On Deep Research Problems in Deep Learning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intel® Optimized AI Frameworks
Intel® optimized AI frameworks Dr. Fabio Baruffa & Shailen Sobhee Technical Consulting Engineers, Intel IAGS Visit: www.intel.ai/technology Speed up development using open AI software Machine learning Deep learning TOOLKITS App Open source platform for building E2E Analytics & Deep learning inference deployment Open source, scalable, and developers AI applications on Apache Spark* with distributed on CPU/GPU/FPGA/VPU for Caffe*, extensible distributed deep learning TensorFlow*, Keras*, BigDL TensorFlow*, MXNet*, ONNX*, Kaldi* platform built on Kubernetes (BETA) Python R Distributed Intel-optimized Frameworks libraries * • Scikit- • Cart • MlLib (on Spark) * * And more framework Data learn • Random • Mahout optimizations underway • Pandas Forest including PaddlePaddle*, scientists * * • NumPy • e1071 Chainer*, CNTK* & others Intel® Intel® Data Analytics Intel® Math Kernel Library Kernels Distribution Acceleration Library Library for Deep Neural Networks for Python* (Intel® DAAL) (Intel® MKL-DNN) developers Intel distribution High performance machine Open source compiler for deep learning optimized for learning & data analytics Open source DNN functions for model computations optimized for multiple machine learning library CPU / integrated graphics devices (CPU, GPU, NNP) from multiple frameworks (TF, MXNet, ONNX) 2 Visit: www.intel.ai/technology Speed up development using open AI software Machine learning Deep learning TOOLKITS App Open source platform for building E2E Analytics & Deep learning inference deployment Open source, scalable, -
Much Has Been Written About the Turing Test in the Last Few Years, Some of It
1 Much has been written about the Turing Test in the last few years, some of it preposterously off the mark. People typically mis-imagine the test by orders of magnitude. This essay is an antidote, a prosthesis for the imagination, showing how huge the task posed by the Turing Test is, and hence how unlikely it is that any computer will ever pass it. It does not go far enough in the imagination-enhancement department, however, and I have updated the essay with a new postscript. Can Machines Think?1 Can machines think? This has been a conundrum for philosophers for years, but in their fascination with the pure conceptual issues they have for the most part overlooked the real social importance of the answer. It is of more than academic importance that we learn to think clearly about the actual cognitive powers of computers, for they are now being introduced into a variety of sensitive social roles, where their powers will be put to the ultimate test: In a wide variety of areas, we are on the verge of making ourselves dependent upon their cognitive powers. The cost of overestimating them could be enormous. One of the principal inventors of the computer was the great 1 Originally appeared in Shafto, M., ed., How We Know (San Francisco: Harper & Row, 1985). 2 British mathematician Alan Turing. It was he who first figured out, in highly abstract terms, how to design a programmable computing device--what we not call a universal Turing machine. All programmable computers in use today are in essence Turing machines. -
Intel® Software Template Overview
data analytics on spark Software & Services Group Intel® Confidential — INTERNAL USE ONLY Spark platform for big data analytics What is Apache Spark? • Apache Spark is an open-source cluster-computing framework • Spark has a developed ecosystem • Designed for massively distributed apps • Fault tolerance • Dynamic resource sharing https://software.intel.com/ai 2 INTEL and Spark community • BigDL – deep learning lib for Apache Spark • Intel® Data Analytics Acceleration Library (Intel DAAL) – machine learning lib includes support for Apache Spark • Performance Optimizations across Apache Hadoop and Apache Spark open source projects • Storage and File System: Ceph, Tachyon, and HDFS • Security: Sentry and integration into various Hadoop & Spark modules • Benchmarks Contributions: Big Bench, Hi Bench, Cloud Sort 3 Taxonomy Artificial Intelligence (AI) Machines that can sense, reason, act without explicit programming Machine Learning (ML), a key tool for AI, is the development, and application of algorithms that improve their performance at some task based on experience (previous iterations) BigDL Deep Learning Classic Machine Learning DAAL focus focus Algorithms where multiple layers of neurons Algorithms based on statistical or other learn successively complex representations techniques for estimating functions from examples Dimension Classifi Clusterin Regres- CNN RNN RBM … -ality -cation g sion Reduction Training: Build a mathematical model based on a data set Inference: Use trained model to make predictions about new data 4 BigDLand Intel DAAL BigDL and Intel DAAL are machine learning and data analytics libraries natively integrated into Apache Spark ecosystem 5 WhATis bigdl? • BigDL is a distributed deep learning library for Apache Spark • Allows to write deep learning applications as standard Spark programs • Runs on top of existing Spark or Hadoop/Hive clusters • Feature parity with popular DL frameworks. -
Turing Test Does Not Work in Theory but in Practice
Int'l Conf. Artificial Intelligence | ICAI'15 | 433 Turing test does not work in theory but in practice Pertti Saariluoma1 and Matthias Rauterberg2 1Information Technology, University of Jyväskylä, Jyväskylä, Finland 2Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands Abstract - The Turing test is considered one of the most im- Essentially, the Turing test is an imitation game. Like any portant thought experiments in the history of AI. It is argued good experiment, it has two conditions. In the case of control that the test shows how people think like computers, but is this conditions, it is assumed that there is an opaque screen. On actually true? In this paper, we discuss an entirely new per- one side of the screen is an interrogator whose task is to ask spective. Scientific languages have their foundational limita- questions and assess the nature of the answers. On the other tions, for example, in their power of expression. It is thus pos- side, there are two people, A and B. The task of A and B is to sible to discuss the limitations of formal concepts and theory answer the questions, and the task of the interrogator is to languages. In order to represent real world phenomena in guess who has given the answer. In the case of experimental formal concepts, formal symbols must be given semantics and conditions, B is replaced by a machine (computer) and again, information contents; that is, they must be given an interpreta- the interrogator must decide whether it was the human or the tion. They key argument is that it is not possible to express machine who answered the questions. -
THE TURING TEST RELIES on a MISTAKE ABOUT the BRAIN For
THE TURING TEST RELIES ON A MISTAKE ABOUT THE BRAIN K. L. KIRKPATRICK Abstract. There has been a long controversy about how to define and study intel- ligence in machines and whether machine intelligence is possible. In fact, both the Turing Test and the most important objection to it (called variously the Shannon- McCarthy, Blockhead, and Chinese Room arguments) are based on a mistake that Turing made about the brain in his 1948 paper \Intelligent Machinery," a paper that he never published but whose main assumption got embedded in his famous 1950 paper and the celebrated Imitation Game. In this paper I will show how the mistake is a false dichotomy and how it should be fixed, to provide a solid foundation for a new understanding of the brain and a new approach to artificial intelligence. In the process, I make an analogy between the brain and the ribosome, machines that translate information into action, and through this analogy I demonstrate how it is possible to go beyond the purely information-processing paradigm of computing and to derive meaning from syntax. For decades, the metaphor of the brain as an information processor has dominated both neuroscience and artificial intelligence research and allowed the fruitful appli- cations of Turing's computation theory and Shannon's information theory in both fields. But this metaphor may be leading us astray, because of its limitations and the deficiencies in our understanding of the brain and AI. In this paper I will present a new metaphor to consider, of the brain as both an information processor and a producer of physical effects. -
Online Power Management for Multi-Cores: a Reinforcement Learning Based Approach
1 Online Power Management for Multi-cores: A Reinforcement Learning Based Approach Yiming Wang, Weizhe Zhang, Senior Member, IEEE, Meng Hao, Zheng Wang, Member, IEEE Abstract—Power and energy is the first-class design constraint for multi-core processors and is a limiting factor for future-generation supercomputers. While modern processor design provides a wide range of mechanisms for power and energy optimization, it remains unclear how software can make the best use of them. This paper presents a novel approach for runtime power optimization on modern multi-core systems. Our policy combines power capping and uncore frequency scaling to match the hardware power profile to the dynamically changing program behavior at runtime. We achieve this by employing reinforcement learning (RL) to automatically explore the energy-performance optimization space from training programs, learning the subtle relationships between the hardware power profile, the program characteristics, power consumption and program running times. Our RL framework then uses the learned knowledge to adapt the chip’s power budget and uncore frequency to match the changing program phases for any new, previously unseen program. We evaluate our approach on two computing clusters by applying our techniques to 11 parallel programs that were not seen by our RL framework at the training stage. Experimental results show that our approach can reduce the system-level energy consumption by 12%, on average, with less than 3% of slowdown on the application performance. By lowering the uncore frequency to leave more energy budget to allow the processor cores to run at a higher frequency, our approach can reduce the energy consumption by up to 17% while improving the application performance by 5% for specific workloads. -
March 2012 Version 2
WWRF VIP WG CONNECTED VEHICLES White Paper Connected Vehicles: The Role of Emerging Standards, Security and Privacy, and Machine Learning Editor: SESHADRI MOHAN, CHAIR CONNECTED VEHICLES WORKING GROUP PROFESSOR, SYSTEMS ENGINEERING DEPARTMENT UA LITTLE ROCK, AR 72204, USA Project website address: www.wwrf.ch This publication is partly based on work performed in the framework of the WWRF. It represents the views of the authors(s) and not necessarily those of the WWRF. EXECUTIVE SUMMARY The Internet of Vehicles (IoV) is an emerging technology that provides secure vehicle-to-vehicle (V2V) communication and safety for drivers and their passengers. It stands at the confluence of many evolving disciplines, including: evolving wireless technologies, V2X standards, the Internet of Things (IoT) consisting of a multitude of sensors that are housed in a vehicle, on the roadside, and in the devices worn by pedestrians, the radio technology along with the protocols that can establish an ad-hoc vehicular network, the cloud technology, the field of Big Data, and machine intelligence tools. WWRF is presenting this white paper inspired by the developments that have taken place in recent years in standards organizations such as IEEE and 3GPP and industry consortia efforts as well as current research in academia. This white paper provides insights into the state-of-the-art regarding 3GPP C-V2X as well as security and privacy of ETSI ITS, IEEE DSRC WAVE, 3GPP C-V2X. The White Paper further discusses spectrum allocation worldwide for ITS applications and connected vehicles. A section is devoted to a discussion on providing connected vehicles communication over a heterogonous set of wireless access technologies as it is imperative that the connectivity of vehicles be maintained even when the vehicles are out of coverage and/or the need to maintain vehicular connectivity as a vehicle traverses multiple wireless access technology for access to V2X applications. -
Artificial Intelligence and Big Data – Innovation Landscape Brief
ARTIFICIAL INTELLIGENCE AND BIG DATA INNOVATION LANDSCAPE BRIEF © IRENA 2019 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. ISBN 978-92-9260-143-0 Citation: IRENA (2019), Innovation landscape brief: Artificial intelligence and big data, International Renewable Energy Agency, Abu Dhabi. ACKNOWLEDGEMENTS This report was prepared by the Innovation team at IRENA’s Innovation and Technology Centre (IITC) with text authored by Sean Ratka, Arina Anisie, Francisco Boshell and Elena Ocenic. This report benefited from the input and review of experts: Marc Peters (IBM), Neil Hughes (EPRI), Stephen Marland (National Grid), Stephen Woodhouse (Pöyry), Luiz Barroso (PSR) and Dongxia Zhang (SGCC), along with Emanuele Taibi, Nadeem Goussous, Javier Sesma and Paul Komor (IRENA). Report available online: www.irena.org/publications For questions or to provide feedback: [email protected] DISCLAIMER This publication and the material herein are provided “as is”. All reasonable precautions have been taken by IRENA to verify the reliability of the material in this publication. However, neither IRENA nor any of its officials, agents, data or other third- party content providers provides a warranty of any kind, either expressed or implied, and they accept no responsibility or liability for any consequence of use of the publication or material herein. -
Machine Theory of Mind
Machine Theory of Mind Neil C. Rabinowitz∗ Frank Perbet H. Francis Song DeepMind DeepMind DeepMind [email protected] [email protected] [email protected] Chiyuan Zhang S. M. Ali Eslami Matthew Botvinick Google Brain DeepMind DeepMind [email protected] [email protected] [email protected] Abstract 1. Introduction Theory of mind (ToM; Premack & Woodruff, For all the excitement surrounding deep learning and deep 1978) broadly refers to humans’ ability to rep- reinforcement learning at present, there is a concern from resent the mental states of others, including their some quarters that our understanding of these systems is desires, beliefs, and intentions. We propose to lagging behind. Neural networks are regularly described train a machine to build such models too. We de- as opaque, uninterpretable black-boxes. Even if we have sign a Theory of Mind neural network – a ToM- a complete description of their weights, it’s hard to get a net – which uses meta-learning to build models handle on what patterns they’re exploiting, and where they of the agents it encounters, from observations might go wrong. As artificial agents enter the human world, of their behaviour alone. Through this process, the demand that we be able to understand them is growing it acquires a strong prior model for agents’ be- louder. haviour, as well as the ability to bootstrap to Let us stop and ask: what does it actually mean to “un- richer predictions about agents’ characteristics derstand” another agent? As humans, we face this chal- and mental states using only a small number of lenge every day, as we engage with other humans whose behavioural observations. -
Bigdl: a Distributed Deep Learning Framework for Big Data
BigDL: A Distributed Deep Learning Framework for Big Data Jason (Jinquan) Dai1, Yiheng Wang2 ǂ, Xin Qiu1, Ding Ding1, Yao Zhang3 ǂ, Yanzhang Wang1, Xianyan Jia4 ǂ, Cherry (Li) Zhang1, Yan Wan4 ǂ, Zhichao Li1, Jiao Wang1, Shengsheng Huang1, Zhongyuan Wu1, Yang Wang1, Yuhao Yang1, Bowen She1, Dongjie Shi1, Qi Lu1, Kai Huang1, Guoqiong Song1 1Intel, 2 Tencent, 3 Sequoia Capital, 4Alibaba, ǂ Work was done when the author worked at Intel SOCC 2019 Agenda • Motivation • BigDL Execution Model • Experimental Evaluation • Real-World Applications • Future Work SOCC 2019 Real-World ML/DL Systems Are Complex Big Data Analytics Pipelines “Hidden Technical Debt in Machine Learning Systems”, Sculley et al., Google, NIPS 2015 Paper SOCC 2019 Big Data Analysis Challenges Real-World data analytics and deep learning pipelines are challenging • Deep learning benchmarks (ImageNet, SQuAD , etc.) • Curated and explicitly labelled Dataset • Suitable for dedicated DL systems • Real-world production data pipeline • Dynamic, messy (and possibly implicitly labeled) dataset • Suitable for integrated data analytics and DL pipelines using BigDL • Problems with “connector approaches” • TFX, TensorFlowOnSpark, Project Hydrogen, etc. • Adaptation overheads, impedance mismatch SOCC 2019 BigDL Execution Model SOCC 2019 Distributed Training in BigDL Data Parallel, Synchronous Mini-Batch SGD Prepare training data as an RDD of Samples Construct an RDD of models (each being a replica of the original model) for (i <- 1 to N) { //”model forward-backward” job for each task in the -
The Turing Test and Other Design Detection Methodologies∗
Detecting Intelligence: The Turing Test and Other Design Detection Methodologies∗ George D. Montanez˜ 1 1Machine Learning Department, Carnegie Mellon University, Pittsburgh PA, USA [email protected] Keywords: Turing Test, Design Detection, Intelligent Agents Abstract: “Can machines think?” When faced with this “meaningless” question, Alan Turing suggested we ask a dif- ferent, more precise question: can a machine reliably fool a human interviewer into believing the machine is human? To answer this question, Turing outlined what came to be known as the Turing Test for artificial intel- ligence, namely, an imitation game where machines and humans interacted from remote locations and human judges had to distinguish between the human and machine participants. According to the test, machines that consistently fool human judges are to be viewed as intelligent. While popular culture champions the Turing Test as a scientific procedure for detecting artificial intelligence, doing so raises significant issues. First, a simple argument establishes the equivalence of the Turing Test to intelligent design methodology in several fundamental respects. Constructed with similar goals, shared assumptions and identical observational models, both projects attempt to detect intelligent agents through the examination of generated artifacts of uncertain origin. Second, if the Turing Test rests on scientifically defensible assumptions then design inferences become possible and cannot, in general, be wholly unscientific. Third, if passing the Turing Test reliably indicates intelligence, this implies the likely existence of a designing intelligence in nature. 1 THE IMITATION GAME gin et al., 2003), this paper presents a novel critique of the Turing Test in the spirit of a reductio ad ab- In his seminal paper on artificial intelligence (Tur- surdum. -
Efficiently Mastering the Game of Nogo with Deep Reinforcement
electronics Article Efficiently Mastering the Game of NoGo with Deep Reinforcement Learning Supported by Domain Knowledge Yifan Gao 1,*,† and Lezhou Wu 2,† 1 College of Medicine and Biological Information Engineering, Northeastern University, Liaoning 110819, China 2 College of Information Science and Engineering, Northeastern University, Liaoning 110819, China; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Computer games have been regarded as an important field of artificial intelligence (AI) for a long time. The AlphaZero structure has been successful in the game of Go, beating the top professional human players and becoming the baseline method in computer games. However, the AlphaZero training process requires tremendous computing resources, imposing additional difficulties for the AlphaZero-based AI. In this paper, we propose NoGoZero+ to improve the AlphaZero process and apply it to a game similar to Go, NoGo. NoGoZero+ employs several innovative features to improve training speed and performance, and most improvement strategies can be transferred to other nonspecific areas. This paper compares it with the original AlphaZero process, and results show that NoGoZero+ increases the training speed to about six times that of the original AlphaZero process. Moreover, in the experiment, our agent beat the original AlphaZero agent with a score of 81:19 after only being trained by 20,000 self-play games’ data (small in quantity compared with Citation: Gao, Y.; Wu, L. Efficiently 120,000 self-play games’ data consumed by the original AlphaZero). The NoGo game program based Mastering the Game of NoGo with on NoGoZero+ was the runner-up in the 2020 China Computer Game Championship (CCGC) with Deep Reinforcement Learning limited resources, defeating many AlphaZero-based programs.