Inorganic Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Inorganic Chemistry The Organometallic Chemistry of N‐heterocyclic Carbenes Inorganic Chemistry A Wiley Series of Advanced Textbooks ISSN: 1939‐5175 Editorial Board David Atwood, University of Kentucky, USA Bob Crabtree, Yale University, USA Gerd Meyer, University of Iowa, USA Derek Woollins, University of St. Andrews, UK Previously Published Books in this Series Bioinorganic Chemistry – Inorganic Elements in the Chemistry of Life: An Introduction and Guide, 2nd Edition Wolfgang Kaim, Brigitte Schwederski & Axel Klein; ISBN: 978-0-470-97523-7 Structural Methods in Molecular Inorganic Chemistry David W. H. Rankin, Norbert W. Mitzel & Carole A. Morrison; ISBN: 978‐0‐470‐97278‐6 Introduction to Coordination Chemistry Geoffrey Alan Lawrance; ISBN: 978‐0‐470‐51931‐8 Chirality in Transition Metal Chemistry Hani Amouri & Michel Gruselle; ISBN: 978‐0‐470‐06054‐4 Bioinorganic Vanadium Chemistry Dieter Rehder; ISBN: 978‐0‐470‐06516‐7 Inorganic Structural Chemistry 2nd Edition Ulrich Müller; ISBN: 978‐0‐470‐01865‐1 Lanthanide and Actinide Chemistry Simon Cotton; ISBN: 978‐0‐470‐01006‐8 Mass Spectrometry of Inorganic and Organometallic Compounds: Tools‐Techniques‐Tips William Henderson & J. Scott McIndoe; ISBN: 978‐0‐470‐85016‐9 Main Group Chemistry, Second Edition A.G. Massey; ISBN: 978‐0‐471‐19039‐5 Synthesis of Organometallic Compounds: A Practical Guide Sanshiro Komiya; ISBN: 978‐0‐471‐97195‐5 Chemical Bonds: A Dialog Jeremy Burdett; ISBN: 978‐0‐471‐97130‐6 The Molecular Chemistry of the Transition Elements: An Introductory Course Francois Mathey & Alain Sevin; ISBN: 978‐0‐471‐95687‐7 Stereochemistry of Coordination Compounds Alexander von Zelewsky; ISBN: 978‐0‐471‐95599‐3 For more information on this series see: www.wiley.com/go/inorganic The Organometallic Chemistry of N‐heterocyclic Carbenes Han Vinh Huynh Department of Chemistry National University of Singapore Republic of Singapore This edition first published 2017 © 2017 John Wiley & Sons Ltd All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions. The right of Han Vinh Huynh to be identified as the author of this work has been asserted in accordance with law. Registered Offices John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Office The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com. Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand. Some content that appears in standard print versions of this book may not be available in other formats. Limit of Liability/Disclaimer of Warranty The publisher and the authors make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relat- ing to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or website is referred to in this work as a citation and/or potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this works was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom. Library of Congress Cataloging‐in‐Publication Data Names: Huynh, Han Vinh, 1972– Title: The organometallic chemistry of N-heterocyclic carbenes / Han Vinh Huynh, Department of Chemistry, National University of Singapore. Description: First edition. | Hoboken, NJ : John Wiley & Sons, Inc., 2017. | Series: Inorganic chemistry : a textbook series | Includes bibliographical references and index. Identifiers: LCCN 2016046161 (print) | LCCN 2016046392 (ebook) | ISBN 9781118593776 (cloth) | ISBN 9781118698808 (pdf) | ISBN 9781118698792 (epub) Subjects: LCSH: Organometallic chemistry. | Heterocyclic chemistry. | Carbenes (Methylene compounds) Classification: LCC QD411 .H89 2017 (print) | LCC QD411 (ebook) | DDC 547/.412–dc23 LC record available at https://lccn.loc.gov/2016046161 Cover image: Courtesy of author Cover design by Wiley Set in 10/12pt Times by SPi Global, Pondicherry, India 10 9 8 7 6 5 4 3 2 1 Contents Foreword ix Preface x List of Abbreviations and Definitions xii 1 General Introduction 1 1.1 Definition of Carbenes . .1 1.2 Historical Overview of Carbenes, N‐Heterocyclic Carbenes, and Their Complexes . 3 1.2.1 The Quest for Free Stable Carbenes . .3 1.2.2 The Quest for Carbene Complexes . 11 References. 15 2 General Properties of Classical NHCs and Their Complexes 17 2.1 Stabilization in NHCs (Push‐Pull Effect). 19 2.2 Backbone Differences and Their Implications . 20 2.3 Dimerization of Carbenes. 22 2.4 Nomenclature of N‐Heterocyclic Carbenes. 25 2.5 Electronic Properties of NHCs and Different Electronic Parameters. 29 2.5.1 Tolman’s Electronic Parameter (TEP) and Related Carbonyl Based Systems . 29 2.5.2 Lever’s Electronic Parameter (LEP) . 36 2.5.3 Huynh’s Electronic Parameter (HEP). 38 2.6 Steric Properties of NHCs. 42 2.7 Structural Diversity of NHC Ligands and Their Complexes . 45 2.7.1 Donor‐Functionalized NHCs . 45 2.7.2 Multidentate NHCs . 46 2.7.3 Pincer‐Type NHC Ligands . 47 2.7.4 Tripodal and Macrocyclic Ligands . 48 References. 49 3 Synthetic Aspects 52 3.1 General Routes to Azolium Salts as NHC Precursors . 52 3.1.1 N‐Alkylation of Neutral Azoles. 52 3.1.2 Multicomponent Condensation Reactions . 55 3.1.3 Cyclization of Diamines . 58 3.1.4 Cyclization of Formamidines. 64 3.2 General Routes to Free NHCs. 66 3.2.1 NHCs via Deprotonation of Azolium Salts. 68 3.2.2 NHCs via Reduction of Thiones . 71 3.2.3 NHCs via α‐Elimination of Small Molecules. 73 vi Contents 3.3 General Synthetic Routes to NHC Complexes . 74 3.3.1 Coordination of Free NHCs. 76 3.3.2 Cleavage of Electron‐Rich Entetramines by Transition Metals. 78 3.3.3 In Situ Deprotonation of Azolium Salts in the Presence of Transition Metals. 78 3.3.4 Carbene Transfer Routes . 81 3.3.5 Oxidative Addition of an Azolium Salt to a Low‐Valent Metal Complex . 83 3.3.6 Metal‐Template Synthesis Using Isocyanide Complexes as Precursors . 85 3.3.7 NHC Complexes by Small Molecule Elimination . 89 3.3.8 NHC Complexes by Protonation/Alkylation of Azolyl Complexes . 93 References. 95 4 Group 10 Metal(0)‐NHC Complexes 99 4.1 Nickel(0)‐NHC Complexes. 99 4.1.1 Reactions of Enetetramines and Free NHCs . 99 4.1.2 Reduction of Nickel(II)‐NHC Complexes . 106 4.2 Palladium(0)‐NHC Complexes. 107 4.2.1 Reactions of Free NHCs . 107 4.2.2 Reduction of Palladium(II)‐NHC Complexes. 112 4.3 Platinum(0)‐NHC Complexes. 115 4.3.1 Homoleptic Complexes. 115 4.3.2 Heteroleptic Complexes. 117 References. 120 5 Group 10 Metal(II)‐NHC Complexes 122 5.1 Nickel(II)‐NHC Complexes. 122 5.1.1 Cleavage of Enetetramines and the Free Carbene Route. 122 5.1.2 In Situ Deprotonation of Azolium Salts with Basic Metal Salts . 124 5.1.3 The Silver‐Carbene Transfer Route. 127 5.2 Palladium(II)‐NHC Complexes. 129 5.2.1 Cleavage of Entetramines and the Free Carbene Route. 130 5.2.2 In Situ Deprotonation of Azolium Salts with External Base . 133 5.2.3 The “Palladium Acetate” Route. 135 5.2.4 The Silver‐Carbene Transfer Route. 139 5.2.5 Isomers of Bis(NHC) Palladium(II) Complexes . 143 5.3 Platinum(II)‐NHC Complexes . 150 5.3.1 Cleavage of Entetramines. 151 5.3.2 Cyclization of Isocyanide Complexes. 152 5.3.3 The Oxidative Addition Route . 153 5.3.4 The Free Carbene Route . 157 5.3.5 In Situ Deprotonation of Azolium Salts with External Base . 159 5.3.6 In Situ Deprotonation with Basic Platinum Precursors. 162 5.3.7 Carbene Transfer Reactions. 164 References. 168 6 Group 11 Metal‐NHC Complexes 171 6.1 Copper(I)‐NHC Complexes. 171 6.1.1 The Free Carbene Route . 171 6.1.2 Alkylation of Copper‐Azolate Complexes . 172 Contents vii 6.1.3 In Situ Deprotonation with External Base . 173 6.1.4 In Situ Deprotonation with Basic Copper Precursors. 177 6.1.5 The Silver Carbene Transfer Route. 180 6.1.6 The Copper Powder Route . 182 6.2 Silver(I)‐NHC Complexes . 183 6.2.1 The Free Carbene Route . 183 6.2.2 In Situ Deprotonation with Basic Silver Precursors . 186 6.2.3 Silver‐Carbene Transfer Reactions . 192 6.3 Gold(I)‐NHC Complexes.
Recommended publications
  • A Facile Procedure for the Generation of Dichlorocarbene from the Reaction of Carbon Tetrachloride and Magnesium Using Ultrasonic Irradiation
    Molecules 2003, 8, 608-613 molecules ISSN 1420-3049 http://www.mdpi.org A Facile Procedure for the Generation of Dichlorocarbene from the Reaction of Carbon Tetrachloride and Magnesium using Ultrasonic Irradiation Haixia Lin *, Mingfa Yang, Peigang Huang and Weiguo Cao Department of Chemistry, Shanghai University, Shanghai, 200436, P.R. China *Author to whom correspondence should be addressed: e-mail [email protected] Received: 7 April 2003; in revised form: 7 July 2003 / Accepted: 20 July 2003 / Published: 31 July 2003 Abstract: An improved method for the generation of dichlorocarbene was developed that utilizes ultrasound in the reaction of carbon tetrachloride with magnesium. High yields of gem-dichlorocyclopropane derivatives can be obtained in the presence of olefins by this method. Keywords: Dichlorocarbene; gem-dichlorocyclopropanes; ultrasonic irradiation; olefin addition; magnesium Introduction Gem-dichlorocyclopropanes are valuable intermediates in organic synthesis [1,2]. They are typically prepared by the addition of dichlorocarbene to olefins under phase-transfer catalysis conditions [3-5]. Sonochemical generation of dichlorocarbene has also been reported [6-8]. The reactions of dichlorocarbene with olefins in solid-liquid two-phase systems using ultrasonication usually afford high yields of double-bond addition products. In addition, excellent yields of diadducts have been obtained from dienes and dichlorocarbene under ultrasonication and phase-transfer catalyst [9]. Molecules 2003, 8 609 Previously, we reported a novel route for the generation of dichlorocarbene by the reaction of carbon tetrachloride with magnesium in a neutral medium and hypothesized that the mechanism of these reactions might involve a single electron transfer [10]. However, these reactions suffered from several experimental drawbacks: some of the major ones being the sudden exotherm that occurs after an unpredictable induction period, foaming, and in some cases, the use of iodine as the activating agent.
    [Show full text]
  • Chloroform 18.08.2020.Pdf
    Chloroform Chloroform, or trichloromethane, is an organic compound with formula CHCl3. It is a colorless, sweet-smelling, dense liquid that is produced on a large scale as a precursor to PTFE. It is also a precursor to various refrigerants. It is one of the four chloromethanes and a trihalomethane. It is a powerful anesthetic, euphoriant, anxiolytic and sedative when inhaled or ingested. Formula: CHCl₃ IUPAC ID: Trichloromethane Molar mass: 119.38 g/mol Boiling point: 61.2 °C Density: 1.49 g/cm³ Melting point: -63.5 °C The molecule adopts a tetrahedral molecular geometry with C3v symmetry. Chloroform volatilizes readily from soil and surface water and undergoes degradation in air to produce phosgene, dichloromethane, formyl chloride, carbon monoxide, carbon dioxide, and hydrogen chloride. Its half-life in air ranges from 55 to 620 days. Biodegradation in water and soil is slow. Chloroform does not significantly bioaccumulate in aquatic organisms. Production:- In industry production, chloroform is produced by heating a mixture of chlorine and either chloromethane (CH3Cl) or methane (CH4). At 400–500 °C, a free radical halogenation occurs, converting these precursors to progressively more chlorinated compounds: CH4 + Cl2 → CH3Cl + HCl CH3Cl + Cl2 → CH2Cl2 + HCl CH2Cl2 + Cl2 → CHCl3 + HCl Chloroform undergoes further chlorination to yield carbon tetrachloride (CCl4): CHCl3 + Cl2 → CCl4 + HCl The output of this process is a mixture of the four chloromethanes (chloromethane, dichloromethane, chloroform, and carbon tetrachloride), which can then be separated by distillation. Chloroform may also be produced on a small scale via the haloform reaction between acetone and sodium hypochlorite: 3 NaClO + (CH3)2CO → CHCl3 + 2 NaOH + CH3COONa Deuterochloroform[ Deuterated chloroform is an isotopologue of chloroform with a single deuterium atom.
    [Show full text]
  • Gas-Solid Alkali Destruction of Volatile Chlorocarbons
    LA-13042-MS Gas-Solid Alkali Destruction of Volatile Chlorocarbons c£lVi •% to BO Los Alamos NATIONAL LABORATORY Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36- An Affirmative Action/Equal Opportunity Employer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof. The Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; therefore, the Laboratory as an institution does not endorse the viewpoint of a publication or guarantee its technical correctness. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best aTaiiable original document. LA-13042-MS UC-901 Issued: December 1995 Gas-Solid Alkali Destruction of Volatile Chlorocarbons Jerry Foropoulos, Jr.
    [Show full text]
  • Lecture 13 Electrophilic Aromatic Substitution I 5.1 Principles
    NPTEL – Chemistry – Principles of Organic Synthesis Lecture 13 Electrophilic Aromatic Substitution I 5.1 Principles The reaction occurs in two stages: the electrophile adds to one carbon atom of the aromatic ring, yielding a carbocation in which the positive charge is delocalized, and a proton is then eliminated from the adduct. H E H E H E E -H E 5.2 Formation of Carbon-Carbon Bonds 5.2.1 Friedel-Crafts Acylation Acylation of aromatic rings is generally peroformed using acid chloride or acid anhydride as an acylating agent in the presence of Lewis acid. O Z RCOCl, AlCl Z 3 R H2O Mechanism AlCl3 RCOCl RC=O + AlCl4 H H RC=O COR Z Z COR Z Joint initiative of IITs and IISc – Funded by MHRD Page 1 of 26 NPTEL – Chemistry – Principles of Organic Synthesis In some circumstances, carboxylic acid is used as an acylating agent in the presence of a proton acid. HO OH O 2 PhOH, H2SO4 O O -H2O O O Phenolphthalein Indicator Intramolecular reactions are of particular value to construct cyclic systems. These reactions are usually carried out using dibasic acid anhydrides. For example, the synthesis -tetralone has been accomplished from benzene and succinic anhydride using AlCl3 in 80% yield. O O OH OH AlCl3 reduction + O O O O SOCl2 Cl AlCl3 O O Joint initiative of IITs and IISc – Funded by MHRD Page 2 of 26 NPTEL – Chemistry – Principles of Organic Synthesis Examples: 5 mol% Tb(OTf)3 CO H 2 PhCl O D.-M. Cui, C. Zhang, M. Kawamura, S.
    [Show full text]
  • The Dichlorocyclopropanation of 3-Methyl-1-Cyclohexene and 4-Vinyl-1- Cyclohexene Using Water Soluble Multi-Site Phase Transfer Catalyst-A Kinetic Study
    Int.J.Curr.Microbiol.App.Sci (2014) 3(9) 211-223 ISSN: 2319-7706 Volume 3 Number 9 (2014) pp. 211-223 http://www.ijcmas.com Original Research Article The dichlorocyclopropanation of 3-methyl-1-cyclohexene and 4-vinyl-1- cyclohexene using water soluble multi-site phase transfer catalyst-A kinetic study K.Shanmugam* and E.Kannadasan Deptartment of Chemistry, Government Arts College, Chidambaram, TamilNadu, India *Corresponding author A B S T R A C T The present study focuses the attention towards the utility of multi-site phase K e y w o r d s transfer catalyst (MPTC), is demonstrated by studying hydroxide-ion initiated reaction like dichlorocarbene addition to olefins. The formation of the product was Multi-site phase monitored by GLC.Dichlorocyclopropanation of 3-methyl-1-cyclohexene and 4- transfer catalysts, vinyl-1-cyclohexene catalysed by multi-site phase transfer catalyst carried out in Dichlorocyclopro biphasic medium under pseudo-first-order conditions by keeping aqueous sodium panation, hydroxide and chloroform in excess. The effect of various experimental parameters 3-methyl-1- on the rate of the reaction has been studied. Also thermodynamic parameters such cyclohexene;4- as S#, G# and H# were evaluated; based on the experimental results, a suitable vinyl-1- mechanism is proposed.It also deals in greater detail on the kinetic aspects of cyclohexene, Kinetics chosen reactions. An attempt has been made to compare the ability of MPTC-1 with MPTC-II and single-site PTC for dichlorocarbeneaddition to olefins like 3- methyl-l-cyclohexene and 4-vinyl-l-cyclohexene. Introduction The reaction of chloroform with strong to be generated in, or transferred to the bases to generate synthetically useful organic phase, where its reaction with 3- dichlorocarbene normally requires methyl-l-cyclohexene is much greater than anhydrous conditions to avoid its rapid with water addition of dichlorocarbene to 3- hydrolysis (Reeves et al., 1976).
    [Show full text]
  • Carbene Rearrangements: Intramolecular Interaction of a Triple Bond with a Carbene Center
    An Abstract OF THE THESIS OF Jose C. Danino for the degree of Doctor of Philosophy in Chemistry presented on _Dcc, Title: Carbene RearrangementE) Intramolecular Interaction of a Triple Bond with aCarbene Center Redacted for Privacy Abstract approved: Dr. Vetere. Freeman The tosylhydrazones of2-heptanone, 4,4-dimethy1-2- heptanone, 6-heptyn-2-one and 4,4-dimethy1-6-heptyn-2- one were synthesizedand decomposed under a varietyof reaction conditions:' drylithium and sodium salt pyrolyses, sodium methoxide thermolysesin diglyme and photolyses of the lithium salt intetrahydrofuran. The saturated ana- logues 2-heptanone tosylhydrazoneand its 4,4-dimethyl isomer afforded the alkenesarising from 6-hydrogeninser- product distribution in the tion. It was determined that differ- dry salt pyrolyses of2-heptanone tosylhydrazone was ent for the lithiumand the sodium salts. However, the product distribution of thedry sodium salt was verysimilar diglyme to product distributionobtained on thermolysis in explained by a with sodium methoxide. This difference was reaction of lithium bromide(present as an impurity inall compound to the lithium salts)with the intermediate diazo afford an organolithiumintermediate that behaves in a some- what different fashionthan the free carbene.The unsaturated analogues were found to produce a cyclic product in addition to the expected acyclic alkenes arising from 3-hydrogen insertion. By comparison of the acyclic alkene distri- bution obtained in the saturated analogues with those in the unsaturated analogues, it was concluded that at leastsome cyclization was occurring via addition of the diazo moiety to the triple bond. It was determined that the organo- lithium intermediateresulting from lithium bromide cat- alyzed decomposition of the diazo compound was incapable of cyclization.
    [Show full text]
  • Interfacial Processes—The Key Steps of Phase Transfer Catalyzed
    Review Interfacialcatalysts Processes—The Key Steps of Phase Transfer Catalyzed Reactions Review InterfacialMieczysław Mąkosza Processes—The 1,* and Michał Fedoryński 2 Key Steps of Phase Transfer1 Institute of Organic Catalyzed Chemistry, Polish Reactions Academy of Sciences, Kasprzaka 44/52, 01‐224 Warsaw, Poland 2 Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00‐664 Warsaw, Poland; Mieczysł[email protected] M ˛akosza 1,* and Michał Fedory ´nski 2 * Correspondence: [email protected]; Tel: +48‐22‐3432334 1 Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland 2Received:Faculty 18 of November Chemistry, 2020; Warsaw Accepted: University 5 December of Technology, 2020; Published: Noakowskiego 8 December 3, 00-664 2020 Warsaw, Poland; [email protected] *Abstract:Correspondence: After short [email protected]; historical introduction, Tel.: + interfacial48-22-3432334 mechanism of phase transfer catalyzed (PTC) reactions of organic anions, induced by aqueous NaOH or KOH in two‐phase systems is Received:formulated. 18 NovemberSubsequently 2020; experimental Accepted: 5 December evidence 2020; that Published: supports 8 the December interfacial 2020 deprotonation as the key initial step of these reactions is presented. Abstract: After short historical introduction, interfacial mechanism of phase transfer catalyzed (PTC) reactionsKeywords: of organiccarbanions; anions, dichlorocarbene; induced by aqueous sodium NaOH hydroxide; or KOH ininterfacial two-phase processes;
    [Show full text]
  • Review Article Synthesis and Reactions of Five-Membered Heterocycles Using Phase Transfer Catalyst (PTC) Techniques
    Hindawi Publishing Corporation Journal of Chemistry Volume 2014, Article ID 163074, 47 pages http://dx.doi.org/10.1155/2014/163074 Review Article Synthesis and Reactions of Five-Membered Heterocycles Using Phase Transfer Catalyst (PTC) Techniques Ahmed M. El-Sayed,1 Omyma A. Abd Allah,1 Ahmed M. M. El-Saghier,1 and Shaaban K. Mohamed2,3 1 Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt 2 Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, UK 3 Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt Correspondence should be addressed to Omyma A. Abd Allah; [email protected] Received 1 May 2013; Revised 15 September 2013; Accepted 28 October 2013; Published 25 February 2014 Academic Editor: Jorge F. Fernandez-Sanchez Copyright © 2014 Ahmed M. El-Sayed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Phase transfer catalysts (PTCs) have been widely used for the synthesis of organic compounds particularly in both liquid-liquid and solid-liquid heterogeneous reaction mixtures. They are known to accelerate reaction rates by facilitating formation of interphase transfer of species and making reactions between reagents in two immiscible phases possible. Application of PTC instead of traditional technologies for industrial processes of organic synthesis provides substantial benefits for the environment. On the basis of numerous reports it is evident that phase-transfer catalysis is the most efficient way for generation and reactions of many active intermediates.
    [Show full text]
  • STUDIES of CARBENE-SOLVENT INTERACTIONS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor
    STUDIES OF CARBENE-SOLVENT INTERACTIONS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Eric M. Tippmann, B.S. ***** The Ohio State University 2003 Dissertation Committee: Approved by Professor Matthew S. Platz, Adviser Professor Terry L. Gustafson Professor Christopher M. Hadad Adviser Department of Chemistry ABSTRACT Several new tricyclic-carbene precursors have been synthesized. Photolysis (266, 300, or 308 nm) of these precursors generates free carbenes in solution. This was demonstrated through trapping studies performed with pyridine and tetramethylethylene. The new carbenes (chlorofluoro-, fluorocarbomethoxy-, chloro- and fluoroamidecarbenes) were fully characterized by laser flash photolysis techniques using time-resolved infrared and UV-Vis spectroscopy. The new carbenes, along with several other known carbenes, were utilized in the study of carbene-solvent interactions. One class of carbenes, the haloamide carbenes, demonstrated significant solvent-dependent chemistry. Both time resolved infrared and UV-Vis spectroscopy generated results indicative of significant carbene-solvent interactions. Generally, ethereal solvents were able to retard the bimolecular reactivity of chloro- and fluoroamidecarbenes with carbene traps. The lifetime of the carbene was also dramatically extended in some cases. Time- resolved infrared spectroscopy was able to directly observe the chloroamide carbene solvated by small amounts of dioxane in Freon-113. Other potentially ligating solvents, such as benzene and acetonitrile for example, did not demonstrate similar reactivity. Density Functional and MP2 theoretical calculations were performed to assist in assigning reactive intermediates as well as determining reaction barriers. ii To Sohie iii ACKNOWLEDGMENTS I thank my adviser for supplying a lifetime's worth of example to follow, both personally and professionally.
    [Show full text]
  • Synthesis and Photochemistry of New Carbene Precursors
    SYNTHESIS AND PHOTOCHEMISTRY OF NEW CARBENE PRECURSORS A Senior Honors Thesis Presented in Partial Fulfillment of the Requirements for graduation with distinction in Chemistry in the undergraduate colleges of The Ohio State University By Christopher M. Cassara ***** The Ohio State University June 2005 Project Advisor: Professor Matthew S. Platz, Department of Chemistry ABSTRACT Carbenes are neutral divalent reactive intermediates containing a carbon atom surrounded by only six valence electrons. Because of this electron deficiency, carbenes are very short-lived intermediates and react with a variety of functional groups. One of the most commonly used applications of carbenes is in cyclopropane synthesis. This research has focused on the synthesis of new, novel carbene precursors and the study of their photochemistry. The purpose of this research is twofold: 1) to trap the carbene with pyridine and characterize the UV spectra of the carbene ylide intermediate and 2) to determine the lifetimes and reaction rates of carbenes with various reagents. The lifetime of the carbene and the rate of its reaction with alkenes will be used to form a better understanding of the relationship between carbene structure and reactivity. Laser Flash Photolysis (LFP) techniques were used to generate the carbene, which subsequently reacted with pyridine to form an ylide. This reaction was necessary because we were not able to detect the carbene directly. The carbenes being studied cannot be directly detected because they do not exhibit a UV chromophore at or above 300 nm. Trapping the carbene with pyridine yields a species with a strong UV absorbtion at 480 nm, which is easily detected.
    [Show full text]
  • Pyridine: a New Arrival in the Heterocalixarene Family
    Calix[4]pyridine: a new arrival in the heterocalixarene family Vladim´ır Kr´al,a,b Philip A. Gale,a Pavel Anzenbacher Jr.,a,b Karolina Jurs´ıkov´a,a Vincent Lyncha and Jonathan L. Sessler*a a Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas, 78712-1167, USA b Institute of Chemical Technology, Department of Analytical Chemistry, Prague, 166 28 Czech Republic Reaction of dichlorocarbene with meso-octamethyl- hydrogen bonds may influence the conformation of the calix[4]pyrrole causes pyrrole ring expansion, producing macrocycle. chlorocalixpyridinopyrroles and chlorocalixpyridines. Crystals of the calix[3]pyridino[1]pyrrole were grown from a MeOH–CH2Cl2–hexanes solvent mixture.§ As in the structure Considerable effort of late has been devoted to synthesizing new macrocycles containing pyridine subunits. While many Cl such systems have been reported, some of considerable elegance,1 one of the simplest conceivable pyridine-containing N N macrocycles, calix[4]pyridine, remains unknown. H :CCl2 –HCl Currently, close analogues of calix[4]pyridine, in the form of NH HN NH HN homocalixpyridines2 and tetrapyridine tetraone3 macrocycles H H are known. However, macrocyclic systems with pyridine rings N N linked in the 2 and 6 positions via a single sp3 hybridized carbon atom have yet to be prepared. We have now discovered a 52:CCl2 general synthetic strategy that not only allows for the prepara- –HCl tion of calix[4]pyridine derivatives (e.g. 1), but also provides Cla Clb Cla Clb access to calix[n]pyridino[n]pyrroles (m + n = 4). While some species related to this latter set of macrocycles are known, N N Cla namely mixed porphyrin-like pyrrole-pyridine systems and calixpyridinopyrroles containing one or two pyridines,4 NHHN or NH N calix[3]pyridine[1]pyrrole derivatives (e.g.
    [Show full text]
  • Enhanced Mixing of Biphasic Liquid-Liquid Systems for the Synthesis of Gem-Dihalocyclopropanes Using Packed Bed Reactors
    Journal of Flow Chemistry (2019) 9:27–34 https://doi.org/10.1007/s41981-018-0026-1 COMMUNICATIONS Enhanced mixing of biphasic liquid-liquid systems for the synthesis of gem-dihalocyclopropanes using packed bed reactors Timo von Keutz1,2 & David Cantillo1,2 & C. Oliver Kappe1,2 Received: 14 November 2018 /Accepted: 7 December 2018 /Published online: 7 January 2019 # The Author(s) 2019 Abstract A continuous flow procedure for the gem-dichlorocyclopropanation of alkenes has been developed. The method is based on the generation of dichlorocarbene utilizing the classical biphasic aqueous sodium hydroxide/chloroform system. This reaction typically requires vigorous stirring for several hours in batch for completion. Tarry materials precipitate due to partial polymer- ization of dichlorocarbene and the process is difficult to scale. To overcome these problems and achieve very efficient mixing during the flow process a column reactor packed with PTFE beads as inert filling material has been used. PTFE beads have been found to be the optimal material to obtain fine dispersions of the aqueous phase in the organic solution. By heating the packed- bed reactor at 80 °C excellent conversions have been achieved after a residence time of only 4 min. The process has been applied for the synthesis of Ciprofibrate, a dichlorocyclopropane-containing drug used as treatment for several diseases associated with high lipid content in blood. Keywords Dichlorocarbene . Phase-transfer catalysis . Packed-bed reactor . gem-dichlorocyclopropanation . Ciprofibrate . Continuous flow Introduction transfer, which in turn depends on the surface contact area between the two phases [5, 6]. In batch reactors highly Biphasic liquid-liquid systems are very important in pro- dispersed biphasic liquid-liquid mixtures can only be ob- cess chemistry and the pharmaceutical industry.
    [Show full text]