Geometry of Curves in Generalized Flag Varieties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PCMI Summer 2015 Undergraduate Lectures on Flag Varieties 0. What
PCMI Summer 2015 Undergraduate Lectures on Flag Varieties 0. What are Flag Varieties and Why should we study them? Let's start by over-analyzing the binomial theorem: n X n (x + y)n = xmyn−m m m=0 has binomial coefficients n n! = m m!(n − m)! that count the number of m-element subsets T of an n-element set S. Let's count these subsets in two different ways: (a) The number of ways of choosing m different elements from S is: n(n − 1) ··· (n − m + 1) = n!=(n − m)! and each such choice produces a subset T ⊂ S, with an ordering: T = ft1; ::::; tmg of the elements of T This realizes the desired set (of subsets) as the image: f : fT ⊂ S; T = ft1; :::; tmgg ! fT ⊂ Sg of a \forgetful" map. Since each preimage f −1(T ) of a subset has m! elements (the orderings of T ), we get the binomial count. Bonus. If S = [n] = f1; :::; ng is ordered, then each subset T ⊂ [n] has a distinguished ordering t1 < t2 < ::: < tm that produces a \section" of the forgetful map. For example, in the case n = 4 and m = 2, we get: fT ⊂ [4]g = ff1; 2g; f1; 3g; f1; 4g; f2; 3g; f2; 4g; f3; 4gg realized as a subset of the set fT ⊂ [4]; ft1; t2gg. (b) The group Perm(S) of permutations of S \acts" on fT ⊂ Sg via f(T ) = ff(t) jt 2 T g for each permutation f : S ! S This is an transitive action (every subset maps to every other subset), and the \stabilizer" of a particular subset T ⊂ S is the subgroup: Perm(T ) × Perm(S − T ) ⊂ Perm(S) of permutations of T and S − T separately. -
A Quasideterminantal Approach to Quantized Flag Varieties
A QUASIDETERMINANTAL APPROACH TO QUANTIZED FLAG VARIETIES BY AARON LAUVE A dissertation submitted to the Graduate School—New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Mathematics Written under the direction of Vladimir Retakh & Robert L. Wilson and approved by New Brunswick, New Jersey May, 2005 ABSTRACT OF THE DISSERTATION A Quasideterminantal Approach to Quantized Flag Varieties by Aaron Lauve Dissertation Director: Vladimir Retakh & Robert L. Wilson We provide an efficient, uniform means to attach flag varieties, and coordinate rings of flag varieties, to numerous noncommutative settings. Our approach is to use the quasideterminant to define a generic noncommutative flag, then specialize this flag to any specific noncommutative setting wherein an amenable determinant exists. ii Acknowledgements For finding interesting problems and worrying about my future, I extend a warm thank you to my advisor, Vladimir Retakh. For a willingness to work through even the most boring of details if it would make me feel better, I extend a warm thank you to my advisor, Robert L. Wilson. For helpful mathematical discussions during my time at Rutgers, I would like to acknowledge Earl Taft, Jacob Towber, Kia Dalili, Sasa Radomirovic, Michael Richter, and the David Nacin Memorial Lecture Series—Nacin, Weingart, Schutzer. A most heartfelt thank you is extended to 326 Wayne ST, Maria, Kia, Saˇsa,Laura, and Ray. Without your steadying influence and constant comraderie, my time at Rut- gers may have been shorter, but certainly would have been darker. Thank you. Before there was Maria and 326 Wayne ST, there were others who supported me. -
Andrzej Miernowski, Witold Mozgawa GEOMETRY OF
DEMONSTRATE MATHEMATICA Vol. XXXV No 2 2002 Andrzej Miernowski, Witold Mozgawa GEOMETRY OF ¿-PROJECTIVE STRUCTURES Abstract. The main purpose of this paper is to define and study t-projective struc- ture on even dimensional manifold M as a certain reduction of the second order frame bundle over M. This t-structure reveals some similarities to the projective structures of Kobayashi-Nagano [KN1] but it is a completely different one. The structure group is the isotropy group of the tangent bundle of the projective space. With the t-structure we associate in a natural way the so called normal Cartan connection and we investigate its properties. We show that t-structures are closely related the almost tangent structures on M. Finally, we consider the natural cross sections and we derive the coefficients of the normal connection of a t-projective structure. 0. Introduction Grassmannians of higher order appeared for the first time in a paper [Sz2] in the context of the Cartan method of moving frames. Recently, A. Szybiak has given in [Sz3] an explicit formula for the infinitesimal action of the second order jet group in dimension n on the standard fiber of the bundle of second order grassmannians on an n-dimensional manifold. In the present paper we introduce an another notion of a grassmannian of higher order in the case of a projective space which is in the natural way a homogeneous space. It is well-known that many interesting geometric structures can be obtained as structures locally modeled on homogeneous spaces. Interesting general approach to the Cartan geometries is developed in the book by R. -
GROMOV-WITTEN INVARIANTS on GRASSMANNIANS 1. Introduction
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 16, Number 4, Pages 901{915 S 0894-0347(03)00429-6 Article electronically published on May 1, 2003 GROMOV-WITTEN INVARIANTS ON GRASSMANNIANS ANDERS SKOVSTED BUCH, ANDREW KRESCH, AND HARRY TAMVAKIS 1. Introduction The central theme of this paper is the following result: any three-point genus zero Gromov-Witten invariant on a Grassmannian X is equal to a classical intersec- tion number on a homogeneous space Y of the same Lie type. We prove this when X is a type A Grassmannian, and, in types B, C,andD,whenX is the Lagrangian or orthogonal Grassmannian parametrizing maximal isotropic subspaces in a com- plex vector space equipped with a non-degenerate skew-symmetric or symmetric form. The space Y depends on X and the degree of the Gromov-Witten invariant considered. For a type A Grassmannian, Y is a two-step flag variety, and in the other cases, Y is a sub-maximal isotropic Grassmannian. Our key identity for Gromov-Witten invariants is based on an explicit bijection between the set of rational maps counted by a Gromov-Witten invariant and the set of points in the intersection of three Schubert varieties in the homogeneous space Y . The proof of this result uses no moduli spaces of maps and requires only basic algebraic geometry. It was observed in [Bu1] that the intersection and linear span of the subspaces corresponding to points on a curve in a Grassmannian, called the kernel and span of the curve, have dimensions which are bounded below and above, respectively. -
Arxiv:1507.08163V2 [Math.DG] 10 Nov 2015 Ainld C´Ordoba)
GEOMETRIC FLOWS AND THEIR SOLITONS ON HOMOGENEOUS SPACES JORGE LAURET Dedicated to Sergio. Abstract. We develop a general approach to study geometric flows on homogeneous spaces. Our main tool will be a dynamical system defined on the variety of Lie algebras called the bracket flow, which coincides with the original geometric flow after a natural change of variables. The advantage of using this method relies on the fact that the possible pointed (or Cheeger-Gromov) limits of solutions, as well as self-similar solutions or soliton structures, can be much better visualized. The approach has already been worked out in the Ricci flow case and for general curvature flows of almost-hermitian structures on Lie groups. This paper is intended as an attempt to motivate the use of the method on homogeneous spaces for any flow of geometric structures under minimal natural assumptions. As a novel application, we find a closed G2-structure on a nilpotent Lie group which is an expanding soliton for the Laplacian flow and is not an eigenvector. Contents 1. Introduction 2 1.1. Geometric flows on homogeneous spaces 2 1.2. Bracket flow 3 1.3. Solitons 4 2. Some linear algebra related to geometric structures 5 3. The space of homogeneous spaces 8 3.1. Varying Lie brackets viewpoint 8 3.2. Invariant geometric structures 9 3.3. Degenerations and pinching conditions 11 3.4. Convergence 12 4. Geometric flows 13 arXiv:1507.08163v2 [math.DG] 10 Nov 2015 4.1. Bracket flow 14 4.2. Evolution of the bracket norm 18 4.3. -
Topics on the Geometry of Homogeneous Spaces
TOPICS ON THE GEOMETRY OF HOMOGENEOUS SPACES LAURENT MANIVEL Abstract. This is a survey paper about a selection of results in complex algebraic geometry that appeared in the recent and less recent litterature, and in which rational homogeneous spaces play a prominent r^ole.This selection is largely arbitrary and mainly reflects the interests of the author. Rational homogeneous varieties are very special projective varieties, which ap- pear in a variety of circumstances as exhibiting extremal behavior. In the quite re- cent years, a series of very interesting examples of pairs (sometimes called Fourier- Mukai partners) of derived equivalent, but not isomorphic, and even non bira- tionally equivalent manifolds have been discovered by several authors, starting from the special geometry of certain homogeneous spaces. We will not discuss derived categories and will not describe these derived equivalences: this would require more sophisticated tools and much ampler discussions. Neither will we say much about Homological Projective Duality, which can be considered as the unifying thread of all these apparently disparate examples. Our much more modest goal will be to describe their geometry, starting from the ambient homogeneous spaces. In order to do so, we will have to explain how one can approach homogeneous spaces just playing with Dynkin diagram, without knowing much about Lie the- ory. In particular we will explain how to describe the VMRT (variety of minimal rational tangents) of a generalized Grassmannian. This will show us how to com- pute the index of these varieties, remind us of their importance in the classification problem of Fano manifolds, in rigidity questions, and also, will explain their close relationships with prehomogeneous vector spaces. -
The Projective Geometry of the Spacetime Yielded by Relativistic Positioning Systems and Relativistic Location Systems Jacques Rubin
The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems Jacques Rubin To cite this version: Jacques Rubin. The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems. 2014. hal-00945515 HAL Id: hal-00945515 https://hal.inria.fr/hal-00945515 Submitted on 12 Feb 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems Jacques L. Rubin (email: [email protected]) Université de Nice–Sophia Antipolis, UFR Sciences Institut du Non-Linéaire de Nice, UMR7335 1361 route des Lucioles, F-06560 Valbonne, France (Dated: February 12, 2014) As well accepted now, current positioning systems such as GPS, Galileo, Beidou, etc. are not primary, relativistic systems. Nevertheless, genuine, relativistic and primary positioning systems have been proposed recently by Bahder, Coll et al. and Rovelli to remedy such prior defects. These new designs all have in common an equivariant conformal geometry featuring, as the most basic ingredient, the spacetime geometry. In a first step, we show how this conformal aspect can be the four-dimensional projective part of a larger five-dimensional geometry. -
Mathematisches Forschungsinstitut Oberwolfach Arithmetic Geometry
Mathematisches Forschungsinstitut Oberwolfach Report No. 38/2016 DOI: 10.4171/OWR/2016/38 Arithmetic Geometry Organised by Gerd Faltings, Bonn Johan de Jong, New York Peter Scholze, Bonn 7 August – 13 August 2016 Abstract. Arithmetic geometry is at the interface between algebraic geom- etry and number theory, and studies schemes over the ring of integers of number fields, or their p-adic completions. An emphasis of the workshop was on p-adic techniques, but various other aspects including Hodge theory, Arakelov theory and global questions were discussed. Mathematics Subject Classification (2010): 11G99. Introduction by the Organisers The workshop Arithmetic Geometry was well attended by over 50 participants from various backgrounds. It covered a wide range of topics in algebraic geometry and number theory, with some focus on p-adic questions. Using the theory of perfectoid spaces and related techniques, a number of results have been proved in recent years. At the conference, Caraiani, Gabber, Hansen and Liu reported on such results. In particular, Liu explained general p-adic versions of the Riemann–Hilbert and Simpson correspondences, and Caraiani reported on results on the torsion in the cohomology of Shimura varieties. This involved the geometry of the Hodge–Tate period map, which Hansen extended to a general Shimura variety, using the results reported by Liu. Moreover, Gabber proved degeneration of the Hodge spectral sequence for all proper smooth rigid spaces over nonarchimedean fields of characteristic 0, or even in families, by proving a spreading out result for proper rigid spaces to reduce to a recent result in p-adic Hodge theory. -
The Duality Theorem on a Generalized Flag Variety
proceedings of the american mathematical society Volume 117, Number 3, March 1993 REMARKS ON LOCALIZATION AND STANDARD MODULES: THE DUALITY THEOREM ON A GENERALIZED FLAG VARIETY JEN-TSEH CHANG (Communicated by Jonathan M. Rosenberg) Abstract. An amplification of the duality theorem of Hecht, Milicic, Schmid, and Wolf is given in the setting of a generalized flag variety. As an application, we give a different proof of the reducibility theorem for principal series by Speh and Vogan. The purpose of this note is to sketch an amplification of the duality theo- rem of Hecht, Milicic, Schmid, and Wolf. The main theorem in [3] establishes a natural duality between Harish-Chandra modules constructed in two differ- ent ways: the ^-module construction on a flag variety (due to Beilinson and Bernstein) on the one hand and the cohomological induction from a Borel sub- algebra (due to Zuckerman) on the other hand. This also follows from a result of Bernstein, which gives a ^-module construction of Zuckerman's functors (for the construction, see [1]). In this note we introduce a similar Z)-module construction on a generalized flag variety. Following Hecht, Milicic, Schmid, and Wolf, this construction is then dual to the cohomological induction from a parabolic subalgebra (when containing a a-stable Levi factor). As an applica- tion of this result, we give a different proof of a result by Speh and Vogan [4], which asserts the irreducibility of certain standard Zuckerman modules. This introduction is followed by four sections. The first section recalls the notion of a generalized t.d.o. on a generalized flag variety introduced in [2], from which our construction stems. -
Localization of Cohomologically Induced Modules to Partial Flag Varieties
LOCALIZATION OF COHOMOLOGICALLY INDUCED MODULES TO PARTIAL FLAG VARIETIES by Sarah Kitchen A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics The University of Utah March 2010 Copyright c Sarah Kitchen 2010 All Rights Reserved THE UNIVERSITY OF UTAH GRADUATE SCHOOL SUPERVISORY COMMITTEE APPROVAL of a dissertation submitted by Sarah Kitchen This dissertation has been read by each member of the following supervisory committee and by majority vote has been found to be satisfactory. Chair: Dragan Miliˇci´c Aaron Bertram Peter Trapa Henryk Hecht Y.P. Lee THE UNIVERSITY OF UTAH GRADUATE SCHOOL FINAL READING APPROVAL To the Graduate Council of the University of Utah: I have read the dissertation of Sarah Kitchen in its final form and have found that (1) its format, citations, and bibliographic style are consistent and acceptable; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready for submission to The Graduate School. Date Dragan Miliˇci´c Chair, Supervisory Committee Approved for the Major Department Aaron Bertram Chair/Dean Approved for the Graduate Council Charles A. Wight Dean of The Graduate School ABSTRACT Abstract goes here. ?? CONTENTS ABSTRACT ...................................................... ii CHAPTERS 1. INTRODUCTION ............................................. 1 1.1 Cohomological Induction and Harish-Chandra Modules . 1 1.2 The Kazhdan-Lusztig Conjectures . 2 1.3 Localization of Harish-Chandra Modules . 3 1.4 The Beilinson-Ginzburg Equivariant Derived Category . 5 1.5 Equivariant Zuckerman Functors . -
Homogeneous Spaces Defined by Lie Group Automorphisms. Ii
J. DIFFERENTIAL GEOMETRY 2 (1968) 115-159 HOMOGENEOUS SPACES DEFINED BY LIE GROUP AUTOMORPHISMS. II JOSEPH A. WOLF & ALFRED GRAY 7. Noncompact coset spaces defined by automorphisms of order 3 We will drop the compactness hypothesis on G in the results of §6, doing this in such a way that problems can be reduced to the compact case. This involves the notions of reductive Lie groups and algebras and Cartan involutions. Let © be a Lie algebra. A subalgebra S c © is called a reductive subaU gebra if the representation ad%\® of ίΐ on © is fully reducible. © is called reductive if it is a reductive subalgebra of itself, i.e. if its adjoint represen- tation is fully reducible. It is standard ([11, Theorem 12.1.2, p. 371]) that the following conditions are equivalent: (7.1a) © is reductive, (7.1b) © has a faithful fully reducible linear representation, and (7.1c) © = ©' ©3, where the derived algebra ©' = [©, ©] is a semisimple ideal (called the "semisimple part") and the center 3 of © is an abelian ideal. Let © = ©' Θ 3 be a reductive Lie algebra. An automorphism σ of © is called a Cartan involution if it has the properties (i) σ2 = 1 and (ii) the fixed point set ©" of σ\$r is a maximal compactly embedded subalgebra of ©'. The whole point is the fact ([11, Theorem 12.1.4, p. 372]) that (7.2) Let S be a subalgebra of a reductive Lie algebra ©. Then S is re- ductive in © if and only if there is a Cartan involution σ of © such that σ(ft) = ft. -
Totally Positive Toeplitz Matrices and Quantum Cohomology of Partial Flag Varieties
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 16, Number 2, Pages 363{392 S 0894-0347(02)00412-5 Article electronically published on November 29, 2002 TOTALLY POSITIVE TOEPLITZ MATRICES AND QUANTUM COHOMOLOGY OF PARTIAL FLAG VARIETIES KONSTANZE RIETSCH 1. Introduction A matrix is called totally nonnegative if all of its minors are nonnegative. Totally nonnegative infinite Toeplitz matrices were studied first in the 1950's. They are characterized in the following theorem conjectured by Schoenberg and proved by Edrei. Theorem 1.1 ([10]). The Toeplitz matrix ∞×1 1 a1 1 0 1 a2 a1 1 B . .. C B . a2 a1 . C B C A = B .. .. .. C B ad . C B C B .. .. C Bad+1 . a1 1 C B C B . C B . .. .. a a .. C B 2 1 C B . C B .. .. .. .. ..C B C is totally nonnegative@ precisely if its generating function is of theA form, 2 (1 + βit) 1+a1t + a2t + =exp(tα) ; ··· (1 γit) i Y2N − where α R 0 and β1 β2 0,γ1 γ2 0 with βi + γi < . 2 ≥ ≥ ≥···≥ ≥ ≥···≥ 1 This beautiful result has been reproved many times; see [32]P for anP overview. It may be thought of as giving a parameterization of the totally nonnegative Toeplitz matrices by ~ N N ~ (α;(βi)i; (~γi)i) R 0 R 0 R 0 i(βi +~γi) < ; f 2 ≥ × ≥ × ≥ j 1g i X2N where β~i = βi βi+1 andγ ~i = γi γi+1. − − Received by the editors December 10, 2001 and, in revised form, September 14, 2002. 2000 Mathematics Subject Classification. Primary 20G20, 15A48, 14N35, 14N15.