Angular Position Angular Displacement Angular Velocity And

Total Page:16

File Type:pdf, Size:1020Kb

Angular Position Angular Displacement Angular Velocity And Rotation 8/23/15, 2:04 PM Print this page Review & Summary Angular Position To describe the rotation of a rigid body about a fixed axis, called the rotation axis, we assume a reference line is fixed in the body, perpendicular to that axis and rotating with the body. We measure the angular position θ of this line relative to a fixed direction. When θ is measured in radians, (10-1) where s is the arc length of a circular path of radius r and angle θ. Radian measure is related to angle measure in revolutions and degrees by (10-2) Angular Displacement A body that rotates about a rotation axis, changing its angular position from θ1 to θ2, undergoes an angular displacement (10-4) where is positive for counterclockwise rotation and negative for clockwise rotation. Angular Velocity and Speed If a body rotates through an angular displacement in a time interval , its average angular velocity ωavg is (10-5) The (instantaneous) angular velocity ω of the body is (10-6) Both ωavg and ω are vectors, with directions given by the right-hand rule of Fig. 10-6. They are positive for counterclockwise rotation and negative for clockwise rotation. The magnitude of the body's angular velocity is the angular speed. Angular Acceleration If the angular velocity of a body changes from ω1 to ω2 in a time interval , the average angular acceleration αavg of the body is (10-7) The (instantaneous) angular acceleration α of the body is http://edugen.wileyplus.com/edugen/courses/crs7165/halliday9781118230…k5NzgxMTE4MjMwNzI1YzEwLXNlYy0wMDUwLnhmb3Jt.enc?course=crs7165&id=ref Page 1 of 4 Rotation 8/23/15, 2:04 PM (10-8) Both αavg and α are vectors. The Kinematic Equations for Constant Angular Acceleration Constant angular acceleration is an important special case of rotational motion. The appropriate kinematic equations, given in Table 10-1, are (10-12) (10-13) (10-14) (10-15) (10-16) Linear and Angular Variables Related A point in a rigid rotating body, at a perpendicular distance r from the rotation axis, moves in a circle with radius r. If the body rotates through an angle θ, the point moves along an arc with length s given by (10-17) where θ is in radians. The linear velocity of the point is tangent to the circle; the point's linear speed v is given by (10-18) where ω is the angular speed (in radians per second) of the body. The linear acceleration of the point has both tangential and radial components. The tangential component is (10-22) where α is the magnitude of the angular acceleration (in radians per second-squared) of the body. The radial component of is (10-23) If the point moves in uniform circular motion, the period T of the motion for the point and the body is http://edugen.wileyplus.com/edugen/courses/crs7165/halliday9781118230…k5NzgxMTE4MjMwNzI1YzEwLXNlYy0wMDUwLnhmb3Jt.enc?course=crs7165&id=ref Page 2 of 4 Rotation 8/23/15, 2:04 PM (10-19, 10-20) Rotational Kinetic Energy and Rotational Inertia The kinetic energy K of a rigid body rotating about a fixed axis is given by (10-34) in which I is the rotational inertia of the body, defined as (10-33) for a system of discrete particles and defined as (10-35) for a body with continuously distributed mass. The r and ri in these expressions represent the perpendicular distance from the axis of rotation to each mass element in the body, and the integration is carried out over the entire body so as to include every mass element. The Parallel-Axis Theorem The parallel-axis theorem relates the rotational inertia I of a body about any axis to that of the same body about a parallel axis through the center of mass: (10-36) Here h is the perpendicular distance between the two axes, and is the rotational inertia of the body about the axis through the com. We can describe h as being the distance the actual rotation axis has been shifted from the rotation axis through the com. Torque Torque is a turning or twisting action on a body about a rotation axis due to a force . If is exerted at a point given by the position vector relative to the axis, then the magnitude of the torque is (10-40, 10-41, 10-39) where Ft is the component of perpendicular to and is the angle between and . The quantity is the perpendicular distance between the rotation axis and an extended line running through the vector. This line is called the line of action of , and is called the moment arm of . Similarly, r is the moment arm of Ft. The SI unit of torque is the newton-meter . A torque τ is positive if it tends to rotate a body at rest counterclockwise and negative if it tends to rotate the body clockwise. http://edugen.wileyplus.com/edugen/courses/crs7165/halliday9781118230…k5NzgxMTE4MjMwNzI1YzEwLXNlYy0wMDUwLnhmb3Jt.enc?course=crs7165&id=ref Page 3 of 4 Rotation 8/23/15, 2:04 PM Newton's Second Law in Angular Form The rotational analog of Newton's second law is (10-45) where is the net torque acting on a particle or rigid body, I is the rotational inertia of the particle or body about the rotation axis, and α is the resulting angular acceleration about that axis. Work and Rotational Kinetic Energy The equations used for calculating work and power in rotational motion correspond to equations used for translational motion and are (10-53) and (10-55) When τ is constant, Eq. 10-53 reduces to (10-54) The form of the work-kinetic energy theorem used for rotating bodies is (10-52) Copyright © 2014 John Wiley & Sons, Inc. All rights reserved. http://edugen.wileyplus.com/edugen/courses/crs7165/halliday9781118230…k5NzgxMTE4MjMwNzI1YzEwLXNlYy0wMDUwLnhmb3Jt.enc?course=crs7165&id=ref Page 4 of 4.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Rotational Motion (The Dynamics of a Rigid Body)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat­ ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de­ scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates.
    [Show full text]
  • Forces Different Types of Forces
    Forces and motion are a part of your everyday life for example pushing a trolley, a horse pulling a rope, speed and acceleration. Force and motion causes objects to move but also to stay still. Motion is simply a movement but needs a force to move. There are 2 types of forces, contact forces and act at a distance force. Forces Every day you are using forces. Force is basically push and pull. When you push and pull you are applying a force to an object. If you are Appling force to an object you are changing the objects motion. For an example when a ball is coming your way and then you push it away. The motion of the ball is changed because you applied a force. Different Types of Forces There are more forces than push or pull. Scientists group all these forces into two groups. The first group is contact forces, contact forces are forces when 2 objects are physically interacting with each other by touching. The second group is act at a distance force, act at a distance force is when 2 objects that are interacting with each other but not physically touching. Contact Forces There are different types of contact forces like normal Force, spring force, applied force and tension force. Normal force is when nothing is happening like a book lying on a table because gravity is pulling it down. Another contact force is spring force, spring force is created by a compressed or stretched spring that could push or pull. Applied force is when someone is applying a force to an object, for example a horse pulling a rope or a boy throwing a snow ball.
    [Show full text]
  • M1=100 Kg Adult, M2=10 Kg Baby. the Seesaw Starts from Rest. Which Direction Will It Rotates?
    m1 m2 m1=100 kg adult, m2=10 kg baby. The seesaw starts from rest. Which direction will it rotates? (a) Counter-Clockwise (b) Clockwise ()(c) NttiNo rotation (d) Not enough information Effect of a Constant Net Torque 2.3 A constant non-zero net torque is exerted on a wheel. Which of the following quantities must be changing? 1. angular position 2. angular velocity 3. angular acceleration 4. moment of inertia 5. kinetic energy 6. the mass center location A. 1, 2, 3 B. 4, 5, 6 C. 1,2, 5 D. 1, 2, 3, 4 E. 2, 3, 5 1 Example: second law for rotation PP10601-50: A torque of 32.0 N·m on a certain wheel causes an angular acceleration of 25.0 rad/s2. What is the wheel's rotational inertia? Second Law example: α for an unbalanced bar Bar is massless and originally horizontal Rotation axis at fulcrum point L1 N L2 Î N has zero torque +y Find angular acceleration of bar and the linear m1gmfulcrum 2g acceleration of m1 just after you let go τnet Constraints: Use: τnet = Itotα ⇒ α = Itot 2 2 Using specific numbers: where: Itot = I1 + I2 = m1L1 + m2L2 Let m1 = m2= m L =20 cm, L = 80 cm τnet = ∑ τo,i = + m1gL1 − m2gL2 1 2 θ gL1 − gL2 g(0.2 - 0.8) What happened to sin( ) in moment arm? α = 2 2 = 2 2 L1 + L2 0.2 + 0.8 2 net = − 8.65 rad/s Clockwise torque m gL − m gL a ==+ -α L 1.7 m/s2 α = 1 1 2 2 11 2 2 Accelerates UP m1L1 + m2L2 total I about pivot What if bar is not horizontal? 2 See Saw 3.1.
    [Show full text]
  • Influence of Angular Velocity of Pedaling on the Accuracy of The
    Research article 2018-04-10 - Rev08 Influence of Angular Velocity of Pedaling on the Accuracy of the Measurement of Cyclist Power Abstract Almost all cycling power meters currently available on the The miscalculation may be—even significantly—greater than we market are positioned on rotating parts of the bicycle (pedals, found in our study, for the following reasons: crank arms, spider, bottom bracket/hub) and, regardless of • the test was limited to only 5 cyclists: there is no technical and construction differences, all calculate power on doubt other cyclists may have styles of pedaling with the basis of two physical quantities: torque and angular velocity greater variations of angular velocity; (or rotational speed – cadence). Both these measures vary only 2 indoor trainer models were considered: other during the 360 degrees of each revolution. • models may produce greater errors; The torque / force value is usually measured many times during slopes greater than 5% (the only value tested) may each rotation, while the angular velocity variation is commonly • lead to less uniform rotations and consequently neglected, considering only its average value for each greater errors. revolution (cadence). It should be noted that the error observed in this analysis This, however, introduces an unpredictable error into the power occurs because to measure power the power meter considers calculation. To use the average value of angular velocity means the average angular velocity of each rotation. In power meters to consider each pedal revolution as perfectly smooth and that use this type of calculation, this error must therefore be uniform: but this type of pedal revolution does not exist in added to the accuracy stated by the manufacturer.
    [Show full text]
  • PHYSICS of ARTIFICIAL GRAVITY Angie Bukley1, William Paloski,2 and Gilles Clément1,3
    Chapter 2 PHYSICS OF ARTIFICIAL GRAVITY Angie Bukley1, William Paloski,2 and Gilles Clément1,3 1 Ohio University, Athens, Ohio, USA 2 NASA Johnson Space Center, Houston, Texas, USA 3 Centre National de la Recherche Scientifique, Toulouse, France This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented. Figure 2-01. Artist's concept of one of NASA early (1962) concepts for a manned space station with artificial gravity: a self- inflating 22-m-diameter rotating hexagon. Photo courtesy of NASA. 1 ARTIFICIAL GRAVITY: WHAT IS IT? 1.1 Definition Artificial gravity is defined in this book as the simulation of gravitational forces aboard a space vehicle in free fall (in orbit) or in transit to another planet. Throughout this book, the term artificial gravity is reserved for a spinning spacecraft or a centrifuge within the spacecraft such that a gravity-like force results. One should understand that artificial gravity is not gravity at all. Rather, it is an inertial force that is indistinguishable from normal gravity experience on Earth in terms of its action on any mass. A centrifugal force proportional to the mass that is being accelerated centripetally in a rotating device is experienced rather than a gravitational pull.
    [Show full text]
  • Basement Flood Mitigation
    1 Mitigation refers to measures taken now to reduce losses in the future. How can homeowners and renters protect themselves and their property from a devastating loss? 2 There are a range of possible causes for basement flooding and some potential remedies. Many of these low-cost options can be factored into a family’s budget and accomplished over the several months that precede storm season. 3 There are four ways water gets into your basement: Through the drainage system, known as the sump. Backing up through the sewer lines under the house. Seeping through cracks in the walls and floor. Through windows and doors, called overland flooding. 4 Gutters can play a huge role in keeping basements dry and foundations stable. Water damage caused by clogged gutters can be severe. Install gutters and downspouts. Repair them as the need arises. Keep them free of debris. 5 Channel and disperse water away from the home by lengthening the run of downspouts with rigid or flexible extensions. Prevent interior intrusion through windows and replace weather stripping as needed. 6 Many varieties of sturdy window well covers are available, simple to install and hinged for easy access. Wells should be constructed with gravel bottoms to promote drainage. Remove organic growth to permit sunlight and ventilation. 7 Berms and barriers can help water slope away from the home. The berm’s slope should be about 1 inch per foot and extend for at least 10 feet. It is important to note permits are required any time a homeowner alters the elevation of the property.
    [Show full text]
  • Circle Theorems
    Circle theorems A LEVEL LINKS Scheme of work: 2b. Circles – equation of a circle, geometric problems on a grid Key points • A chord is a straight line joining two points on the circumference of a circle. So AB is a chord. • A tangent is a straight line that touches the circumference of a circle at only one point. The angle between a tangent and the radius is 90°. • Two tangents on a circle that meet at a point outside the circle are equal in length. So AC = BC. • The angle in a semicircle is a right angle. So angle ABC = 90°. • When two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference. So angle AOB = 2 × angle ACB. • Angles subtended by the same arc at the circumference are equal. This means that angles in the same segment are equal. So angle ACB = angle ADB and angle CAD = angle CBD. • A cyclic quadrilateral is a quadrilateral with all four vertices on the circumference of a circle. Opposite angles in a cyclic quadrilateral total 180°. So x + y = 180° and p + q = 180°. • The angle between a tangent and chord is equal to the angle in the alternate segment, this is known as the alternate segment theorem. So angle BAT = angle ACB. Examples Example 1 Work out the size of each angle marked with a letter. Give reasons for your answers. Angle a = 360° − 92° 1 The angles in a full turn total 360°. = 268° as the angles in a full turn total 360°.
    [Show full text]
  • Position Management System Online Subject Area
    USDA, NATIONAL FINANCE CENTER INSIGHT ENTERPRISE REPORTING Business Intelligence Delivered Insight Quick Reference | Position Management System Online Subject Area What is Position Management System Online (PMSO)? • This Subject Area provides snapshots in time of organization position listings including active (filled and vacant), inactive, and deleted positions. • Position data includes a Master Record, containing basic position data such as grade, pay plan, or occupational series code. • The Master Record is linked to one or more Individual Positions containing organizational structure code, duty station code, and accounting station code data. History • The most recent daily snapshot is available during a given pay period until BEAR runs. • Bi-Weekly snapshots date back to Pay Period 1 of 2014. Data Refresh* Position Management System Online Common Reports Daily • Provides daily results of individual position information, HR Area Report Name Load which changes on a daily basis. Bi-Weekly Organization • Position Daily for current pay and Position Organization with period/ Bi-Weekly • Provides the latest record regardless of previous changes Management PII (PMSO) for historical pay that occur to the data during a given pay period. periods *View the Insight Data Refresh Report to determine the most recent date of refresh Reminder: In all PMSO reports, users should make sure to include: • An Organization filter • PMSO Key elements from the Master Record folder • SSNO element from the Incumbent Employee folder • A time filter from the Snapshot Time folder 1 USDA, NATIONAL FINANCE CENTER INSIGHT ENTERPRISE REPORTING Business Intelligence Delivered Daily Calendar Filters Bi-Weekly Calendar Filters There are three time options when running a bi-weekly There are two ways to pull the most recent daily data in a PMSO report: PMSO report: 1.
    [Show full text]
  • Linear and Angular Velocity Examples
    Linear and Angular Velocity Examples Example 1 Determine the angular displacement in radians of 6.5 revolutions. Round to the nearest tenth. Each revolution equals 2 radians. For 6.5 revolutions, the number of radians is 6.5 2 or 13 . 13 radians equals about 40.8 radians. Example 2 Determine the angular velocity if 4.8 revolutions are completed in 4 seconds. Round to the nearest tenth. The angular displacement is 4.8 2 or 9.6 radians. = t 9.6 = = 9.6 , t = 4 4 7.539822369 Use a calculator. The angular velocity is about 7.5 radians per second. Example 3 AMUSEMENT PARK Jack climbs on a horse that is 12 feet from the center of a merry-go-round. 1 The merry-go-round makes 3 rotations per minute. Determine Jack’s angular velocity in radians 4 per second. Round to the nearest hundredth. 1 The merry-go-round makes 3 or 3.25 revolutions per minute. Convert revolutions per minute to radians 4 per second. 3.25 revolutions 1 minute 2 radians 0.3403392041 radian per second 1 minute 60 seconds 1 revolution Jack has an angular velocity of about 0.34 radian per second. Example 4 Determine the linear velocity of a point rotating at an angular velocity of 12 radians per second at a distance of 8 centimeters from the center of the rotating object. Round to the nearest tenth. v = r v = (8)(12 ) r = 8, = 12 v 301.5928947 Use a calculator. The linear velocity is about 301.6 centimeters per second.
    [Show full text]
  • Position, Displacement, Velocity Big Picture
    Position, Displacement, Velocity Big Picture I Want to know how/why things move I Need a way to describe motion mathematically: \Kinematics" I Tools of kinematics: calculus (rates) and vectors (directions) I Chapters 2, 4 are all about kinematics I First 1D, then 2D/3D I Main ideas: position, velocity, acceleration Language is crucial Physics uses ordinary words but assigns specific technical meanings! WORD ORDINARY USE PHYSICS USE position where something is where something is velocity speed speed and direction speed speed magnitude of velocity vec- tor displacement being moved difference in position \as the crow flies” from one instant to another Language, continued WORD ORDINARY USE PHYSICS USE total distance displacement or path length traveled path length trav- eled average velocity | displacement divided by time interval average speed total distance di- total distance divided by vided by time inter- time interval val How about some examples? Finer points I \instantaneous" velocity v(t) changes from instant to instant I graphically, it's a point on a v(t) curve or the slope of an x(t) curve I average velocity ~vavg is not a function of time I it's defined for an interval between instants (t1 ! t2, ti ! tf , t0 ! t, etc.) I graphically, it's the \rise over run" between two points on an x(t) curve I in 1D, vx can be called v I it's a component that is positive or negative I vectors don't have signs but their components do What you need to be able to do I Given starting/ending position, time, speed for one or more trip legs, calculate average
    [Show full text]
  • Chapters, in This Chapter We Present Methods Thatare Not Yet Employed by Industrial Robots, Except in an Extremely Simplifiedway
    C H A P T E R 11 Force control of manipulators 11.1 INTRODUCTION 11.2 APPLICATION OF INDUSTRIAL ROBOTS TO ASSEMBLY TASKS 11.3 A FRAMEWORK FOR CONTROL IN PARTIALLY CONSTRAINED TASKS 11.4 THE HYBRID POSITION/FORCE CONTROL PROBLEM 11.5 FORCE CONTROL OFA MASS—SPRING SYSTEM 11.6 THE HYBRID POSITION/FORCE CONTROL SCHEME 11.7 CURRENT INDUSTRIAL-ROBOT CONTROL SCHEMES 11.1 INTRODUCTION Positioncontrol is appropriate when a manipulator is followinga trajectory through space, but when any contact is made between the end-effector and the manipulator's environment, mere position control might not suffice. Considera manipulator washing a window with a sponge. The compliance of thesponge might make it possible to regulate the force applied to the window by controlling the position of the end-effector relative to the glass. If the sponge isvery compliant or the position of the glass is known very accurately, this technique could work quite well. If, however, the stiffness of the end-effector, tool, or environment is high, it becomes increasingly difficult to perform operations in which the manipulator presses against a surface. Instead of washing with a sponge, imagine that the manipulator is scraping paint off a glass surface, usinga rigid scraping tool. If there is any uncertainty in the position of the glass surfaceor any error in the position of the manipulator, this task would become impossible. Either the glass would be broken, or the manipulator would wave the scraping toolover the glass with no contact taking place. In both the washing and scraping tasks, it would bemore reasonable not to specify the position of the plane of the glass, but rather to specifya force that is to be maintained normal to the surface.
    [Show full text]