causal effects of interest when the
    [Show full text]
  • Mendelian Randomization Analysis of the Association Between Human
    www.nature.com/scientificreports OPEN Mendelian randomization analysis of the association between human blood cell traits and uterine polyps Shuliu Sun1,2, Yan Liu1,2, Lanlan Li1, Minjie Jiao1, Yufen Jiang1, Beilei Li1, Wenrong Gao1 & Xiaojuan Li1* Human blood cells (HBCs) play essential roles in multiple biological processes but their roles in development of uterine polyps are unknown. Here we implemented a Mendelian randomization (MR) analysis to investigate the efects of 36 HBC traits on endometrial polyps (EPs) and cervical polyps (CPs). The random-efect inverse-variance weighted method was adopted as standard MR analysis and three additional MR methods (MR-Egger, weighted median, and MR-PRESSO) were used for sensitivity analyses. Genetic instruments of HBC traits was extracted from a large genome- wide association study of 173,480 individuals, while data for EPs and CPs were obtained from the UK Biobank. All samples were Europeans. Using genetic variants as instrumental variables, our study found that both eosinophil count (OR 0.85, 95% CI 0.79–0.93, P = 1.06 × ­10−4) and eosinophil percentage of white cells (OR 0.84, 95% CI 0.77–0.91, P = 2.43 × ­10−5) were associated with decreased risk of EPs. The results were robust in sensitivity analyses and no evidences of horizontal pleiotropy were observed. While we found no signifcant associations between HBC traits and CPs. Our fndings suggested eosinophils might play important roles in the pathogenesis of EPs. Besides, out study provided novel insight into detecting uterine polyps biomarkers
    [Show full text]
  • Network-Based Association of Hypoxia-Responsive Genes with Cardiovascular Diseases
    Network-based association of hypoxia-responsive genes with cardiovascular diseases Rui-Sheng Wang, William M Oldham and Joseph Loscalzo Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA E-mail: [email protected] Received 19 May 2014, revised 21 July 2014 Accepted for publication 11 August 2014 Published 24 October 2014 New Journal of Physics 16 (2014) 105014 doi:10.1088/1367-2630/16/10/105014 Abstract Molecular oxygen is indispensable for cellular viability and function. Hypoxia is a stress condition in which oxygen demand exceeds supply. Low cellular oxygen content induces a number of molecular changes to activate regulatory pathways responsible for increasing the oxygen supply and optimizing cellular metabolism under limited oxygen conditions. Hypoxia plays critical roles in the pathobiol- ogy of many diseases, such as cancer, heart failure, myocardial ischemia, stroke, and chronic lung diseases. Although the complicated associations between hypoxia and cardiovascular (and cerebrovascular) diseases (CVD) have been recognized for some time, there are few studies that investigate their biological link from a systems biology perspective. In this study, we integrate hypoxia genes, CVD genes, and the human protein interactome in order to explore the relationship between hypoxia and cardiovascular diseases at a systems level. We show that hypoxia genes are much closer to CVD genes in the human protein interactome than that expected by chance. We also find that hypoxia genes play significant bridging roles in connecting different cardiovascular diseases. We construct a hypoxia-CVD bipartite network and find several interesting hypoxia- CVD modules with significant gene ontology similarity. Finally, we show that hypoxia genes tend to have more CVD interactors in the human interactome than in random networks of matching topology.
    [Show full text]
  • Biomolecule and Bioentity Interaction Databases in Systems Biology: a Comprehensive Review
    biomolecules Review Biomolecule and Bioentity Interaction Databases in Systems Biology: A Comprehensive Review Fotis A. Baltoumas 1,* , Sofia Zafeiropoulou 1, Evangelos Karatzas 1 , Mikaela Koutrouli 1,2, Foteini Thanati 1, Kleanthi Voutsadaki 1 , Maria Gkonta 1, Joana Hotova 1, Ioannis Kasionis 1, Pantelis Hatzis 1,3 and Georgios A. Pavlopoulos 1,3,* 1 Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; zafeiropoulou@fleming.gr (S.Z.); karatzas@fleming.gr (E.K.); [email protected] (M.K.); [email protected] (F.T.); voutsadaki@fleming.gr (K.V.); [email protected] (M.G.); hotova@fleming.gr (J.H.); [email protected] (I.K.); hatzis@fleming.gr (P.H.) 2 Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark 3 Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece * Correspondence: baltoumas@fleming.gr (F.A.B.); pavlopoulos@fleming.gr (G.A.P.); Tel.: +30-210-965-6310 (G.A.P.) Abstract: Technological advances in high-throughput techniques have resulted in tremendous growth Citation: Baltoumas, F.A.; of complex biological datasets providing evidence regarding various biomolecular interactions. Zafeiropoulou, S.; Karatzas, E.; To cope with this data flood, computational approaches, web services, and databases have been Koutrouli, M.; Thanati, F.; Voutsadaki, implemented to deal with issues such as data integration, visualization, exploration, organization, K.; Gkonta, M.; Hotova, J.; Kasionis, scalability, and complexity. Nevertheless, as the number of such sets increases, it is becoming more I.; Hatzis, P.; et al. Biomolecule and and more difficult for an end user to know what the scope and focus of each repository is and how Bioentity Interaction Databases in redundant the information between them is.
    [Show full text]
  • The 2021 Update of the EPA's Adverse Outcome Pathway Database
    www.nature.com/scientificdata OPEN The 2021 update of the EPA’s Data DescRiptor adverse outcome pathway database Holly M. Mortensen1 ✉ , Jonathan Senn2, Trevor Levey2,3, Phillip Langley2,4 & Antony J. Williams5 The EPA developed the Adverse Outcome Pathway Database (AOP-DB) to better characterize adverse outcomes of toxicological interest that are relevant to human health and the environment. Here we present the most recent version of the EPA Adverse Outcome Pathway Database (AOP-DB), version 2. AOP-DB v.2 introduces several substantial updates, which include automated data pulls from the AOP-Wiki 2.0, the integration of tissue-gene network data, and human AOP-gene data by population, semantic mapping and SPARQL endpoint creation, in addition to the presentation of the frst publicly available AOP-DB web user interface. Potential users of the data may investigate specifc molecular targets of an AOP, the relation of those gene/protein targets to other AOPs, cross-species, pathway, or disease-AOP relationships, or frequencies of AOP-related functional variants in particular populations, for example. Version updates described herein help inform new testable hypotheses about the etiology and mechanisms underlying adverse outcomes of environmental and toxicological concern. Background & Summary Tere is a need for approaches to understand the biological mechanism of adverse outcomes and human varia- bility in response to environmental chemical exposure. A recent legislation, the Frank R. Lautenberg Chemical Safety for the twenty-frst Century Act of 20161, requires the US Environmental Protection Agency to evaluate new and existing toxic chemicals with explicit consideration of susceptible populations of all types (life stage, exposure, genetic, etc.).
    [Show full text]
  • Comparative Expression Analysis in Small Cell Lung Carcinoma Reveals Neuroendocrine Pattern Change in Primary Tumor Versus Lymph Node Metastases
    950 Original Article Comparative expression analysis in small cell lung carcinoma reveals neuroendocrine pattern change in primary tumor versus lymph node metastases Zoltan Lohinai1#, Zsolt Megyesfalvi1,2,3#, Kenichi Suda4, Tunde Harko5, Shengxiang Ren6, Judit Moldvay1, Viktoria Laszlo1,3, Christopher Rivard7, Balazs Dome1,2,3, Fred R. Hirsch7,8 1Department of Tumor Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary; 2Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; 3Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria; 4Division of Thoracic Surgery, Department of Surgery, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan; 5Department of Pathology, National Koranyi Institute of Pulmonology, Budapest, Hungary; 6Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China; 7Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; 8Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, NY, USA Contributions: (I) Conception and design: Z Lohinai, Z Megyesfalvi, C Rivard, B Dome, FR Hirsch; (II) Administrative support: K Suda, T Harko, J Moldvay, S Ren; (III) Provision of study materials or patients: Z Lohinai, Z Megyesfalvi, J Moldvay; (IV) Collection and assembly of data: Z Lohinai, Z Megyesfalvi, V Laszlo; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Zoltan Lohinai, MD, PhD. Department of Tumor Biology, National Koranyi Institute of Pulmonology, H-1121, Piheno ut 1., Budapest, Hungary. Email: [email protected]; Balazs Dome, MD, PhD. Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Austria, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
    [Show full text]