Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

Total Page:16

File Type:pdf, Size:1020Kb

Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Department of Mechanical and Materials Engineering of College of Engineering and Applied Science University of Cincinnati by Xingshuo Wen M.S., University of Cincinnati, Ohio, USA, 2009 B.S., Shaanxi University of Science and Technology, Shaanxi, China, 2005 March, 2014 Committee: Dr. Vijay K. Vasudevan (Chair) Dr. Relva C. Buchanan Dr. Rodney D. Roseman Dr. Vesselin N. Shanov Abstract The Very High Temperature Reactor (VHTR) is one of the leading concepts of the Generation IV nuclear reactor development, which is the core component of Next Generation Nuclear Plant (NGNP). The major challenge in the research and development of NGNP is the performance and reliability of structure materials at high temperature. Alloy 617, with an exceptional combination of high temperature strength and oxidation resistance, has been selected as a primary candidate material for structural use, particularly in Intermediate Heat Exchanger (IHX) which has an outlet temperature in the range of 850 to 950°C and an inner pressure from 5 to 20MPa. In order to qualify the material to be used at the operation condition for a designed service life of 60 years, a comprehensive scientific understanding of creep behavior at high temperature and low stress regime is necessary. In addition, the creep mechanism and the impact factors such as precipitates, grain size, and grain boundary characters need to be evaluated for the purpose of alloy design and development. In this study, thermomechanically processed specimens of alloy 617 with different grain sizes were fabricated, and creep tests with a systematic test matrix covering the temperatures of 850 to 1050°C and stress levels from 5 to 100MPa were conducted. Creep data was analyzed, and the creep curves were found to be unconventional without a well-defined steady-state creep. Very good linear relationships were determined for minimum creep rate versus stress levels with the stress exponents determined around 3-5 depending on the grain size and test condition. Activation energies were also calculated for different stress levels, and the values are close to 400kJ/mol, which is higher than that for self-diffusion in nickel. Power law dislocation climb- glide mechanism was proposed as the dominant creep mechanism in the test condition regime. Dynamic recrystallization happening at high strain range enhanced dislocation climb and are i believed to be responsible for the monotonically increasing creep rates. Apart from dislocation creep, diffusional creep in existence at low stress level in fine-grained (ASTM 8) material also contributed partly to the creep rates. A reasonable prediction on the long term performance of alloy 617 was also made by extrapolation method using optimized parameters based on creep test data. Furthermore, microstructure characterization was performed utilizing Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Electron Backscattered Diffraction (EBSD), Transmission Electron Microscopy (TEM) and related analytical techniques on samples from both before and after creep, with special attention given to grain size effects, grain boundary type, and dislocation substructures. Evidences for dislocation climb and dislocation glide were found through detailed dislocation analysis by TEM, proving the dislocation climb-glide mechanism. The formation of subgrain boundary, the changes in boundary characters and grain sizes was confirmed by EBSD analysis for dynamic recrystallization. The effects of initial grain size and grain boundary character distribution on the creep behavior and mechanism were also evaluated. Through the results obtained from this experimental study, new insights were provided into how changes in microstructure take place during high temperature creep of alloy 617, creep mechanism at different conditions was identified, and the creep deformation model was discussed. The results will also serve to technological and code case development and design of materials for NGNP. ii © Copyright 2014 XINGSHUO WEN All rights reserved. Acknowledgements The completion of this Ph.D. would not be possible without the encouragement and support from many individuals. First and foremost, I would like to express my sincere gratitude to my advisor Prof. Vijay K. Vasudevan, who provides his guidance, inspiration, patience, and support throughout my study in University of Cincinnati and, more importantly, in life. Without him, it would be impossible for me to accomplish this long journey. I would also like to thank the committee members Prof. Relva C. Buchanan, Prof. Rodney D. Roseman, and Prof. Vesselin N. Shanov for their precious time and valuable suggestions in completing my dissertation. I would like to thank DOE-NEUP (Program# 09-013, Sub-contract# DE-FX07-00088635) for funding this work. Part of the creep tests were conducted in Idaho National Laboratory, and Metcut Research Inc. also contributed to some of the low stress tests. The microstructural analysis was carried out in Advanced Materials Characterization Center, University of Cincinnati. I would like to acknowledge Dr. Laura Carroll and Dr. Richard Wright from Idaho National Laboratory and Dr. T.-L. (Sam) Sham from Oak Ridge National Laboratory for providing the test specimens and creep data. Their insightful discussions and valuable inputs in this research project are very helpful to my research. Special thanks also go to Randy Lloyd from INL for coaching me to setup creep tests. I would also like to thank my friends and colleagues, Dr. Hyojin Song, Dr. Amrinder Gill, Dr. Yixiang Zhao, Dr. Chaswal Vibhor, Dr. Chang Ye, Dr. Behrang Poorganji, Gokul Ramakrishnan, Sethuraman Subramanian, Abhishek Telang, and Deepthi Tammana, who shared much of their experience in research, helped me with experiments, and had numerous meaningful discussions. iv I am grateful to University of Cincinnati and Department of Mechanical and Materials Engineering for providing an excellent education and research environment, and for financial support. My thanks are due to the faculty and staff, who contributed to my study and life. Last but not least, I would like to deeply thank my father for his encouragement and patience. To my wife Yuanyuan Niu, who is always by my side with constant support and endless love, I am so lucky to have you in my life, and I could not go thus far without you. v Table of Contents 1 Introduction .................................................................................................................................. 1 1.1 Background .......................................................................................................................... 1 1.2 Material Selection for Intermediate Heat Exchanger ........................................................... 4 1.3 Motivation of Research ........................................................................................................ 5 1.4 Objective and Scope ............................................................................................................. 6 2 Literature Review ......................................................................................................................... 8 2.1 Chemistry and Microstructure of Nickel Base Superalloys ................................................. 8 2.2 Strengthening Mechanisms of Nickel Base Superalloys ................................................... 13 2.2.1 Solid Solution Strengthening ................................................................................... 13 2.2.2 Precipitation Strengthening ...................................................................................... 13 2.2.3 Grain Boundary Strengthening ................................................................................ 17 2.3 Background of Alloy 617 ................................................................................................... 18 2.3.1 Chemistry and Microstructure of Alloy 617 ............................................................ 18 2.3.2 Mechanical Properties of Alloy 617 ........................................................................ 20 2.3.2.1 Tensile Property .......................................................................................... 21 2.3.2.2 Fatigue Strength .......................................................................................... 24 2.3.2.3 Creep-fatigue Property ................................................................................ 25 2.3.2.4 Creep Behavior ............................................................................................ 27 3 Experimental Details .................................................................................................................. 39 3.1 Specimens .......................................................................................................................... 39 3.2 Creep Testing ..................................................................................................................... 39 3.2.1 Creep Testing Equipment ........................................................................................ 39 3.2.2 Creep Testing Condition .......................................................................................... 42 3.3 Microstructure
Recommended publications
  • The Dislocation Behaviour and GND Development in Nickel Based Superalloy During Creep
    The Dislocation Behaviour and GND Development in Nickel Based Superalloy during Creep Soran Birosca1, Gang Liu1, Rengen Ding2, Cathie Rae3, Jun Jiang4,5, Ben Britton5, Chris Deen6, Mark Whittaker1 1 Institute of Structural Materials, College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, UK. 2 School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK. 3 Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK. 4 Department of Mechanical Engineering, Faculty of Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK 5 Department of Materials, South Kensington Campus, Imperial College London, London SW7 2AZ, UK 6 Rolls-Royce plc, PO Box 31, Derby, DE24 8BJ, UK. Abstract In the current study, dislocation activity and storage during creep deformation in a nickel based superalloy (Waspaloy) was investigated, focussing on the storage of geometrically necessary (GND) and statistically stored (SSD) dislocations. Two methods of GND density calculations were used, namely; EBSD Hough Transformation and HR-EBSD Cross Correlation based methods. The storage of dislocations, including SSDs, was investigated by means of TEM imaging. Here, the concept of GND accumulation in soft and hard grains and the effect of neighbouring grain orientation on total dislocation density was examined. Furthermore, the influence of applied stress (below and above Waspaloy yield stress) during creep on deformation micro-mechanism and dislocation density was studied. It was demonstrated that soft grains provided pure shear conditions at least on two octahedral (111) slips for easy dislocation movement reaching the grain boundary without significant geometrically necessary accumulation in the centre of the grain.
    [Show full text]
  • Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems
    Project No. 09-776 Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems Reactor Concepts Dr. Vi jay K. Vasudevan University of Cincinnati In collaboration with: Idaho National Laboratory Oak Ridge National Laboratory Sue Lesica, Federal ROC Laura Carroll, Technical ROC Final Report Project Title: Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems Covering Period: October 1, 2009 - March 31, 2014 Date of Report: April 3, 2015 Recipient: Name: University of Cincinnati Street: 2600 Clifton Ave. City: Cincinnati State: Ohio Zip: 45221 Contract Number: 88635 Project Number: 09-776 Principal Investigator: Vijay K. Vasudevan - (513) 556-3103 - vijay. [email protected] Xingshuo Wen (PhD student); Behrang Poorganji (Postdoctoral Fellow) Collaborators: Laura J. Carroll, T.L. Sham Project Objective: This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design. TPOCs: [email protected] Federal reviewers: [email protected] 1 T a b l e o f C o n t e n t s Section Page
    [Show full text]
  • Deformation Twinning in Metals and Ordered Intermetallics-Ti and Ti-Aluminides M
    Deformation twinning in metals and ordered intermetallics-Ti and Ti-aluminides M. Yoo, C. Fu, J. Lee To cite this version: M. Yoo, C. Fu, J. Lee. Deformation twinning in metals and ordered intermetallics-Ti and Ti- aluminides. Journal de Physique III, EDP Sciences, 1991, 1 (6), pp.1065-1084. 10.1051/jp3:1991172. jpa-00248626 HAL Id: jpa-00248626 https://hal.archives-ouvertes.fr/jpa-00248626 Submitted on 1 Jan 1991 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. (1991) Phys. 1065-1084 J. 1991, III1 1065 PAGE JuiN Classification Physics Abstracts 61.70N 62.20F 62.20D twinning intermetallics-Ti ordered Deformation metals and in Ti-aluminides and (1) C. Fu K. Yoo, H. and J. M. L. Lee (2) Ridge, 37831,6115, Ridge Laboratory, Division, Oak TN Oak National Metals Ceranlics and U-S-A- 1990) (Received19 accepted September 1990, 4 June cons6quences maclage ductilitd des la ddformation de fracture Rksumk.-Los la la et par sur cristallographie, intermdtalliques fonction alliages ordonnds dtudides de de mdtaux la et sont en systdmatique l'dnergie cindtique maclage. analyse ddformations dtd faite de des Une la et a par en comparaison systdmes Ti~Al, consid6rant Ti, TiAl moddles.
    [Show full text]
  • Tensile Deformation, Toughness and Crack Propagation Studies of Alloy 617
    UNLV Retrospective Theses & Dissertations 1-1-2007 Tensile deformation, toughness and crack propagation studies of alloy 617 Vikram Marthandam University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Marthandam, Vikram, "Tensile deformation, toughness and crack propagation studies of alloy 617" (2007). UNLV Retrospective Theses & Dissertations. 2792. http://dx.doi.org/10.25669/5x53-uv5y This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. TENSILE DEFORMATION, TOUGHNESS AND CRACK PROPAGATION STUDIES OF ALLOY 617 by Vikram Marthandam Bachelor of Engineering in Mechanical Engineering University of Madras, India Master of Science in Mechanical Engineering, 2004 University of Nevada, Las Vegas, Las Vegas, NV 89154 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree in Mechanical Engineering Department of Mechanical Engineering Howard R. Hughes College of Engineering Graduate College University of Nevada, Las Vegas May 2008 UMI Number: 3319132 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Indentation-Based Characterization of Creep and Hardness Behavior of Magnesium Carbon Nanotube Nanocomposites at Room Temperature
    This is a repository copy of Indentation-based characterization of creep and hardness behavior of magnesium carbon nanotube nanocomposites at room temperature. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/149671/ Version: Supplemental Material Article: Thornby, J, Verma, D, Cochrane, R et al. (4 more authors) (2019) Indentation-based characterization of creep and hardness behavior of magnesium carbon nanotube nanocomposites at room temperature. SN Applied Sciences, 1 (7). ARTN: 695. ISSN 2523-3963 https://doi.org/10.1007/s42452-019-0696-9 © Springer Nature Switzerland AG 2019. This is a post-peer-review, pre-copyedit version of an article published in SN Applied Sciences. The final authenticated version is available online at: https://doi.org/10.1007/s42452-019-0696-9 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Indentation-Based Characterization of Creep and Hardness Behavior of Magnesium Carbon Nanotube Nanocomposites at Room Temperature J.
    [Show full text]
  • Dislocation Creep: Climb and Glide in the Lattice Continuum
    Article Dislocation Creep: Climb and Glide in the Lattice Continuum Sinisa Dj. Mesarovic School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; [email protected] Received: 9 June 2017; Accepted: 31 July 2017; Published: 4 August 2017 Abstract: A continuum theory for high temperature creep of polycrystalline solids is developed. It includes the relevant deformation mechanisms for diffusional and dislocation creep: elasticity with eigenstrains resulting from vacancy diffusion, dislocation climb and glide, and the lattice growth/loss at the boundaries enabled by diffusion. All the deformation mechanisms are described with respect to the crystalline lattice, so that the continuum formulation with lattice motion as the basis is necessary. However, dislocation climb serves as the source sink of lattice sites, so that the resulting continuum has a sink/source of its fundamental component, which is reflected in the continuity equation. Climb as a sink/source also affects the diffusion part of the problem, but the most interesting discovery is the climb-glide interaction. The loss/creation of lattice planes through climb affects the geometric definition of crystallographic slip and necessitates the definition of two slip fields: the true slip and the effective slip. The former is the variable on which the dissipative power is expanded during dislocation glide and is thus, the one that must enter the glide constitutive equations. The latter describes the geometry of the slip affected by climb, and is necessary for kinematic analysis. Keywords: dislocation climb; lattice sink; vacancy sink; continuum with a material sink; climb-glide interaction 1. Introduction At high temperatures, polycrystalline solids exhibit creep—a slow, phenomenologically viscous flow.
    [Show full text]
  • Short-Term Creep Behavior of an Additive Manufactured Non-Weldable Nickel-Base Superalloy Evaluated by Slow Strain Rate Testing
    Acta Materialia 179 (2019) 142e157 Contents lists available at ScienceDirect Acta Materialia journal homepage: www.elsevier.com/locate/actamat Full length article Short-term creep behavior of an additive manufactured non-weldable Nickel-base superalloy evaluated by slow strain rate testing * Jinghao Xu a, Hans Gruber b, Dunyong Deng a, Ru Lin Peng a, Johan J. Moverare a, a Division of Engineering Materials, Department of Management and Engineering, Linkoping€ University, Linkoping,€ SE-58183, Sweden b Division of Materials and Manufacture, Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, SE-41296, Sweden article info abstract Article history: Additive manufacturing (AM) of high g0 strengthened Nickel-base superalloys, such as IN738LC, is of high Received 1 July 2019 interest for applications in hot section components for gas turbines. The creep property acts as the Received in revised form critical indicator of component performance under load at elevated temperature. However, it has been 18 August 2019 widely suggested that the suitable service condition of AM processed IN738LC is not yet fully clear. In Accepted 19 August 2019 order to evaluate the short-term creep behavior, slow strain rate tensile (SSRT) tests were performed. Available online 20 August 2019 IN738LC bars were built by laser powder-bed-fusion (L-PBF) and then subjected to hot isostatic pressing (HIP) followed by the standard two-step heat treatment. The samples were subjected to SSRT testing at Keywords: À5 À6 À7 Nickel-base superalloy 850 C under strain rates of 1 Â 10 /s, 1 Â 10 /s, and 1 Â 10 /s. In this research, the underlying creep Laser processing deformation mechanism of AM processed IN738LC is investigated using the serial sectioning technique, Creep electron backscatter diffraction (EBSD), transmission electron microscopy (TEM).
    [Show full text]
  • Mechanical Failure – Creep
    High temperature applications What happen to the strength at elevated temperature -Steel power plants -Oil refineries -Chemical plants Strength becomes……… High operating temperatures very dependent to strain rate and time of Engine jet ----1400 oC exposure Steam turbine power plants: pipes carry steam (~566 oC, pressure ~ 3500 psi) Called Creep surface reentry temperature ~ 2800 oC (Apollo) …Temperatures generated within the hottest area during ballistic reentry may exceed 11,100°C MECHANICAL FAILURE – CREEP ISSUES TO ADDRESS... MECHANICAL FAILURE - • Creep curve CREEP • Revisit dislocations • Revisit diffusion • Creep testing • Creep failure • Larson-Miller parameter WHAT IS CREEP? • Many engineering components are exposed to high temperature for a long period of time. • Changes within the component due to this (at constant Time – dependent permanent plastic deformation, which generally occurs at high temperatures (T > 0.4T ), under a constant load or stress. stress) is called Creep. m • e.g. Turbine blade within a jet engine, steam generator. • It can also happened at room temperature for soft metals such as Lead. • It is a slow process, where deformation changes with time. Creep is important in applications such as: turbine blades (jet engines), gas turbines, power plants (boilers and steam lines) which must operate 800-1000 OC at high stresses and high temperatures without any changes in dimensions. THEORY OF CREEP Creep behaviour of a metal is determined by measuring the strain World trade center, WTC collapsed, due to creep (ε) deformation as function of time under constant stress 21 CREEP • Creep occurs even with high strength materials with high heat resistant. strain, ε • At high temperature atomic bonding starts to fail, causing movement of atoms and atomic planes.
    [Show full text]
  • Dynamic Recrystallization by Subgrain Rotation in Olivine Revealed By
    Dynamic recrystallization by subgrain rotation in olivine revealed by electron backscatter diffraction Marco Lopez-Sanchez, Andrea Tommasi, Walid Ben Ismail, Fabrice Barou To cite this version: Marco Lopez-Sanchez, Andrea Tommasi, Walid Ben Ismail, Fabrice Barou. Dynamic recrystallization by subgrain rotation in olivine revealed by electron backscatter diffraction. Tectonophysics, Elsevier, 2021, pp.228916. 10.1016/j.tecto.2021.228916. hal-03312394 HAL Id: hal-03312394 https://hal.archives-ouvertes.fr/hal-03312394 Submitted on 2 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author copy of the article accepted for publication in Tectonophysics. Please cite as: Lopez-Sanchez M.A., Tommasi, A., Ben Ismail, W., Barou. F. Dynamic recrystallization by subgrain rotation in olivine revealed by electron backscatter diffraction. Tectonophysics, doi: 10.1016/j.tecto.2021.228916 Dynamic recrystallization by subgrain rotation in olivine revealed by electron backscatter diffraction Marco A. Lopez-Sanchez a,*, Andrea Tommasi a, Walid Ben Ismail b,c,
    [Show full text]
  • High Temperature Creep Behaviour of Cast Nickel-Based Superalloys INC 713 LC, B1914 and MAR-M247
    metals Article High Temperature Creep Behaviour of Cast Nickel-Based Superalloys INC 713 LC, B1914 and MAR-M247 Marie Kvapilova *, Petr Kral , Jiri Dvorak and Vaclav Sklenicka Institute of Physics of Materials CAS, Žižkova 22, 61662 Brno, Czech Republic; [email protected] (P.K.); [email protected] (J.D.); [email protected] (V.S.) * Correspondence: [email protected]; Tel.: +420-532-290-374 Abstract: Cast nickel-based superalloys INC713 LC, B1914 and MAR-M247 are widely used for high temperature components in the aerospace, automotive and power industries due to their good castability, high level of strength properties at high temperature and hot corrosion resistance. The present study is focused on the mutual comparison of the creep properties of the above-mentioned superalloys, their creep and fracture behaviour and the identification of creep deformation mecha- nism(s). Standard constant load uniaxial creep tests were carried out up to the rupture at applied stress ranging from 150 to 700 MPa and temperatures of 800–1000 ◦C. The experimentally determined values of the stress exponent of the minimum creep rate, n, were rationalized by considering the existence of the threshold stress, σ0. The corrected values of the stress exponent correspond to the power-law creep regime and suggest dislocation climb and glide as dominating creep deformation mechanisms. Fractographic observations clearly indicate that the creep fracture is a brittle mostly mixed transgranular and intergranular mode, resulting in relatively low values of fracture strain. Determined main creep parameters show that the superalloy MAR-M247 exhibits the best creep prop- erties, followed by B1914 and then the superalloy INC713 LC.
    [Show full text]
  • Temperature Dependence of Deformation Behavior in a Co–Al–W-Base Single Crystal Superalloy
    Materials Science & Engineering A 620 (2015) 36–43 Contents lists available at ScienceDirect Materials Science & Engineering A journal homepage: www.elsevier.com/locate/msea Temperature dependence of deformation behavior in a Co–Al–W-base single crystal superalloy L. Shi, J.J. Yu n, C.Y. Cui, X.F. Sun Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China article info abstract Article history: Tensile properties of a single-crystal Co–Al–W–Ni–Cr–Ta alloy with low tungsten content have been Received 18 June 2014 studied within the temperatures ranging from 20 to 1000 1C at a constant strain rate of 1.0 Â 10 À4 sÀ1. Received in revised form The alloy exhibits comparable yield strength with that of Co–Al–W-base alloys containing more 17 September 2014 tungsten. From 600 1Cto8001C, a yield strength anomaly is observed, probably due to the cross-slip Accepted 18 September 2014 of superdislocations from the octahedral plane to the cube plane. TEM analysis demonstrates that Available online 26 September 2014 stacking faults (SFs) appear both in γ channels and γ0 precipitates in a wide temperature range. These SFs Keywords: are responsible for the obvious strain hardening observed in stress–strain curves. From room – – Co Al W-base alloy temperature to 900 1C, the deformation is dominated by dislocations shearing γ0 particles. At 1000 1C, Tensile behavior 0 the main deformation mechanism is dislocations bypassing γ particles. Dislocation structures & 2014 Elsevier B.V. All rights reserved. Stacking fault 1. Introduction that the addition of Cr makes against the improvement of γ0 solvus temperature.
    [Show full text]
  • Mechanical Behaviour and Simulation of Alloys Used in Jet Engines
    Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos Mechanical Behaviour and Simulation of Alloys Used in Jet Engines Tesis doctoral Rafael Sancho Cadenas Ingeniero de Materiales 2020 Departamento de Ciencia de Materiales Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos Universidad Politécnica de Madrid Mechanical Behaviour and Simulation of Alloys Used in Jet Engines Tesis doctoral Rafael Sancho Cadenas Ingeniero de Materiales Director: Francisco Gálvez Díaz-Rubio Dr. Ingeniero Aeronáutico Catedrático de Universidad 2020 A mis padres I II Contents AgradecimientosV Abstract VII AbbreviationsIX NotationXI 1 Introduction and Objectives1 1.1 Introduction ............................. 1 1.2 Motivation and objectives ..................... 5 2 State of the art 9 2.1 Introduction to plastic deformation ................ 9 2.2 Computational plasticity in the continuum framework . 12 2.2.1 Macroscopic plasticity ................... 13 2.2.2 Crystal plasticity ...................... 14 2.2.3 Polycrystal homogenization . 16 2.3 The Johnson-Cook model ..................... 20 2.4 Yield-strength anomaly in superalloys . 21 2.5 The split-Hopkinson bar ...................... 27 2.5.1 Pochhammer-Chree oscillations . 29 3 A model for the yield-strength anomaly 33 3.1 Constitutive model ......................... 33 3.1.1 Time discretization ..................... 37 3.2 Cobalt-base superalloys ....................... 39 III Contents 3.2.1 Numerical simulations ................... 43 3.3 VascoMax C-250 .......................... 51 3.3.1 Numerical simulations ................... 55 3.4 MAR-M247 ............................. 59 3.4.1 Experiments ......................... 60 3.4.2 Numerical simulations ................... 68 4 CP modelling of MAR-M247 DS 73 4.1 Crystal plasticity model ...................... 73 4.1.1 Time discretization ..................... 77 4.2 Finite-element modelling .....................
    [Show full text]