Pathogenesis of Neonatal Meningitis the Maturation of Dendritic Cells In

Total Page:16

File Type:pdf, Size:1020Kb

Pathogenesis of Neonatal Meningitis the Maturation of Dendritic Cells In Escherichia coli K1 Promotes the Ligation of CD47 with Thrombospondin-1 To Prevent the Maturation of Dendritic Cells in the Pathogenesis of Neonatal Meningitis This information is current as of October 1, 2021. Rahul Mittal, Ignacio Gonzalez-Gomez and Nemani V. Prasadarao J Immunol 2010; 185:2998-3006; Prepublished online 30 July 2010; doi: 10.4049/jimmunol.1001296 Downloaded from http://www.jimmunol.org/content/185/5/2998 Supplementary http://www.jimmunol.org/content/suppl/2010/07/28/jimmunol.100129 Material 6.DC1 http://www.jimmunol.org/ References This article cites 43 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/185/5/2998.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 1, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Escherichia coli K1 Promotes the Ligation of CD47 with Thrombospondin-1 To Prevent the Maturation of Dendritic Cells in the Pathogenesis of Neonatal Meningitis Rahul Mittal,* Ignacio Gonzalez-Gomez,†,‡ and Nemani V. Prasadarao*,‡,x,{ Dendritic cells (DCs) are professional APCs providing a critical link between adaptive and innate immune responses. Our previous studies have shown that Escherichia coli K1 internalization of myeloid DCs suppressed the maturation of the cells for which outer membrane protein A (OmpA) expression is essential. In this study, we demonstrate that infection of DCs with OmpA+ E. coli significantly upregulates the expression of CD47, an integrin-associated protein, and its natural ligand thrombospondin 1 (TSP-1). Pretreatment of DCs with anti-CD47 blocking Ab or knocking down the expression of CD47 or TSP-1, but not signal regulatory protein a by small interfering RNA, abrogated the suppressive effect of E. coli K1. Ligation of CD47 with a mAb prevented the + maturation and cytokine production by DCs upon stimulation with LPS similar to the inhibitory effect induced by OmpA E. coli. Downloaded from In agreement with the in vitro studies, suppression of CD47 or TSP-1 expression in newborn mice by a novel in vivo small interfering RNA technique protected the animals against E. coli K1 meningitis. Reconstitution of CD47 knockdown mice with CD47+ DCs renders the animals susceptible to meningitis by E. coli K1, substantiating the role of CD47 expression in DCs for the occurrence of meningitis. Our results demonstrate a role for CD47 for the first time in bacterial pathogenesis and may be a novel target for designing preventive approaches for E. coli K1 meningitis. The Journal of Immunology, 2010, 185: 2998–3006. http://www.jimmunol.org/ acterial meningitis is the most common and devastating studies have demonstrated that E. coli K1, expressing outer mem- infection of the CNS (1). Escherichia coli K1 is one of the brane protein A (OmpA), enters, survives, and replicates inside most predominant pathogens causing neonatal septicemia myeloid DCs, whereas OmpA2 E. coli was killed within a short B + and meningitis (2). Despite recent advances in antibiotic therapy period (6). Exposure of DCs to live OmpA E. coli K1 prevented and supportive care, bacterial sepsis and meningitis due to E. coli DCs from progressing in their maturation process, as indicated by remain a serious disease with unacceptable rates of mortality and failure to upregulate costimulatory molecules, CD40, HLA-DR, and morbidity (3). The disease is fatal in 5–40% of infected neonates CD86. However, the mechanisms by which E. coli K1 makes DCs and causes neurologic sequelae in up to 30% of the survivors (4). tolerogenic are still not clear. by guest on October 1, 2021 A recent surge in antibiotic-resistant strains of E. coli K1 may The development of fully mature DCs is carefully controlled at increase the mortality rates significantly (5). A comprehensive its multiple differentiation steps, and DCs can be tolerized by understanding of the mechanisms involved at every step of the simultaneous stimulation with endogenous products (7). This pathogenesis is vital to develop new methods of treatment and prevents the detrimental immune response to self and harmless prevention. High degree of bacteremia is a prerequisite for the indigenous flora (8). However, these differentiation control points bacteria to cross the blood-brain barrier, indicating that the bac- can be exploited by pathogens to produce tolerogenic immature terium must evade host defense mechanisms and survive in blood DCs (iDCs) (9). CD47 (integrin-associated protein) is one of or tissues (3). However, precise mechanisms by which E. coli K1 the molecules that have been implicated in the tolerogenicity of survives in host tissues despite the presence of potent immune cells immune cells (10). CD47 is a transmembrane glycoprotein, with like dendritic cells (DCs), neutrophils, macrophages, and T cells are a highly glycosylated extracellular IgG domain at its N terminus, still far from clear. DCs are professional APCs playing a crucial role a hydrophobic five-transmembrane–spanning domain, and a short in the induction and regulation of immune responses. Our previous alternatively spliced cytoplasmic tail (11). It was first identified as a protein associated with vb3 integrins in placenta and in neutrophil granulocytes, and later shown to have the capacity to *Division of Infectious Diseases, xDepartment of Pediatrics, {Department of Surgery, and †Department of Pathology, Saban Research Institute, Children’s Hospital, and regulate integrin function and leukocyte responses to arginine– ‡Keck School of Medicine, University of Southern California, Los Angeles, CA glycine–aspartic acid-containing extracellular matrix proteins (12). 90027 CD47 has also been described to interact with the integrins IIbb3 Received for publication April 20, 2010. Accepted for publication June 28, 2010. and 2b1 (13). Thrombospondin (TSP) is a natural ligand for CD47, This work was supported by National Institutes of Health Grant AI40567 (to N.V.P.). which is a homotrimeric extracellular matrix protein that is produced Address correspondence and reprint requests to Dr. Nemani V. Prasadarao, Division not only by platelets, but also by monocytes, DCs, and macrophages of Infectious Diseases, MS #51, Children’s Hospital Los Angeles and Keck School of (14, 15). Its expression is highly regulated by different hormones Medicine, University of Southern California, 4650 Sunset Boulevard, Los Angeles, CA 90027. E-mail address: [email protected] and cytokines, and is developmentally controlled (16). The levels The online version of this article contains supplemental material. of TSPs in body fluids and their distribution in tissues have been Abbreviations used in this paper: BMDC, bone marrow-derived dendritic cell; DC, correlated with various pathological states (17). TSP-1 is tran- dendritic cell; iDC, immature DC; KD, knockdown; LB, Luria-Bertani; OmpA, outer siently expressed at high concentrations in damaged and inflamed membrane protein A; siRNA, small interfering RNA; SIRP-a, signal regulatory tissues. Signal regulatory protein a (SIRP-a) can also function as protein a; TSP, thrombospondin; WT, wild type. a ligand for CD47 (10, 18). SIRP-a is a type I transmembrane Copyright Ó 2010 by The American Association of Immunologists, Inc. 0022-1767/10/$16.00 receptor of the Ig superfamily with one or three extracellular Ig www.jimmunol.org/cgi/doi/10.4049/jimmunol.1001296 The Journal of Immunology 2999 domains (alternative splicing) and an intracellular tail with two and/or propidium iodide positive. However, there was no significant differ- ITIMs (19). SIRP-a has been implicated in the suppression of ence observed in the proportion in cultures stimulated with medium, E. coli, anchorage-independent cell growth, mediation of macrophage LPS, or CD47 Ab-treated DCs. multinucleation, skeletal muscle differentiation, neuronal survival, Cytokine determination and synaptogenesis (20, 21). TNF-a, IL-1b, IL-6, IL-12 p70, IL-10, and TGF-b production in cell In this study, we demonstrate for the first time that E. coli K1 culture supernatants of stimulated or unstimulated DCs collected after upregulates the expression of CD47 in DCs, making them tol- 24 and 48 h of incubation were carried out using Biosource (Invitrogen) erogenic so that it can evade immune defense mechanisms and ELISA kits, according to the manufacturer’s instructions. TSP-1 production survive in the host. Furthermore, suppression of CD47 expression was determined using ELISA kit from R&D Systems (Minneapolis, MN). by small interfering RNA (siRNA) in newborn mice protected the DC-induced naive T cell activation animals from E. coli K1-induced meningitis, and adoptive transfer of CD47+ DCs in CD47 knockdown (KD) mice renders them The ability of infected DCs to activate naive T cells was assessed by al- logeneic lymphoproliferation. DCs were infected with E. coli or pretreated susceptible to infection, indicating that CD47 might be a novel with CD47 mAb, CD47 blocking Ab, isotype-matched control Ab, or target for the prevention of this deadly disease. transfected with CD47 siRNA or control siRNA. The DCs were then used to stimulate allogeneic naive T cells. Briefly, DCs and T cells were added in the ratio of 1:300 in 96-well plates, cocultured for 72 h, [3H] was added, Materials and Methods and harvested for 18 h. The rate of incorporation of thymidine was Bacterial strains assessed by a liquid scintillation counter, and the results were expressed as disintegration per minute.
Recommended publications
  • A Review of Clinically Suspected Sepsis and Meningitis in Infants Under 90 Days Old in a Tertiary Care Center in Saudi Arabia
    Journal of Microbiology and InfectiousBukhari Diseases EE, et / al. Sepsis and meningitis in infants 2011; 1 (2): 47-5247 JMID doi: 10.5799/ahinjs.02.2011.02.0012 ORIGINAL ARTICLE A review of clinically suspected sepsis and meningitis in infants under 90 days old in a tertiary care center in Saudi Arabia Elham Essa Bukhari, Abdulkarim Abdullah Alrabiaah Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia ABSTRACT Objectives: Infections in infants<90 days old are the leading cause of morbidity and hospitalization in neonatal prac- tice. The etiological agents of sepsis (with or without meningitis) in Saudi neonates <90 days old are vastly under- characterized. The aim of this study was to determine the bacterial etiology of neonatal sepsis and meningitis in these infants. Materials and methods: This retrospective study was conducted in King Khalid University Hospital, Riyadh, in the pe- riod from January 2007 to January 2011. All infants<90 days old with suspected sepsis during this period were examined for evidence of infection. Cultures, including blood and Cerebrospinal fluid (CSF) were performed for all neonates. Results: A total of 304 cases of sepsis in infants <90 days were investigated. Community-acquired neonatal sepsis com- posed 284 of the studied cases present after the age of one month, while 20 infants were identified as having neonatal sepsis in the first month of life. Only 12 blood cultures were positive (four isolates of Staphylococcus epidermidis, two Staphylococcus aureus, two Staphylococcus hominis, one Enterobacter cloacae, one group B streptococcus, one diphthe- roids and one with Bacillus species).
    [Show full text]
  • The Epidemiology of Meningitis in Infants Under 90 Days of Age in a Large Pediatric Hospital
    microorganisms Article The Epidemiology of Meningitis in Infants under 90 Days of Age in a Large Pediatric Hospital Timothy A. Erickson 1,2, Flor M. Munoz 3, Catherine L. Troisi 2 , Melissa S. Nolan 4 , Rodrigo Hasbun 5, Eric L. Brown 2 and Kristy O. Murray 1,* 1 Department of Pediatrics, Section of Pediatric Tropical Medicine, William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA; [email protected] 2 School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA; [email protected] (C.L.T.); [email protected] (E.L.B.) 3 Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA; fl[email protected] 4 Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; [email protected] 5 McGovern Medical School, University of Texas, Houston, TX 77030, USA; [email protected] * Correspondence: [email protected] Abstract: Background: Meningitis is associated with substantial morbidity and mortality, particularly in the first three months of life. Methods: We conducted a retrospective review of patients <90 days of age with meningitis at Texas Children’s Hospital from 2010–2017. Cases were confirmed using the National Healthcare Safety Network (NHSN) definition of meningitis. Results: Among 694 infants with meningitis, the most common etiology was viral (n = 351; 51%), primarily caused by Citation: Erickson, T.A.; Munoz, enterovirus (n = 332; 95%).
    [Show full text]
  • I.6 AB Neonatal Meningitis Copy 2
    2021 WHO Expert Committee on Selection and Use of Essential Medicines Proposal to extend the indications for gentamicin on the EMLc to include acute bacterial meningitis in neonates Submitted by: Dr Veronica Zanichelli, WHO Consultant Dr Mark Loeb and Dr Dominik Mertz, McMaster University 1. Summary statement of the proposal for inclusion, change or deletion. This application concerns the updating of the forthcoming WHO Model List of Essential Medicines for Children (EMLc) to add the new indication of acute bacterial meningitis in neonates to the existing listing for gentamicin. The treatment options for neonatal meningitis of ampicillin in combination with gentamicin, and the use of ceftriaxone or cefotaxime as alternatives to ampicillin are recommended by several WHO guidelines. Ampicillin, ceftriaxone and cefotaxime are currently included on the EMLc for the treatment of acute bacterial meningitis related to their good CSF penetration, safety profile and coverage of the most common pathogens. In neonates, the clinical presentation of meningitis is, however, less typical than in adults or in older children and symptoms are usually non-specific. Neonates with meningitis often present with a combination of fever, poor feeding, lethargy and/or reduced interaction with caregivers, vomiting, irritability, seizures and rash. Neck stiffness is uncommon. These non-specific symptoms overlap with those of “neonatal sepsis” for which there is no universally accepted definition even though the term is most commonly used to describe a serious systemic condition of infectious origin (usually bacterial) that occurs in the first month of life, associated with a combination of clinical and laboratory signs. Therefore, empiric treatment of neonatal meningitis and sepsis overlap, and meningitis should always be suspected in case of signs of serious bacterial infection.
    [Show full text]
  • Diagnosis of Meningitis Fontanelle Was Full and the Optic Disc Margins Were Blurred
    Arch Dis Child: first published as 10.1136/adc.53.7.590 on 1 July 1978. Downloaded from Archives of Disease in Childhood, 1978, 53, 590-603 Short reports Repeat lumbar puncture in the pupil and intermittently the eyes deviated to the right. Head circumference now was 42 cm. The diagnosis of meningitis fontanelle was full and the optic disc margins were blurred. Bilateral subdural taps were performed and Case report 0-5 ml blood-stained fluid was obtained on the right and only a few drops on the left. The glucose A 10-week-old baby boy was admitted with a 14- in this fluid was reduced (0 * 55 mmol/l; 9 *9 mg/ hour history of continuous screaming. He had 100 ml) and a second lumbar puncture was per- vomited several times and passed a loose yellow formed 14 hours after the first, and 28 hours after stool. Before this illness he had been well. He was the onset of symptoms. This cerebrospinal fluid the first child of a 20-year-old mother and was a (CSF) showed changes compatible with bacterial term normal delivery. Primary immunisation had meningitis (Table 1). been started. Treatment with gentamicin and penicillin was On admission he was febrile (39°C), irritable, and continued. The infant's condition gradually im- cried throughout examination. Pulse 200/minute and proved, but on the third day of illness the head regular. Head circumference 41 5 cm. Pupils were circumference increased to 42-8 cm and he again equal in size and reaction. Optic fundi were normal.
    [Show full text]
  • Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry Across the Blood–Brain Barrier
    International Journal of Molecular Sciences Review Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood–Brain Barrier Rosanna Herold, Horst Schroten and Christian Schwerk * Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; [email protected] (R.H.); [email protected] (H.S.) * Correspondence: [email protected]; Tel.: +49-621-383-3466 Received: 26 September 2019; Accepted: 25 October 2019; Published: 29 October 2019 Abstract: Infections of the central nervous system (CNS) are still a major cause of morbidity and mortality worldwide. Traversal of the barriers protecting the brain by pathogens is a prerequisite for the development of meningitis. Bacteria have developed a variety of different strategies to cross these barriers and reach the CNS. To this end, they use a variety of different virulence factors that enable them to attach to and traverse these barriers. These virulence factors mediate adhesion to and invasion into host cells, intracellular survival, induction of host cell signaling and inflammatory response, and affect barrier function. While some of these mechanisms differ, others are shared by multiple pathogens. Further understanding of these processes, with special emphasis on the difference between the blood–brain barrier and the blood–cerebrospinal fluid barrier, as well as virulence factors used by the pathogens, is still needed. Keywords: bacteria; blood–brain barrier; blood–cerebrospinal fluid barrier; meningitis; virulence factor 1. Introduction Bacterial meningitis, as are bacterial encephalitis and meningoencephalitis, is an inflammatory disease of the central nervous system (CNS). It can be diagnosed by the presence of bacteria in the CNS.
    [Show full text]
  • Neonatal Meningitis, the Facts
    Neonatal meningitis, the facts This fact sheet provides information about the most common causes of neonatal meningitis Key points and answers some frequently asked questions. This should be read in addition to our ‘Meningitis • Neonatal meningitis occurs in the can affect anyone’ leaflet which provides more information on signs and symptoms and first 28 days of life emergency action to take. Information about • Many different organisms can cause other types of meningitis that can affect newborn neonatal meningitis and very young babies can be found on our other There are approximately 350 cases fact sheets. All our information can be found at • www.MeningitisNow.org. You can also request of neonatal bacterial meningitis each any of our information materials by contacting our year in the UK Meningitis Helpline on 0808 80 10 388. • Urgent treatment with antibiotics is vital Words highlighted in blue are explained in a glossary on the back page. Meningitis is inflammation of the membranes E. coli are common bacteria found in the large that surround the brain and spinal cord. These intestine of nearly all healthy people and, like membranes are called the meninges – they help GBS, may be passed to a baby during delivery. protect the brain from injury and infection. Although most strains of E. coli do not cause disease, serious infections may occur if the Septicaemia** is a severe infection of the blood. bacteria invade areas of the body in which they Bacteria multiply in the blood, releasing toxins are not normally found, such as the urinary tract, that cause widespread damage to the body.
    [Show full text]
  • Relapse of Neonatal Escherichia Coli Meningitis: Did We Miss Something at First?
    children Case Report Relapse of Neonatal Escherichia coli Meningitis: Did We Miss Something at First? Nadja H. Vissing 1,*, Mette B. Mønster 1, Sannie Nordly 2, Gholamreza K. Dayani 3, Sofie S. Heedegaard 4, Jenny D. Knudsen 5 and Ulrikka Nygaard 1 1 Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; [email protected] (M.B.M.); [email protected] (U.N.) 2 Department of Pediatrics and Adolescence, Copenhagen University Hospital, 2650 Hvidovre, Denmark; [email protected] 3 Department of Pediatrics and Adolescence, Zealand University Hospital, 4000 Roskilde, Denmark; [email protected] 4 Department of Pediatrics and Adolescence, Herning Hospital, 7400 Herning, Denmark; sofi[email protected] 5 Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; [email protected] * Correspondence: [email protected]; Tel.: +45-35451312 Abstract: Relapse of neonatal meningitis is most commonly caused by Escherichia coli. Management to prevent relapse varies and evidence is limited. We present four cases of relapsing neonatal E. coli meningitis in Denmark in 2016–2017 and review the current literature on this subject. During the primary episodes, our patients received cephalosporin for 3 weeks and gentamicin for the first 3 days. The only identified risk factor was delayed CSF sterilization in three of four cases and no Citation: Vissing, N.H.; Mønster, repeated lumbar puncture. Relapse occurred after 2–28 days; one case with ventriculitis and one with M.B.; Nordly, S.; Dayani, G.K.; empyema. Relapses were treated for 6–14 weeks with monotherapy.
    [Show full text]
  • Pitfalls in the Diagnosis of Meningitis in Neonates and Young Infants: the Role of Lumbar Puncture
    The Journal of Maternal-Fetal & Neonatal Medicine ISSN: 1476-7058 (Print) 1476-4954 (Online) Journal homepage: http://www.tandfonline.com/loi/ijmf20 Pitfalls in the diagnosis of meningitis in neonates and young infants: the role of lumbar puncture Luca Bedetti, Lucia Marrozzini, Alessandro Baraldi, Elisabetta Spezia, Lorenzo Iughetti, Laura Lucaccioni & Alberto Berardi To cite this article: Luca Bedetti, Lucia Marrozzini, Alessandro Baraldi, Elisabetta Spezia, Lorenzo Iughetti, Laura Lucaccioni & Alberto Berardi (2018): Pitfalls in the diagnosis of meningitis in neonates and young infants: the role of lumbar puncture, The Journal of Maternal-Fetal & Neonatal Medicine, DOI: 10.1080/14767058.2018.1481031 To link to this article: https://doi.org/10.1080/14767058.2018.1481031 Accepted author version posted online: 23 May 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ijmf20 Pitfalls in the diagnosis of meningitis in neonates and young infants: the role of lumbar puncture Luca Bedetti, MDa; Lucia Marrozzini, MDa; Alessandro Baraldi, MDa; Elisabetta Spezia, MDa; Lorenzo Iughetti, MDa,b; Laura Lucaccioni, MDc; Alberto Berardi MDc; Affiliations: a Scuola di Specializzazione in Pediatria, Università di Modena e Reggio Emilia, Modena, Italy b Unità Operativa di Pediatria, Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell’Adulto, Azienda Ospedaliero-Universitaria Policlinico, Modena; Italy c Unità Operativa di Terapia Intensiva Neonatale, Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell’Adulto, Azienda Ospedaliero-Universitaria Policlinico, Modena; Italy Correspondence to:Luca Bedetti, Scuola di Specializzazione in Pediatria, Università di Modena e Reggio Emilia, Modena, Italy, Via del Pozzo, 71 - 41124 Modena (MO), Italy Phone: +39 347 3667447.
    [Show full text]
  • Neonatal Multidrug-Resistant Bacterial Meningitis: a 29-Year Study from a Tertiary Hospital in Thailand
    Brief Original Article Neonatal multidrug-resistant bacterial meningitis: a 29-year study from a tertiary hospital in Thailand Anucha Thatrimontrichai1, Waricha Janjindamai1, Supaporn Dissaneevate1, Gunlawadee Maneenil1 1 Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand Abstract Introduction: This study aimed to compare the risks and case fatality rate (CFR) between neonatal multidrug-resistant (MDR) and non-MDR meningitis. Methodology: a secondary analysis of a case-control studies in a Thai neonatal intensive care unit between 1990 and 2018 was performed. The pathogenic organisms causing neonatal meningitis were Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae, Acinetobacter spp., and Pseudomonas aeruginosa. A MDR organism was defined as an isolate that was non-susceptible to at least 1 agent in at least 3 antimicrobial categories. The multivariate regression was analyzed for MDR and non-MDR samples of neonatal meningitis. Results: Over a period of 29 years, the number of neonatal MDR and non-MDR meningitis cases were 17 and 21, respectively. The medians (interquartile ranges) of gestational age, birthweight and onset of meningitis were 35 (29.5-38) weeks, 1,945 (1,218-2,859) grams and 6.5 (2.8- 17.9) days, respectively. The most common organism was Acinetobacter baumannii (32%). By multivariate analysis, neonates who had MDR meningitis were more likely to have a lower Apgar score at 5 minutes (adjusted odds ratio: 95% confidence intervals = 0.66 [0.44-0.99], p = 0.04). The crude CFR of neonatal meningitis was 32%. Non-survivors in MDR meningitis (58.8%) were significantly higher than non-MDR meningitis (9.5%, p = 0.004).
    [Show full text]
  • Neonatal Candida Meningitis: Significance of Cerebrospinal fluid Parameters and Blood Cultures
    Journal of Perinatology (2007) 27, 97–100 r 2007 Nature Publishing Group All rights reserved. 0743-8346/07 $30 www.nature.com/jp ORIGINAL ARTICLE Neonatal Candida meningitis: significance of cerebrospinal fluid parameters and blood cultures M Cohen-Wolkowiez1, PB Smith1,2, B Mangum2, WJ Steinbach1, BD Alexander3, CM Cotten1, RH Clark4, TJ Walsh5 and DK Benjamin Jr1,2 1Department of Pediatrics, Duke University, Durham, NC, USA; 2Clinical Research Institute, Duke University Durham, NC, USA; 3Department of Medicine, Duke University, Durham, NC, USA; 4Pediatrix-Obstetrix Center for Research and Education, Sunrise, FL, USA and 5Immunocompromised Host Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA (CSF). However, lumbar punctures (LP) in infants are often Objective: The purpose of this study was to examine the frequency of delayed until after institution of empirical anti-fungal therapy or normal cerebrospinal fluid (CSF) parameters in Candida meningitis and until blood culture results are known to be positive, because of the the proportion of candidemia associated with Candida meningitis. delicate medical conditions of some infants, absence of specific 2 Study design: We evaluated the initial lumbar puncture results from clinical findings or assumptions of low risk of meningitis. infants discharged from 150 Neonatal Intensive Care Units between 1997 This delay in obtaining CSF places increased importance in and 2004. Candida meningitis was diagnosed by a positive CSF culture or interpretation of CSF parameters. In addition, recent studies have positive Gram stain for yeast. We calculated two-tailed P-values using shown that negative blood cultures are frequently found in infants 3 non-parametric testing, Mann–Whitney, Kruskal–Wallis or Fisher’s exact with meningitis.
    [Show full text]
  • Incidence of Meningitis in Neonates with Late‑Onset Sepsis at a Tertiary
    [Downloaded free from http://www.jcnonweb.com on Friday, July 12, 2019, IP: 200.121.233.115] Original Article Incidence of Meningitis in Neonates with Late‑onset Sepsis at a Tertiary Care Center in Western India: An Observational Study Sameet Umate, Bhawan Deep Garg, Nandkishor S Kabra Department of Neonatology, Objective: The objective of this study was to determine the incidence of Surya Children’s Medicare meningitis in neonates with late‑onset sepsis (LOS) in the West India population. Pvt. Ltd., Mumbai, Maharashtra, India Materials and Methods: This prospective observational study enrolled 208 BSTRACT neonates with signs and symptoms suggestive of sepsis with positive C‑reactive A protein at or more than 72 h of postnatal age. Results: Out of total 208 neonates with LOS, 12.5% neonates had meningitis. The incidence of LOS in preterm and low‑birth‑weight neonates were 73.6% and 72.1%, respectively. Most common presenting features in neonates with LOS with or without meningitis were respiratory distress (72.6%), followed by lethargy (68.8%) and refusal to feed (63%). Blood culture was positive in 53.8% neonates who had meningitis. Mortality in neonatal meningitis was 3.84%. Conclusion: This study demonstrated that a significant number of neonates with LOS have coexistent neonatal meningitis. Our study highlights the diagnostic utility of routine lumbar puncture in neonates with clinical features of sepsis. KEYWORDS: Incidence, late‑onset sepsis, meningitis INTRODUCTION North India.[8] Two other studies from North India[9] and [10] eonatal sepsis is one of the most common Central India reported approximately 17% incidence Ncauses of neonatal mortality.[1] Worldwide, of meningitis in neonates with LOS.
    [Show full text]
  • Diagnosis and Treatment of Bacterial Meningitis in the Newborn
    Niger J Paed 2013; 40 (1): 6 –14 REVIEW Ogunlesi TA Diagnosis and treatment of bacterial meningitis in the newborn DOI:http://dx.doi.org/10.4314/njp.v40i1.2 Accepted: 29th May 2012 Abstract Background: Bacterial riologic culture in the diagnosis of meningitis in the newborn is glob- meningitis can be improved with Ogunlesi, TA ( ) ally renowned for high mortality. serologic method like polymerase Department of Paediatrics, The associated morbidities also chain reaction. Widespread resis- Olabisi Onabanjo University Teaching include audiologic, motor, visual tance of pathogens may be threaten- Hospital, Sagamu P. O. Box 652, Sagamu-121001 and mental deficits. ing the use of penicillins and gen- Ogun State. Nigeria. Objective: To highlight the peculi- tamicin for empirical treatment of Email: [email protected] arities in the current diagnostic and newborn meningitis. No sufficient management strategies in newborn evidence presently supports the meningitis. current practices of fluid restriction, Methods: Relevant literature on the prolonged duration of antibiotic subject published only in English treatment and non-use of adjuvant language or translated to English steroid therapies in the newborn. language was searched manually Conclusion: Efforts to reduce the and electronically. The Medline, incidence of newborn meningitis PUBMED and HINARI were cannot be separated from the pre- searched for the period between vention of newborn sepsis gener- 1966 and 2012. The following key ally. In addition, more controlled words were used during the search: trials are required in the developing newborn/neonatal, bacterial/ world with respect to the various pyogenic meningitis, central nerv- aspects of management of newborn ous system infections, antibiotics, meningitis, particularly fluid man- dexamethasone and fluid agement and the use of adjuvant restriction.
    [Show full text]