UK Standards for Microbiology Investigations

Total Page:16

File Type:pdf, Size:1020Kb

UK Standards for Microbiology Investigations UK Standards for Microbiology Investigations Staining procedures Issued by the Standards Unit, National Infection Service, PHE Bacteriology – Test Procedures | TP 39 | Issue no: dn+| Issue date: xx | Page: 1 of 53 © Crown copyright 2018 Staining procedures Acknowledgments UK Standards for Microbiology Investigations (UK SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. UK SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the medical editors for editing the medical content. For further information please contact us at: Standards Unit National Infection Service Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories PHE publications gateway number: 2015075 UK Standards for Microbiology Investigations are produced in association with: Logos correct at time of publishing. Bacteriology – Test Procedures | TP 39 | Issue no: dn+ | Issue date: xx | Page: 2 of 53 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Staining procedures Contents Acknowledgments ................................................................................................................. 2 Contents ................................................................................................................................. 3 Amendment table ................................................................................................................... 5 UK SMI: scope and purpose .................................................................................................. 6 Scope of document ................................................................................................................ 9 Introduction ............................................................................................................................ 9 Technical information/limitations ......................................................................................... 9 Bacteria stains ..................................................................................................................... 11 1 Auramine-phenol stain – 1 (acid fast bacilli) .......................................................... 11 2 Gram stain ................................................................................................................. 13 3 Kinyoun stain (Mycobacterium and Nocardia species) ......................................... 15 4 McFadyean stain ....................................................................................................... 17 5 Modifications of the Kinyoun stain method ............................................................ 18 6 Sandiford’s modification of Gram stain .................................................................. 18 7 Spore stains .............................................................................................................. 19 8 Vincent’s stain (oral bacteria) .................................................................................. 21 9 Ziehl-Neelsen stain (acid fast bacilli) ...................................................................... 21 Fungal stains ........................................................................................................................ 23 1 Grocott-Gomori Methenamine Silver stain (GMS) (fungi) ...................................... 23 2 Lactophenol cotton blue stain ................................................................................. 25 3 Modified Giemsa’s stain (Pneumocystis jirovecii) ................................................. 27 4 Nigrosin (India ink) preparation ............................................................................... 28 5 Potassium hydroxide – calcofluor white preparation (KOH-CFW) (fungi) ............ 29 6 Rapid Field’s stain (Pneumocystis jirovecii) .......................................................... 31 Parasite stains ...................................................................................................................... 32 1 Acridine orange stain (Trichomonas vaginalis)...................................................... 32 2 Auramine-phenol stain – 2 (Cryptosporidium species) ......................................... 33 Bacteriology – Test Procedures | TP 39 | Issue no: dn+ | Issue date: xx | Page: 3 of 53 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Staining procedures 3 Calcofluor stain (Microsporidia) .............................................................................. 35 4 Field’s stain (Plasmodium species)......................................................................... 36 5 Giemsa stain (Dientamoeba fragilis and Blastocystis hominis) ............................ 38 6 Giemsa stain (Plasmodium species) ....................................................................... 39 7 Lugol’s iodine (parasites) ........................................................................................ 41 8 Modified trichrome stain (Microsporidia) ................................................................ 42 9 Modified cold Ziehl-Neelsen’s stain (Cryptosporidum and Isospora species) ..... 43 10 Rapid field’s stain (Dientamoeba fragilis and Blastocystis hominis) ................... 45 Appendix .............................................................................................................................. 47 References ........................................................................................................................... 49 Bacteriology – Test Procedures | TP 39 | Issue no: dn+ | Issue date: xx | Page: 4 of 53 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Staining procedures Amendment table Each UK SMI method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from [email protected]. New or revised documents should be controlled within the laboratory in accordance with the local quality management system. Amendment number/date New amendment number/ Issue number discarded 2.1 Insert issue number 3 Anticipated next review date* Section(s) involved Amendment Document updated. The lactophenol cotton blue stain methods for clinical specimens and colonies clarified in Whole document. separate titles. More information added in the general technical limitations section. References graded and updated. ∗ Reviews can be extended up to five years subject to resources available. Bacteriology – Test Procedures | TP 39 | Issue no: dn+ | Issue date: xx | Page: 5 of 53 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Staining procedures # UK SMI : scope and purpose Users of UK SMIs Primarily, UK SMIs are intended as a general resource for practising professionals operating in the field of laboratory medicine and infection specialties in the UK. UK SMIs also provide clinicians with information about the available test repertoire and the standard of laboratory services they should expect for the investigation of infection in their patients, as well as providing information that aids the electronic ordering of appropriate tests. The documents also provide commissioners of healthcare services with the appropriateness and standard of microbiology investigations they should be seeking as part of the clinical and public health care package for their population. Background to UK SMIs UK SMIs comprise a collection of recommended algorithms and procedures covering all stages of the investigative process in microbiology from the pre-analytical (clinical syndrome) stage to the analytical (laboratory testing) and post analytical (result interpretation and reporting) stages. Syndromic algorithms are supported by more detailed documents containing advice on the investigation of specific diseases and infections. Quality guidance notes describe laboratory processes which underpin quality, for example assay validation. Standardisation of the diagnostic process through the application of UK SMIs helps to assure the equivalence of investigation strategies in different laboratories across the UK and is essential for public health surveillance, research and development activities. Equal partnership working UK SMIs are developed in equal partnership with PHE, NHS, Royal College of Pathologists and professional societies. The list of participating societies may be found at https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories. Inclusion of a logo in an UK SMI indicates participation of the society in equal partnership and support for the objectives and process
Recommended publications
  • TB Auramine-Rhodamine PRODUCT DETERIORATION
    Directions should be read and followed carefully. Refer to Material Safety Data Sheet for additional information. STORAGE This product is ready for use and no further preparation is necessary. Store product in its original container at 20-25°C until used. TB Auramine-Rhodamine PRODUCT DETERIORATION INTENDED USE This product should not be used if (1) the color has changed Remel TB Auramine-Rhodamine is a stain recommended for from a red, clear liquid, (2) the expiration date has passed, or use in qualitative procedures in the fluorescent microscopic (3) there are other signs of deterioration. detection of mycobacteria. SPECIMEN COLLECTION, STORAGE AND TRANSPORT Specimens should be collected and handled following SUMMARY AND EXPLANATION 5 recommended guidelines. One of the earliest methods devised for the detection of tubercle bacilli is the microscopic staining technique.1 MATERIALS REQUIRED BUT NOT SUPPLIED Mycobacteria possess cell walls that contain mycolic acid (1) Loop sterilization device, (2) Inoculating loop, swab, which complex with dyes resulting in the characteristic known collection containers, (3) Incubators, alternative environmental as “acid-fastness.” Acid-fast microscopy is the most rapid, TM systems, (4) Supplemental media, (5) QC-Slide AFB Stain initial step in diagnosis and in providing information about the Control (REF 40146) or quality control organisms, (6) TB number of acid-fast bacilli present. The use of fluorescent Decolorizer (Truant-Moore) (REF 40107), (7) TB Potassium dyes for the detection of acid-fast bacilli in clinical specimens 2 Permanganate (REF 40092), (8) Demineralized water, was described by Hagemann in 1937. In 1962, Truant, Brett, (9) Glass slides, (10) Bunsen burner or slide warmer, and Thomas evaluated the usefulness of the fluorescent (11) Microscope, (12) Immersion oil.
    [Show full text]
  • Pathology User Guide
    Whittington Health Version: 2021.1 MB 129 Microbiology Department Author: Service Managers Page 1 of 189 Print Date: 27 April 2021 Authorised by: DW Issue Date: 26 April 2021 PATHOLOGY USER GUIDE Version 2021.1 Document Number : MB 129 Approved By: David Whittington 1 The master document is controlled electronically. Printed copies of this document are not controlled. Document users are responsible for ensuring printed copies are valid prior to use. Whittington Health Version: 2021.1 MB 129 Microbiology Department Author: Service Managers Page 2 of 189 Print Date: 27 April 2021 Authorised by: DW Issue Date: 26 April 2021 CONTENTS GENERAL INFORMATION..................................................................................................................... 5 INTRODUCTION ................................................................................................................................. 5 ADDRESS ........................................................................................................................................... 5 LOCATION .......................................................................................................................................... 5 GENERAL ENQUIRIES ...................................................................................................................... 5 OPERATIONAL PATHOLOGY LABORATORY MANAGER ............................................................... 6 SERVICE AVAILABILITY ...................................................................................................................
    [Show full text]
  • Gst Gram Staining Learning Objectives the Student Will  Use Aseptic Techniques in the Safe Inoculation of Various Forms of Media
    GSt Gram Staining Learning Objectives The student will Use aseptic techniques in the safe inoculation of various forms of media. Follow oral and written instructions and manage time in the lab efficiently. Use the bright field light microscope to view microbes under oil immersion, make accurate observations and appropriate interpretations and store the microscope according to lab procedures. Properly prepare a bacterial smear for accurate staining and describe the chemical basis for simple staining and negative staining. Background/Theory Differential staining distinguishes organisms based on their interactions with multiple stains. In other words, two organisms may appear to be different colors. Differential staining techniques commonly used in clinical settings include Gram staining, acid-fast staining, endospore staining, flagella staining, and capsule staining. This link to the OpenStax Microbiology text provides more detail on these differential staining techniques. (OpenStax CNX, 2018) The Gram stain is a differential staining procedure that involves multiple steps. It was developed by Danish microbiologist Hans Christian Gram in 1884 as an effective method to distinguish between bacteria containing the two most common types of cell walls. (OpenStax CNX, 2018) One type consists of an inner plasma membrane and a thick outer layer of peptidoglycan. The other type consists of a double phospholipid Figure 1 Simplified structures of Gram negative cells (left) and Gram positive bilayer with a thin layer of cells (right) peptidoglycan between the two. The Gram Staining technique remains one of the most frequently used staining techniques. The steps of the Gram stain procedure are listed below and illustrated in Figure. (OpenStax CNX, 2018) 1.
    [Show full text]
  • QBC F.A.S.T. Auramine O Stain
    QBC F.A.S.T.TM Auramine O Stain Kit Instruction Manual 4277-400-053 Rev. I Revised 2018-11-20 English QBC F.A.S.T.TM Auramine O Stain Kit Intended Use For use as a stain for smears made from patient specimens or cultures in the detection or characterization of acid fast bacilli such as Mycobacterium tuberculosis. Summary and Principles The worldwide incidence of tuberculosis has been on an increasing trend since at least 1990, when the World Health Organization began tracking incidence data1. Early and accurate detection of tuberculosis is critical for both effective control and treatment of the disease. The most common method for detection of Mycobacterium tuberculosis is the use of sputum smear microscopy1, which can provide both an initial presumptive diagnosis as well as a quantification of the mycobacterial load. Acid fast bacilli, such as Mycobacterium tuberculosis, can be stained by aniline dyes and are resistant to decolorization by acid and alcohol. When followed by a counterstain, this treatment results in the acid fast bacilli staining with contrast to other organisms and debris that have retained only the counterstain. However, the staining methods classically used for acid fast microscopy result in a smear that can be difficult and time consuming to read. Auramine O and auramine-rhodamine stains have been successfully used for fluorescence based microscopy of mycobacteria. Reports of mechanism of staining are conflicting; these include Auramine O binding to the cell wall of the mycobacteria2 and the stain binding 1 to “most if not all” the Auramine O binding to the nucleic acid in the mycobacteria3.
    [Show full text]
  • Comparative Evaluation of Ziehl-Neelsen and Kinyoun Staining in the Diagnosis of Clinically Suspected Cases of Pulmonary Tuberculosis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Asian Pacific Journal of Health Sciences Asian Pac. J. Health Sci., 2019; 6(4):37-42 e-ISSN: 2349-0659, p-ISSN: 2350-0964 ____________________________________________________________________________________________________________________________________________ Document heading doi: 10.21276/apjhs.2019.6.4.8 Original Research Article Comparative Evaluation of Ziehl-Neelsen and Kinyoun Staining in the Diagnosis of Clinically Suspected Cases of Pulmonary Tuberculosis Sachin Kumar Mishra1, Sonali Mishra2* 1Assistant Professor, Department of Microbiology, Atal Bihari Vajpayee Government Medical College, NH-86, In-front of Khel Parisar, Sanchi Rd, Vidisha, 464001, Madhya Pradesh, India 2Assistant Professor, Department of Biochemistry, Atal Bihari Vajpayee Government Medical College, NH-86, In-front of Khel Parisar, Sanchi Rd, Vidisha, 464001, Madhya Pradesh, India Received: 26-08-2019 / Revised: 17-11-2019 / Accepted: 26-11-2019 ABSTRACT Background: Bacteriological examination of sputum is the cornerstone in diagnosis of pulmonary tuberculosis in developing world, which is usually done using a Ziehl-Nelseen (ZN) method. However, due to limited laboratory facilities that can satisfy the procedure, applicability of this procedure appears to be adversely affected in field conditions and at peripheral health institutions. Hence, it has become necessary to look for a procedure which can be used as alternative in such conditions. Material and Methods: This was a cross sectional study conducted in the Department of Microbiology, Index Medical College Hospital & Research Centre, Indore, Madhya Pradesh in conjunction with the Chest TB Clinic of Index Hospital, New Delhi for a period of 1year [from February 2018 to January 2019].
    [Show full text]
  • Auramine O C.I. 41000
    AURAMINE O C.I. 41000 IVD In vitro diagnostic medical device Basic Yellow 2, BSC certified stain For staining acid-fast lung tissue bacteria acc. to Truant INSTRUCTIONS FOR USE REF Product code: AU-P-25 (25 g) Introduction Histology, cytology and other related scientific disciplines study the microscopic anatomy of tissues and cells. In order to achieve a good tissue and cellular structure, the samples need to be stained in a correct manner. Auramine O powder dye is used in various staining methods in microscopy. It is used in clinical microbiology and histology for detecting tuberculosis Mycobacteria and other acid-fast bacteria. Staining using Auramine O is a fluorescent method of visualizing acid-fast bacteria. Mycobacteria are difficult to stain due to high amount of lipids and wax in their cellular membranes. When stained using Auramine O dye, acid-fast mycobactera retain the dye even when exposed to strong destaining solutions, such as HCl-ethanol. Product description AURAMINE O - Biological Stain Commission (BSC) certified powder dye for preparing solution for detecting Mycobacterium tuberculosis and other acid-fast bacteria Other preparations and reagents used in preparing the dye solution: Microscopy powder dyes, such as BioGnost's Rhodamine B dye (product code RHB-P-25) Phenol (C6H5OH) Glycerol (C3H5(OH)3) Preparing the solutions for staining Auramine O-Rhodamine B staining solution: Dissolve by mixing 3 g of Auramine O powder dye adn 1.5 g of Rhodamine B powder dye in 150 ml of glycerol at room temperature. Add 20 ml of molten phenol (at 45oC) and 100 ml of distilled/demineralized water After mixing, filter through glass wool Results Tb bacterija (ARB) - red or greenish fluorescence Background - dark Note The mentioned formulation is only one of the ways of preparing the dye solution.
    [Show full text]
  • Carbol Fuchsin Acc. to Ziehl-Neelsen
    Rev.07– 27/10/2011 Carbol Fuchsin acc. to Ziehl-Neelsen Manufacturer: Diapath Via Savoldini,71- 24057 MARTINENGO- BG- PH+39.0363.986.411 [email protected] CODE PACKAGING C0421 125 ml C0422 500 ml C0423 1000 ml Description Carbol fuchsin solution is used for the staining of acid resistant bacteria in the Ziehl-Neelsen method (see, also special stain kit code 010201). This staining is suitable to highlight mycobacteria, Nocardia and parasites on histological sections, smears, excreta and cultures. The protocol is based on typical structure of acid resistant bacteria, which acquire and keep dyes so that following decolorizing treatments are possible. Dark blue background is obtained with Methylene blue. Composition Phenol CAS No. 108-95-2 EC No. 203-6327 Basic fuchsine CAS No. 58969-01-0 EC No. 221-816-5 C.I. 42510 Ethanol CAS No.64-17-5 EC No.20-578-6 Staining protocol Histological sections (Ziehl-Neelsen staining) 1. Dewax sections and hydrate to distilled water 2. Carbol fuchsin solution for 30 minutes 3. Wash very well in running cold water 4. Acid alcohol* till sections are pale pink 5. Water for 5 minutes 6. Methylene blue solution for 30 seconds 7. Distilled water 8. Dehydrate very quickly, clarify and mount *Acid alcohol: 100 ml of ethyl alcohol 70° + 3 ml hydrochloric acid Cytological specimens (Ziehl-Neelsen staining) 1. Carbol fuchsin for 30 minutes 2. Wash in distilled water 3. Acid alcohol* 10 seconds 4. Wash in distilled water 5. Methylene blue for 30 seconds 6. Distilled water 7. Dehydrate very quickly, clarify and mount NOTE: Methylene blue could cover the possible presence of acid resistant bacteria in the specimen.
    [Show full text]
  • Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
    City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I.
    [Show full text]
  • Francisella Tularensis 6/06 Tularemia Is a Commonly Acquired Laboratory Colony Morphology Infection; All Work on Suspect F
    Francisella tularensis 6/06 Tularemia is a commonly acquired laboratory Colony Morphology infection; all work on suspect F. tularensis cultures .Aerobic, fastidious, requires cysteine for growth should be performed at minimum under BSL2 .Grows poorly on Blood Agar (BA) conditions with BSL3 practices. .Chocolate Agar (CA): tiny, grey-white, opaque A colonies, 1-2 mm ≥48hr B .Cysteine Heart Agar (CHA): greenish-blue colonies, 2-4 mm ≥48h .Colonies are butyrous and smooth Gram Stain .Tiny, 0.2–0.7 μm pleomorphic, poorly stained gram-negative coccobacilli .Mostly single cells Growth on BA (A) 48 h, (B) 72 h Biochemical/Test Reactions .Oxidase: Negative A B .Catalase: Weak positive .Urease: Negative Additional Information .Can be misidentified as: Haemophilus influenzae, Actinobacillus spp. by automated ID systems .Infective Dose: 10 colony forming units Biosafety Level 3 agent (once Francisella tularensis is . Growth on CA (A) 48 h, (B) 72 h suspected, work should only be done in a certified Class II Biosafety Cabinet) .Transmission: Inhalation, insect bite, contact with tissues or bodily fluids of infected animals .Contagious: No Acceptable Specimen Types .Tissue biopsy .Whole blood: 5-10 ml blood in EDTA, and/or Inoculated blood culture bottle Swab of lesion in transport media . Gram stain Sentinel Laboratory Rule-Out of Francisella tularensis Oxidase Little to no growth on BA >48 h Small, grey-white opaque colonies on CA after ≥48 h at 35/37ºC Positive Weak Negative Positive Catalase Tiny, pleomorphic, faintly stained, gram-negative coccobacilli (red, round, and random) Perform all additional work in a certified Class II Positive Biosafety Cabinet Weak Negative Positive *Oxidase: Negative Urease *Catalase: Weak positive *Urease: Negative *Oxidase, Catalase, and Urease: Appearances of test results are not agent-specific.
    [Show full text]
  • Solarbio Science & Technology Co., Ltd Tel: 010-56371207 Solarbio Fax: 010-56371281/82
    Beijing Solarbio Science & Technology Co., Ltd Tel: 010-56371207 Fax: 010-56371281/82 Solarbio Http://www.solarbio.cn Neutral Red CAS Number: 553-24-2 Storage Temperature: 2-8 °C Product Description : Appearance: Fine dark green-black powder Molecular Formula: C15H17ClN4 Molecular Weight: 288.78 Synonyms: toluylene red, basic red 5 Neutral Red is a weak cationic azine dye that is used extensively as a nuclear stain in a variety of biological stain applications. It is a pH indicator as well, changing color from red to yellow over the pH range 6.8-8.0. It is also incorporated into bacteriological growth media. This product is often used for supravital staining of fresh peripheral blood. It can also be used for staining Nissl granules of neuroglial cells. However, this stain is not as permanent as another dye, Cresyl Violet acetate, for this application. Buffered 0.5% Neutral Red solutions are used as a counterstain for Naphthol AS acetate esterase, peroxidase and iron stains. Solutions can also be used to stain plankton for viability. Using 1 part Neutral Red to 10,000 parts sea water, dead cells were stained red and live cells remained unchanged. In addition, aqueous solutions of Neutral Red (0.1% in saline, pH 6.5) can be used as a fluorescent stain for lipids. Lipids will fluoresce blue-geen or yellow, depending on their composition. It has been used also as a Twort's stain for parasites in combination with Light Green SF, as a general histological stain for embryonic tissue in combination with Janus green,and for demostrating hydrolysis of fats.
    [Show full text]
  • STUDIES of MITOCHONDRIAL STAINING with PINACYANOLE, EMPLOYI}.TG YOSHIDA Ascittss SARCOMA CEI-L
    247 STUDIES OF MITOCHONDRIAL STAINING WITH PINACYANOLE, EMPLOYI}.TG YOSHIDA ASCITtsS SARCOMA CEI-L KryosARU TexrrAwA, Kyoreno Aen, Krsuro Kero, Tnnuo Yosnloa AND Kyorcnr MesurANr Department of Internal Meclictne, I(omatsujima RerI Cross Hospital (Chief : Dr. Riyoharu Takikau)a) 7st Departntent of Internal Medicine, Nagoya Uniuersity School of Medicine (Director : Prof . Susumu Hibino) Because of potent activities of respiratory enzymes found in isolated mito- chondria, morphological changes in mitochondria have again attracted attention as indicative of cell's functional potentialities. Mitochondria in the cell can be visualized by employing, 1) Altmann's stain- ing method or Heidenhain's iron hematoxylin stain on fixed preparations, 2) the supravital staining method using Janus green, and recently 3) the supravital observation by means of the phase contrast microscope. Among these, the supravital method with Janus green is widely employed because of its simplicity and high specificity. But this Janus green method is not free from faults : namely difficulty in differentiating the types of cells and quick fading of the stained mitochondria. In 1936 Hetheringtonl) introduced a dyestuff named pinacyanole into the su- pravital staining method of mitochondria, and this method has been investigated by J. L. Schwind,2) showing that nuclei are stained supravitally and the types of cells are easily differentiated, stainability of neutral red vacuoleg is not dis- turbed and the colored mitochondria do not fade away for several hours. This pinacyanole (Consolidated Midland Corporation) and vital neutral red have been obtained lately, and we are discussing the usefulness of the former dyestuff in the study of mitochondria, comparing it with the above-mentioned various mitochondrial methods, and the nature of its staining mechanism.
    [Show full text]
  • Cold Acid Fast Staining Method: Efficacy in Diagnosis of Mycobacterium Tuberculosis
    African Journal of Microbiology Research Vol. 3(9) pp. 546-549, September, 2009 Available online http://www.academicjournals.org/ajmr ISSN 1996-0808 ©2009 Academic Journals Full Length Research Paper Cold acid fast staining method: Efficacy in diagnosis of Mycobacterium tuberculosis Anita Pandey*, Molly Madan, Ashish K. Asthana, Ritu Kansal, Anupam Das Department of Microbiology, Subharti Medical College, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India. Accepted 16 July, 2009 Ziehl Neelson, a carbol fuschin based stain, using the 3 component hot process is a standard staining technique for staining sputum smears for detection of Mycobacterium tuberculosis. We evaluated a 2 step cold staining method for detection of acid fast bacilli in sputum smears. 1836 sputum samples from patients of pulmonary tuberculosis were studied. Smears were prepared from each sample and slides were simultaneously stained by both methods and examined. The 2 step cold stain method was found to be equally sensitive as the ZN method detecting 20% of cases, when the primary stain was kept for a period of 20 min. The CS method also has the advantage of being simple, economical and less cumbersome and in the procedure of staining, heating, a much too precise step in ZN method for large scale application, is eliminated. The CS method may therefore prove as a good alternative for diagnosis of M.tuberculosis, particularly in smaller laboratories and peripheral centers where there is limitation of the funds and equipments. Key words: Cold stain, acid fast bacilli, Mycobacterium tuberculosis. INTRODUCTION Demonstration of acid fast bacilli in the sputum is the methylene blue as decolouriser and counter-stain has been easiest, quickest and a reliable tool for the diagnosis of advocated as an alternative staining technique by various pulmonary tuberculosis (WHO, 1974).
    [Show full text]