Lcms-Based Analysis Explains the Basis of Oxidative Resistance in Selenium-Containing Thioredoxin Reductase

Total Page:16

File Type:pdf, Size:1020Kb

Lcms-Based Analysis Explains the Basis of Oxidative Resistance in Selenium-Containing Thioredoxin Reductase University of Vermont UVM ScholarWorks Graduate College Dissertations and Theses Dissertations and Theses 2021 Lcms-Based Analysis Explains The Basis Of Oxidative Resistance In Selenium-Containing Thioredoxin Reductase Daniel Haupt University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Analytical Chemistry Commons, and the Biochemistry Commons Recommended Citation Haupt, Daniel, "Lcms-Based Analysis Explains The Basis Of Oxidative Resistance In Selenium-Containing Thioredoxin Reductase" (2021). Graduate College Dissertations and Theses. 1422. https://scholarworks.uvm.edu/graddis/1422 This Thesis is brought to you for free and open access by the Dissertations and Theses at UVM ScholarWorks. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of UVM ScholarWorks. For more information, please contact [email protected]. LCMS-BASED ANALYSIS EXPLAINS THE BASIS OF OXIDATIVE RESISTANCE IN SELENIUM-CONTAINING THIOREDOXIN REDUCTASE A Thesis Presented by Daniel J. Haupt to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements For the Degree of Master of Science Specializing in Chemistry August, 2021 Defense Date: April 21, 2021 Thesis Examination Committee: Robert J. Hondal, Ph.D., Advisor Michael J. Previs, Ph.D., Chairperson Giuseppe A. Petrucci, Ph.D. Severin T. Schneebeli, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Selenocysteine (Sec) is referred to as the 21st proteogenic amino acid and is found in place of the redox-sensitive amino acid cysteine (Cys) in a small number of proteins. Sec and Cys carry out similar chemistry and are structural isomers save for a single atom difference; the former contains selenium (Se), while the latter contains sulfur (S) in the identical position. Sec poses a high bioenergetic cost for its synthesis and subsequent incorporation into protein not shared by Cys. Since Sec’s discovery in 1976, scientists have debated why certain proteins express Sec while others express Cys. In recent years, it has been shown that redox-active enzymes expressing Sec exhibit a distinct biological advantage over their Cys-containing counterparts. Sec-containing enzymes retain their catalytic activities when exposed to highly oxidizing conditions, while analogous Cys- containing enzymes become significantly inactivated. This thesis examines the enzyme thioredoxin reductase (TrxR), an essential regulator of cellular redox homeostasis. TrxR is expressed in higher-order organisms such as humans and other mammals with a penultimate Sec residue in its C-terminal redox center, while lower-order organisms such as Drosophila melanogaster (D. melanogaster) express TrxR with Cys. Using spectrophotometric activity assays, we show that the presence of Sec preserves thioredoxin reductase’s ability to reduce its canonical substrate, thioredoxin (Trx), in the presence of hydrogen peroxide. Herein, we use mass spectrometry analysis to provide a biophysical basis for this phenomenon through the characterization and quantitation of the TrxR’s two redox centers that drive its mechanism of action. Our findings show that Sec confers superior resistance to oxidation-induced inactivation not because Sec better resists irreversible hyperoxidation but instead TrxR’s redox centers to better retain their reductive abilities. In D. melanogaster’s Cys-containing TrxR, we show that a significant loss of its redox center’s reductive ability coincides with the loss of its enzymatic activity. DEDICATION To my parents, Robert and Sandra; my first teachers. ii ACKNOWLEDGEMENTS The work of this thesis would not be possible without the effort and guidance of others. I am extremely grateful to my advisor, Rob Hondal, for his mentorship and unwavering encouragement. I want to thank my former advisor, Dwight Matthews, who trained me as a mass spectrometrist and opened my eyes to its possibilities. I want to thank Emma Ste. Marie, Karat Sidhu, Bruce O’Rourke, Michael Previs, and Neil Wood for their contributions to my research efforts and always going above and beyond to help me. Special thanks to Scott Tighe and Wolfgang Dostmann for being the firsts to believe in me and helping me to become a better scientist. iii TABLE OF CONTENTS DEDICATION................................................................................................................... ii ACKNOWLEDGEMENTS ............................................................................................ iii LIST OF FIGURES ......................................................................................................... vi LIST OF TABLES .......................................................................................................... vii Chapter 1: SELENOCYSTEINE: THE 21st AMINO ACID ........................................ 1 1.1 SELENIUM IN BIOLOGY ...................................................................................... 1 1.2 PROPERTIES OF CYSTEINE AND SELENOCYSTEINE ................................... 5 1.2.1 Similarities Between Sulfur and Selenium ......................................................... 5 1.2.2 Differences Between Sulfur and Selenium ......................................................... 5 1.2.3 Mechanism for Selenocysteine Synthesis and Incorporation ............................. 7 1.3 WHY NATURE CHOSES SELENOCYSTEINE .................................................... 9 1.3.1 The electrophilic character of selenocysteine helps selenoproteins resist oxidative inaction ...................................................................................................... 10 1.4 THIOREDOXIN-THIOREDOXIN REDUCTASE SYSTEM ............................... 12 1.4.1 General Function .............................................................................................. 15 1.4.2 Two forms of TrxRs ......................................................................................... 17 1.4.3 High-Mr Thioredoxin Reductase Mechanism of Action ................................... 18 1.4.4 Oxidation of Thioredoxin Reductase ................................................................ 19 Chapter 2: ASSESSING THE ABILITY OF SEC-TRXR TO RESIST OXIDATION-INDUCED INACTIVATION ............................................................... 23 2.1 INTRODUCTION ................................................................................................... 23 2.2 METHODS.............................................................................................................. 25 2.3 RESULTS................................................................................................................ 30 2.3.1 Spectrophotometric thioredoxin reductase activity assays ............................... 33 2.3.2 Detection of DmTrxR redox centers in the absence of E. coli Trx .................. 34 2.3.3 Detection of mTrxR redox centers in the absence of E. coli Trx ..................... 39 2.3.4 Detection of DmTrxR redox centers in the presence of E. coli Trx ................. 43 2.3.5 Detection of mTrxR redox centers in the presence of E. coli Trx .................... 46 2.4 CONCLUSIONS ..................................................................................................... 50 iv REFERENCES ................................................................................................................ 59 APPENDICES ................................................................................................................. 65 A. ABBREVIATIONS ............................................................................................ 65 B. MASS SPECTRA AND CHEMICAL STRUCTURES OF PEPTIDE SPECIES DETECTED BY MS ..................................................................................................... 67 v LIST OF FIGURES Figure Page Figure 1. Structures of selenocysteine and cysteine .......................................................... 2 Figure 2. Quaternary complex involved in selenocysteine incorporation ......................... 8 Figure 3. Cycling of oxidized and reduced selenium-containing and sulfur- containing species ........................................................................................... 11 Figure 4. Mammalian thioredoxin reductase (mTrxR) structure ..................................... 14 Figure 5. Drosophila melanogaster thioredoxin reductase (DmTrxR) structure. ........... 15 Figure 6. Thioredoxin (Trx)/thioredoxin reductase (TrxR) antioxidant system .............. 17 Figure 7. Mechanistic overview of mTrxR and DmTrxR ................................................ 19 Figure 8. Oxidative modification and repair of cysteine and selenocysteine .................. 22 Figure 9. H2O2 knockdown of TrxR E. coli thioredoxin reductase activities .................. 34 Figure 10. DmTrxR N-terminal redox center response to H2O2 in the absence of E. coli Trx ................................................................................................... 36 Figure 11. DmTrxR C-terminal redox center response to H2O2 in the absence of E. coli Trx ....................................................................................................... 38 Figure 12. mTrxR N-terminal redox center response to H2O2 in the absence of E. coli Trx ....................................................................................................... 40 Figure 13. mTrxR C-terminal redox center response to H2O2
Recommended publications
  • Secondary Alkane Sulfonate (SAS) (CAS 68037-49-0)
    Human & Environmental Risk Assessment on ingredients of household cleaning products - Version 1 – April 2005 Secondary Alkane Sulfonate (SAS) (CAS 68037-49-0) All rights reserved. No part of this publication may be used, reproduced, copied, stored or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the HERA Substance Team or the involved company. The content of this document has been prepared and reviewed by experts on behalf of HERA with all possible care and from the available scientific information. It is provided for information only. Much of the original underlying data which has helped to develop the risk assessment is in the ownership of individual companies. HERA cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in this publication. 1. Executive Summary General Secondary Alkane Sulfonate (SAS) is an anionic surfactant, also called paraffine sulfonate. It was synthesized for the first time in 1940 and has been used as surfactant since the 1960ies. SAS is one of the major anionic surfactants used in the market of dishwashing, laundry and cleaning products. The European consumption of SAS in detergent application covered by HERA was about 66.000 tons/year in 2001. Environment This Environmental Risk Assessment of SAS is based on the methodology of the EU Technical Guidance Document for Risk Assessment of Chemicals (TGD Exposure Scenario) and the HERA Exposure Scenario. SAS is removed readily in sewage treatment plants (STP) mostly by biodegradation (ca. 83%) and by sorption to sewage sludge (ca.
    [Show full text]
  • Table S4. List of Enzymes Directly Involved in the Anti-Oxidant Defense Response
    Table S4. List of Enzymes directly involved in the anti-oxidant defense response. Gene Name Gene Symbol Classification/Pathway 6-phosphogluconate dehydrogenase 6PGD NADPH regeneration/Pentose Phosphate Glucose-6-phosphate dehydrogenase G6PD NADPH regeneration/Pentose Phosphate Isocitrate Dehydrogenase 1 IDH1 NADPH regeneration/Krebs Isocitrate Dehydrogenase 2 IDH2 NADPH regeneration/Krebs Malic Enzyme 1 ME1 NADPH regeneration/Krebs Methylenetetrahydrofolate dehydrogenase 1 MTHFD1 NADPH regeneration/Folate Methylenetetrahydrofolate dehydrogenase 2 MTHFD2 NADPH regeneration/Folate Nicotinamide Nucleotide Transhydrogenase NNT NADPH regeneration/NAD Catalase CAT Antioxidants/Catalses/free radical detoxification Glutamate-cysteine ligase catalytic subunit GCLC Antioxidants/Glutathione synthesis Glutamate-cysteine ligase modifier subunit GCLM Antioxidants/Glutathione synthesis Glutathione peroxidase1 GPx1 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase2 GPx2 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase3 GPx3 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase4 GPx4 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase5 GPx5 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase6 GPx6 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase7 GPx7 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione S-transferase
    [Show full text]
  • Research Article Combined Treatment with Myo-Inositol and Selenium Ensures Euthyroidism in Subclinical Hypothyroidism Patients with Autoimmune Thyroiditis
    Hindawi Publishing Corporation Journal of Thyroid Research Volume 2013, Article ID 424163, 5 pages http://dx.doi.org/10.1155/2013/424163 Research Article Combined Treatment with Myo-Inositol and Selenium Ensures Euthyroidism in Subclinical Hypothyroidism Patients with Autoimmune Thyroiditis Maurizio Nordio1 and Raffaella Pajalich2 1 University of Rome “Sapienza”, Institute of Gynecology and Obstetrics, Viale del Policlinico, 00155 Rome, Italy 2 Ars Medica spa, Via Ferrero di Cambiano Cesare 29, 00191 Rome, Italy Correspondence should be addressed to Maurizio Nordio; [email protected] Received 8 May 2013; Revised 27 August 2013; Accepted 27 August 2013 Academic Editor: Jack R. Wall Copyright © 2013 M. Nordio and R. Pajalich. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Hashimoto’s thyroiditis (HT), also known as chronic lymphocytic thyroiditis or chronic autoimmune thyroiditis, is the most common form of thyroiditis affecting more than 10% of females and 2% of males. The present study aims to evaluate the beneficial effect of a combined treatment, Myo-Inositol plus selenomethionine, on subclinical hypothyroidism. Methods. The study was designed as a double-blind randomized controlled trial. Eligible patients were women diagnosed with subclinical hypothyroidism having Tg antibodies (TgAb) titer higher than 350 IU/mL. Outcome measures were Thyroid Stimulating Hormone (TSH) levels, thyroid peroxidase antibodies (TPOAb) and TgAb titer, selenium, and Myo-Inositol plasma concentration. Results. In the present paper, we demonstrated that the beneficial effects obtained by selenomethionine treatment on patients affected by subclinical hypothyroidism, likely due to the presence of autoantibody (TPOAb and TgAb), are further improved by cotreatment with Myo-Inositol.
    [Show full text]
  • Inhibitory Effects of Some Flavonoids on Thioredoxin Reductase Purified from Chicken Liver ABSTRACT INTRODUCTION
    Brazilian Journal of Poultry Science Revista Brasileira de Ciência Avícola Inhibitory Effects of Some Flavonoids on ISSN 1516-635X 2019 / v.21 / n.2 / 001-008 Thioredoxin Reductase Purified from Chicken http://dx.doi.org/10.1590/1806-9061-2018-0982 Liver Original Article Author(s) ABSTRACT Türkoğlu E.AI https://orcid.org/0000-0001-7850-6456 Thioredoxin reductases (TrxRs) are selenocysteine-containing Kuzu MII https://orcid.org/0000-0002-1375-7673 flavoenzymes that reduce Trxin NADPH-dependent manner. In the Ayasan TIII https://orcid.org/0000-0001-7397-6483 view of the direct vital role of TrxR in a wide range of biochemical and IV Inci H https://orcid.org/0000-0002-9791-0435 physiological processes, methods to inhibit this enzyme are clinically Eratak SVV https://orcid.org/0000-0003-3788-8704 important. TrxR has recently emerged as a new candidate in anticancer I Department of Pharmaceutical Biotechnology, drug investigations because of overexpression in tumorous cells. In this Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey. study, TrxR from chick liver was purified 94.6-fold with a yield of 4.86% II Deparment of Chemistry, Faculty of Science and a specific activity of 0.19 EU/mg. K and V values of TrxR for and Letters, Ağrı İbrahim Çeçen University, Ağrı M max 04100, Turkey. DTNB were calculated as 0.9 mM and 0,03 EU/mL, respectively. Then, III East Mediterranean Agricultural Research Institute, Karatas Road, Adana 01321, Turkey. the effects of the flavonoids hesperidin, naringenin, chlorogenic acid, IV Department of Animal Science, Faculty of ferulic acid, naringin, 3,4-dihydoxybenzoic acid, and ellagic acid on the Agriculture, Bingöl University, Bingöl 12000, Turkey.
    [Show full text]
  • Genomic Insights Into the Uncultured Genus &Lsquo
    The ISME Journal (2014) 8, 2463–2477 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE Genomic insights into the uncultured genus ‘Candidatus Magnetobacterium’ in the phylum Nitrospirae Wei Lin1,2,7, Aihua Deng3,7, Zhang Wang4, Ying Li2,5, Tingyi Wen3, Long-Fei Wu2,6, Martin Wu4 and Yongxin Pan1,2 1Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth’s Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; 2France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China; 3CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; 4Department of Biology, University of Virginia, Charlottesville, VA, USA; 5State Key Laboratory of Agro-Biotechnology and Laboratoire International Associe Franco-Chinois de Bio-Mineralisation et Nano-Structures, College of Biological Sciences, China Agricultural University, Beijing, China and 6Laboratoire de Chimie Bacte´rienne, Aix-Marseille Universite´, CNRS, Marseille Cedex 20, France Magnetotactic bacteria (MTB) of the genus ‘Candidatus Magnetobacterium’ in phylum Nitrospirae are of great interest because of the formation of hundreds of bullet-shaped magnetite magneto- somes in multiple bundles of chains per cell. These bacteria are worldwide distributed in aquatic environments and have important roles in the biogeochemical cycles of iron and sulfur. However, except for a few short genomic fragments, no genome data are available for this ecologically important genus, and little is known about their metabolic capacity owing to the lack of pure cultures. Here we report the first draft genome sequence of 3.42 Mb from an uncultivated strain tentatively named ‘Ca.
    [Show full text]
  • 03-232 Biochemistry Exam II – 2012 -Key Name:______Instructions: This Exam Consists of 100 Points on 6 Pages
    03-232 Biochemistry Exam II – 2012 -Key Name:________________________ Instructions: This exam consists of 100 points on 6 pages. Please use the space provided to answer the question or the back of the preceding page. In questions with choices, all your answers will be graded and you will receive the best grade. Allot 1 min/2 points. A B 1. (10 pts) One protein (protein A) binds naphthalene (ligand) by sandwiching it between two tryptophan residues. Another protein Trp L Trp Tyr L Tyr (protein B) also binds naphthalene by sandwiching it between two OH tyrosine residues, however the binding is weaker. The structure of the H protein-ligand complex is shown on the right (side view), the structures N of tryptophan, naphthalene (ligand), and tyrosine are shown as well. i) What are the principal energetic factor(s) that are responsible for binding of naphthalene to these proteins? (4 pts) Tryptophan(Trp) naphthalene (L) Tyrosine (Tyr) ii) Why does the tyrosine containing protein show weaker binding? (4 pts) ii) Which kinetic rate constant, the off-rate (kOFF) or the on-rate (kON), would be most different between the two proteins? In what way would it differ? Why? (2 pts) i) van der waals (H) and the hydrophobic effect (S) (3 pts for one, 4 points for two). ii) van der waals is reduce because the contact between the tyrosine and the ligand will be smaller. There will be a smaller hydrophobic effect as well because the non-polar surface area of tyrosine is smaller than tryptophan. Therefore in protein B, a smaller number of ordered water molecules will be released.
    [Show full text]
  • Of Operation and Control Ion-Exchange Processes For
    TECHNICAL REPORTS SERIES No. 78 Operation and Control Of Ion-Exchange Processes for Treatment of Radioactive Wastes INTERNATIONAL ATOMIC ENERGY AGENCY,VIENNA, 1967 OPERATION AND CONTROL OF ION-EXCHANGE PROCESSES FOR TREATMENT OF RADIOACTIVE WASTES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GERMANY, FEDERAL NIGERIA ALBANIA REPUBLIC OF NORWAY ALGERIA GHANA PAKISTAN ARGENTINA GREECE PANAMA AUSTRALIA GUATEMALA PARAGUAY AUSTRIA HAITI PERU BELGIUM HOLY SEE PHILIPPINES BOLIVIA HUNGARY POLAND BRAZIL ICELAND PORTUGAL BULGARIA INDIA ROMANIA BURMA INDONESIA SAUDI ARABIA BYELORUSSIAN SOVIET IRAN SENEGAL SOCIALIST REPUBLIC IRAQ SIERRA LEONE CAMBODIA ISRAEL SINGAPORE CAMEROON ITALY SOUTH AFRICA CANADA IVORY COAST SPAIN CEYLON JAMAICA SUDAN CHILE JAPAN SWEDEN CHINA JORDAN SWITZERLAND COLOMBIA KENYA SYRIAN ARAB REPUBLIC CONGO, DEMOCRATIC KOREA, REPUBLIC OF THAILAND REPUBLIC OF KUWAIT TUNISIA COSTA RICA LEBANON TURKEY CUBA LIBERIA UKRAINIAN SOVIET SOCIALIST CYPRUS LIBYA REPUBLIC CZECHOSLOVAK SOCIALIST LUXEMBOURG UNION OF SOVIET SOCIALIST REPUBLIC MADAGASCAR REPUBLICS DENMARK MALI UNITED ARAB REPUBLIC DOMINICAN REPUBLIC MEXICO UNITED KINGDOM OF GREAT ECUADOR MONACO BRITAIN AND NORTHERN IRELAND EL SALVADOR MOROCCO UNITED STATES OF AMERICA ETHIOPIA NETHERLANDS URUGUAY FINLAND NEW ZEALAND VENEZUELA FRANCE NICARAGUA VIET-NAM GABON YUGOSLAVIA The Agency's Statute was approved on 26 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957, The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". © IAEA, 1967 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Kamtner Ring 11, A-1010 Vienna I, Austria.
    [Show full text]
  • Emerging Players in the Regulation of Protein S-Nitrosation in Plants
    plants Review Thioredoxins: Emerging Players in the Regulation of Protein S-Nitrosation in Plants Tereza Jedelská , Lenka Luhová and Marek Petˇrivalský * Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitel ˚u27, 78371 Olomouc, Czech Republic; [email protected] (T.J.); [email protected] (L.L.) * Correspondence: [email protected] Received: 17 August 2020; Accepted: 22 October 2020; Published: 24 October 2020 Abstract: S-nitrosation has been recognized as an important mechanism of ubiquitous posttranslational modification of proteins on the basis of the attachment of the nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-based modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. This review summarizes the current knowledge on the emerging role of the thioredoxin-thioredoxin reductase (TRXR-TRX) system in protein denitrosation. Important advances have been recently achieved on plant thioredoxins (TRXs) and their properties, regulation, and functions in the control of protein S-nitrosation in plant root development, translation of photosynthetic light harvesting proteins, and immune responses. Future studies of plants with down- and upregulated TRXs together with the application of genomics and proteomics approaches will contribute to obtain new insights into plant S-nitrosothiol metabolism and its regulation. Keywords: denitrosation;
    [Show full text]
  • Global Importance of Selenium and Its Relation to Human Health - Combs, Jr., G.F
    IMPACTS OF AGRICULTURE ON HUMAN HEALTH AND NUTRITION – Vol. I - Global Importance of Selenium and its Relation to Human Health - Combs, Jr., G.F. GLOBAL IMPORTANCE OF SELENIUM AND ITS RELATION TO HUMAN HEALTH Combs, Jr., G.F. Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA Keywords: Selenium, selenide, methylselenol, selenite, selenocysteine, selenomethionine, methylselenocysteine, cardiomyopathy, Keshan Disease, Kaschin- Beck Disease, cancer, chemoprevention, selenoenzymes, immune system, apoptosis, carcinogenesis Contents 1. Introduction 2. Metabolic Roles of Selenium 3. Selenium in Food Systems 3.1. Fundamental Importance of Soil Selenium 3.2. Selenium Cycle 3.3. Selenium in Plant Materials 3.4. Selenium in Animal Products 3.5. Selenium in Human Diets 3.6. Selenium Bioavailability 4. Global Variation in Selenium Status 5. Selenium and Human Disease 5.1. Selenium Deficiency Disorders 5.2. Keshan Disease 5.3. Kaschin-Beck Disease 5.4. Iodine Deficiency Diseases 5.5. Selenium Status and Other Diseases 5.6. Selenium Status and Malnutrition 6. Selenium as an Anti-Carcinogen 6.1. Background 6.2. Clinical Trial Results 6.3. Mechanisms of Selenium Anti-Carcinogenesis 7. Selenosis 8. Enhancing Selenium in Food Systems 8.1. SeleniumUNESCO as a Resource Input – EOLSS 8.2. Production of Selenium-Enriched Foods 9. Conclusions Glossary SAMPLE CHAPTERS Bibliography Biographical Sketch Summary Selenium is an essential biological trace element. It is an essential constituent of several enzymes in which it is present in the form of the unusual amino acid selenocysteine (SeCys). Selenium intakes of at least 40 mcg per day appear to be required to support ©Encyclopedia of Life Support Systems (EOLSS) IMPACTS OF AGRICULTURE ON HUMAN HEALTH AND NUTRITION – Vol.
    [Show full text]
  • Discovery of Oxidative Enzymes for Food Engineering. Tyrosinase and Sulfhydryl Oxi- Dase
    Dissertation VTT PUBLICATIONS 763 1,0 0,5 Activity 0,0 2 4 6 8 10 pH Greta Faccio Discovery of oxidative enzymes for food engineering Tyrosinase and sulfhydryl oxidase VTT PUBLICATIONS 763 Discovery of oxidative enzymes for food engineering Tyrosinase and sulfhydryl oxidase Greta Faccio Faculty of Biological and Environmental Sciences Department of Biosciences – Division of Genetics ACADEMIC DISSERTATION University of Helsinki Helsinki, Finland To be presented for public examination with the permission of the Faculty of Biological and Environmental Sciences of the University of Helsinki in Auditorium XII at the University of Helsinki, Main Building, Fabianinkatu 33, on the 31st of May 2011 at 12 o’clock noon. ISBN 978-951-38-7736-1 (soft back ed.) ISSN 1235-0621 (soft back ed.) ISBN 978-951-38-7737-8 (URL: http://www.vtt.fi/publications/index.jsp) ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp) Copyright © VTT 2011 JULKAISIJA – UTGIVARE – PUBLISHER VTT, Vuorimiehentie 5, PL 1000, 02044 VTT puh. vaihde 020 722 111, faksi 020 722 4374 VTT, Bergsmansvägen 5, PB 1000, 02044 VTT tel. växel 020 722 111, fax 020 722 4374 VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland phone internat. +358 20 722 111, fax + 358 20 722 4374 Edita Prima Oy, Helsinki 2011 2 Greta Faccio. Discovery of oxidative enzymes for food engineering. Tyrosinase and sulfhydryl oxi- dase. Espoo 2011. VTT Publications 763. 101 p. + app. 67 p. Keywords genome mining, heterologous expression, Trichoderma reesei, Aspergillus oryzae, sulfhydryl oxidase, tyrosinase, catechol oxidase, wheat dough, ascorbic acid Abstract Enzymes offer many advantages in industrial processes, such as high specificity, mild treatment conditions and low energy requirements.
    [Show full text]
  • DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents
    molecules Review DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents Maria Valeria Raimondi 1,*,† , Ornella Randazzo 1,†, Mery La Franca 1 , Giampaolo Barone 1 , Elisa Vignoni 2, Daniela Rossi 2 and Simona Collina 2,* 1 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; [email protected] (O.R.); [email protected] (M.L.F.); [email protected] (G.B.) 2 Drug Sciences Department, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, via Taramelli 12, 27100 Pavia, Italy; [email protected] (E.V.); [email protected] (D.R.) * Correspondence: [email protected] (M.V.R.); [email protected] (S.C.); Tel.: +390-912-389-1915 (M.V.R.); +390-382-987-379 (S.C.) † These Authors contributed equally to this work. Academic Editors: Simona Collina and Mariarosaria Miloso Received: 25 February 2019; Accepted: 20 March 2019; Published: 22 March 2019 Abstract: Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.
    [Show full text]
  • Nano-Evolution and Protein-Based Enzymatic Evolution Predicts the Novel
    View Article Online View Journal Nanoscale Advances Accepted Manuscript This article can be cited before page numbers have been issued, to do this please use: G. Nazarbek, A. Kutzhanova, L. Nurtay , C. Mu, B. Kazybay, X. Li, C. Ma, A. Amin and Y. Xie, Nanoscale Adv., 2021, DOI: 10.1039/D1NA00475A. Volume 1 Number 1 This is an Accepted Manuscript, which has been through the January 2018 Pages 1-200 Royal Society of Chemistry peer review process and has been accepted Nanoscale for publication. Advances Accepted Manuscripts are published online shortly after acceptance, rsc.li/nanoscale-advances before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard ISSN 2516-0230 Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. rsc.li/nanoscale-advances Page 1 of 25 Nanoscale Advances 1 Nano-evolution and protein-based enzymatic evolution predicts the novel View Article Online
    [Show full text]