POWERPOWER ELECTRONICSELECTRONICS

ACAC VOLTAGEVOLTAGE CONTROLLERSCONTROLLERS

Dr. Adel Gastli Email: [email protected] http://adel.gastli.net

INTRODUCTIONINTRODUCTION

• Purpose: control the output rms using SCR- or Triac-type switch. • Name: AC Voltage Controller, AC to controlled AC converters or AC regulators • Types: there are single-phase and three- phase types of ac voltage controllers

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 2 CHAPTERCHAPTERCHAPTER’S’’SS CONTENTCONTENTCONTENT

1. 1-PHASE AC VOLTAGE CONTROLLERS 2. 3-PHASE AC VOLTAGE CONTROLLERS 3. 4. APPLICATIONS & SUMMARY

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 3

SectionSection 11

11--PHASEPHASE ACAC VOLTAGEVOLTAGE CONTROLLERSCONTROLLERS

T2

iL iL

T1 Triac

v Z vL Z L L ≡ L

vs = Vsm sin(ωt) vs = Vsm sin(ωt)

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 4 SECTIONSECTIONSECTION’S’’SS CONTENTSCONTENTSCONTENTS

1. ON-OFF CONTROL 2. PHASE CONTROL 3. SECTION SUMMARY

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 5

ONON--OFFOFF CONTROLCONTROL Integral half cycle control. Usually used for resistive load.

iL vs Vsm v L R 0 t n v = V sin(ωt) s sm N T : period N : number of half cycle during period T n : number of half cycles during switch on Similar to n V n V = V = sm = V k chopper 0rms srms s Duty principle. N 2 N cycle

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 6 PHASEPHASE CONTROL:CONTROL: BIBI--DIRECTIONALDIRECTIONAL

1. Resistive Load i L vs Vsm

vL R 0 α π + α 2π + α ωt

vs = Vsm sin(ωt)

2 π π 1 2 Vsm 2 V0rms = vLdθ = sin θ ⋅ dθ π ∫0 π ∫α 1 ⎛ sin()2α ⎞ V0rms = Vs ⎜π -α + ⎟ π ⎝ 2 ⎠

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 7

SIMULINK SIMULATION

ia (sp_ac_reg.mdl)

a i k + g -

Triac iA

g

g + + v v0 R=10Ω v vs - 120V - 50Hz vA

Press to Plot Results

(sp_ac_regm.m)

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 8 1.5

1

0.5 Gate signal Gate 0 0 200 400 600 800 1000 200 vs v0 0 α = 45o Voltage, (V) -200 0 200 400 600 800 1000 20

0 Current, (A) -20 0 200 400 600 800 1000 Angle, (Deg)

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 9

2. Inductive Load Three cases to be distinguished:

i0 i. α > θ L ii. α < θ iii. α = θ v0 R i) α > θ : Discontinuous current v = V sin(ωt) s sm Current equation is obtained similarly to Chapter 10 (single-phase controlled ⎛ ωL ⎞ θ = tan −1⎜ ⎟ rectifier). ⎝ R ⎠ ⎛ R ⎞⎛ α ⎞ ⎡ ⎜ ⎟⎜ −t ⎟ ⎤ 2Vs ⎝ L ⎠⎝ ω ⎠ i1 = ⎢sin()()ωt −θ − sin α −θ e ⎥ vs Z v ⎣⎢ ⎦⎥ Vsm 0

i0 β is obtained by taking i1(β)=0. 0 β φ α π + α 2π + α ωt 1 ⎛ sin 2α sin 2β ⎞ V0rms = Vs ⎜ β −α + − ⎟ π ⎝ 2 2 ⎠

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 10 ii) α < θ : / Not Practical because conduction angle cannot exceed π β > α + π Conduction in one alternance.

To be avoided

If gate pulse is large enough then we will obtain continuous conduction.

iii) α = θ : Continuous conduction

Vsm β = α + π V0rms = = Vsrms 2

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 11

SIMULINK SIMULATION

(sp_ac_reg.mdl) ia

a i k + g - Triac iA

g

g + R=10Ω + v v0 v vs - L=10mH - 120V 50Hz

Press to Plot Results

(sp_ac_regm.m)

120V Dr. Adel Gastli 50Hz R=10Ω AC VOLTAGE CONTROLLERS 12 α = 45o > θ =17.44o 1.5

1

0.5 Gate signal 0 0 200 400 600 800 1000 200 vs v 0 0 α = 45o Voltage, (V) -200 0 200 400 600 800 1000 20

0 Current, (A) -20 0 200 400 600 800 1000 Angle, (Deg)

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 13

α =10o < θ =17.44o Short gate pulse

1.5

1

0.5 Gate signal Gate 0 0 200 400 600 800 1000 200 vs v 0 0 Voltage, (V) -200 0 200 400 600 800 1000 20

0 Current, (A) -20 0 200 400 600 800 1000 Angle, (Deg)

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 14 α =10o < θ =17.44o Long gate pulse

1.5

1

0.5 Gate signal 0 0 200 400 600 800 1000 200 vs v 0 0 Voltage, (V) -200 0 200 400 600 800 1000 20

0 Current, (A) -20 0 200 400 600 800 1000 Angle, (Deg)

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 15

α = θ =17.44o Continuous conduction

1.5

1

0.5 Gate signal Gate 0 0 200 400 600 800 1000 200 vs v 0 0 Voltage, (V) -200 0 200 400 600 800 1000 20

0 Current, (A) -20 0 200 400 600 800 1000 Angle, (Deg)

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 16 SECTIONSECTION SUMMARYSUMMARY

™Single-phase AC voltage rms can be controlled by on-off control or phase delay control. ™By controlling the phase delay it is possible to control the AC output voltage rms value between 0 and the source rms voltage value. ™It is important to know beforehand the load angle in order to be able to control the output voltage properly.

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 17

SectionSection 22

33--PHASEPHASE ACAC VOLTAGEVOLTAGE CONTROLLERSCONTROLLERS

i0 A vA Z i0B L vB Z L ZL i0C vC

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 18 SECTIONSECTIONSECTION’S’’SS CONTENTSCONTENTSCONTENTS

1. TOPOLOGIES 2. OPERATION 3. SIMULINK SIMULATION

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 19

TOPOLOGIESTOPOLOGIES i v 0 A 1 A i0 A 1 T1 vA Z T i0B 2 L 1 v N i ZL B T 0B 2 2 ZL Z v L B T i 2 ZL Z v 0C 3 L C T i0C 3 3 vC N T3 Equivalent to 3 single-phases Is studied in this chapter 1 vA T Z i0 A 1 1 L vA T1 i0B T3 2 Z ZL Z vB L L T2 ZL Z i 2 L 3 0C 3 v vC B T3 T2 vC Dr. Adel Gastli AC VOLTAGE CONTROLLERS 20 OPERATIONOPERATION i0 A 1 vA ⎧0 ≤ α < 60o ⇒ alternate between 2 and 3 switches T1 ⎪ Z o o i0B 2 L ⎪60 ≤ α < 90 ⇒ only 2 switches conduct at a time vB N ⎨ o o T2 Z ⎪90 ≤ α <150 ⇒ 0 and 2 switches conduct at a time L ZL i ⎪ o 0C 3 ⎩α >150 ⇒ there is no conduction vout = 0V vC T3

line on line off v12 v1N A,B, C None VAB VA A,B C VAB VAB/2 A,C B VAC/2 VAC/2 B,C A -VBC/2 0 None A,B,C 0 0 A Impossible B Impossible C Impossible

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 21

SIMULINKSIMULINK SIMULATIONSIMULATION

ia (sp_ac_reg.mdl) Triac i + Converter - + Ain Aout v vab iA 10Ω - A A i ib Bin Bout + - B B

iB C C Cin Cout ic 3- Phase i + - Y-connected Load + v vAB + - iC v - van + v vBC -

+ v vCA - Press to + v Plot Results - vAN

120V vA vB vC 50Hz (sp_ac_regm.m)

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 22 α = 30o Purely resistive load

0.5vab va 0.5vac 200 va va 0

Voltage, (V) -200

0 50 100 150 200 250 300 350 π π 2π 2π 1.5 α + α +α π 3 3 3 3 1 Pulse width

0.5 50% Gate signal Gate 0 0 50 100 150 200 250 300 350 20

0 Current, (A) -20 0 50 100 150 200 250 300 350 Angle, (Deg)

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 23

α = 60o Purely resistive load

0.5vab 0.5vac

200

0

Voltage, (V) -200 0 50α 1002π 1502π 200 250 300 350 1.5 + α 3 3 1

0.5 Gate signal Gate 0 0 50 100 150 200 250 300 350 20

0 Current, (A) -20 0 50 100 150 200 250 300 350 Angle, (Deg)

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 24 α = 120o Purely resistive load

0.5vab 0.5vac 200

0

Voltage, (V) -200

0 100 200 300 400 500 α 5π π 7π 1.5 +α 6 3 6 1

0.5 Gate signal Gate 0 0 100 200 300 400 500 20

0 Current, (A) -20 0 100 200 300 400 500 Angle, (Deg)

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 25

α = 150o Purely resistive load

200

0

Voltage, (V) -200

0 100 200 300 400 500 1.5

1

0.5 Gate signal Gate 0 0 100 200 300 400 500 20

0 Current, (A) -20 0 100 200 300 400 500 Angle, (Deg)

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 26 MATHEMATICAL ANALYSIS: (Resistive Load)

T1 iL ia

A a T4 vAN van R= T3 1o B ib R= N 1o b vBN T 6 R= v CN 1o T C 5 ic

T 2 ⎛ π ⎞ v = 2V sin()θ vAB = 6Vs sin⎜θ + ⎟ AN s ⎝ 6 ⎠ ⎛ 2π ⎞ π vBN = 2Vs sin⎜θ − ⎟ ⎛ ⎞ 3 vBC = 6Vs sin⎜θ − ⎟ ⎝ ⎠ ⎝ 2 ⎠ ⎛ 2π ⎞ π vBN = 2Vs sin⎜θ + ⎟ ⎛ ⎞ 3 vCA = 6Vs sin⎜θ − ⎟ ⎝ ⎠ ⎝ 6 ⎠

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 27

o 0.5vab va 0.5vac 0 ≤ α < 60 200 va va 0

Voltage, (V) -200

0 50 100 150 200 250 300 350 π π 2π 2π α +α +α π 3 3 3 3

2π 1 2 V0 = vand()ωt 2π ∫0

2 2 π /3 π /3+α 2π /3 2π /3+α π 1 ⎡ 2 vab 2 vac 2 ⎤ = va d()ωt + d()ω t + va d (ωt )+ d()ωt + va d ()ωt ⎢∫α ∫π /3 ∫π /3+α ∫2π /3 ∫2π /3+α ⎥ π ⎣ 4 4 ⎦

2 2 2 2 2 1 ⎡ π /3 sin ωt π /3+α sin ()ωt +π / 6 2π /3 sin ωt 2π /3+α sin ()ωt −π / 6 π sin ωt ⎤ V0 = 6Vs d()ωt + d()ωt + d()ωt + d()ωt + d()ωt ⎢∫α ∫∫π /3 π /3+α ∫2π /3 ∫2π /3+α ⎥ π ⎣ 3 4 3 4 3 ⎦

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 28 2 2 2 2 2 1 ⎡ π /3 sin ωt π /3+α sin ()ωt +π / 6 2π /3 sin ωt 2π /3+α sin ()ωt −π / 6 π sin ωt ⎤ V0 = 6Vs d()ωt + d()ωt + d()ωt + d()ωt + d()ωt ⎢∫α ∫∫π /3 π /3+α ∫2π /3 ∫2π /3+α ⎥ π ⎣ 3 4 3 4 3 ⎦

1 ⎛π α sin 2α ⎞ rms Output V0 = 6Vs ⎜ − + ⎟ π ⎝ 6 4 8 ⎠ phase voltage

V I = 0 P = 3I V 0 R 0 0 0 rms output Output power Phase Current

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 29

0.5v 0.5v 60o ≤ α < 90o ab ac 200

0

Voltage, (V) -200

0 50α 100π 1502π 200 250 300 350 + α + α 3 3 2π 1 2 V0 = vand()ωt 2π ∫0

2 2 1 ⎡ π /3+α v 2π /3+α v ⎤ = ab + d()ωt ac d()ωt ⎢∫α ∫π /3+α ⎥ π ⎣ 4 4 ⎦

2 2 1 ⎡ π /33++α sin ()ωt +π / 6 2π / α sin ()ωt −π / 6 ⎤ V0 = 6Vs d()ωt + d()ωt ⎢∫∫α π /3+α ⎥ π ⎣ 4 4 ⎦

2 2 1 ⎡ π /3+α +π / 6 sin ωt 2π /3+α −π / 6 sin ωt ⎤ V0 = 6Vs d()ωt + d()ωt ⎢∫∫α +π / 6 π /3+α −π / 6 ⎥ π ⎣ 4 4 ⎦

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 30 2 2 1 ⎡ π / 2+α sin ωt π / 2+α sin ωt ⎤ V0 = 6Vs d()ωt + d()ωt ⎢∫∫α +π / 6 π / 6+α ⎥ π ⎣ 4 4 ⎦

1 ⎛ π 3sin 2α 3 cos2α ⎞ rms Output V = 6V ⎜ + + ⎟ 0 s ⎜ ⎟ phase voltage π ⎝12 16 16 ⎠

V I = 0 P = 3I V 0 R 0 0 0 rms output Output power Phase Current

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 31

0.5vab 0.5vac o o 90 ≤ α <150 200

0

Voltage, (V) -200

0 100 200 300 400 500 5π π 7π α +α 6 3 6

2π 1 2 V0 = vand()ωt 2π ∫0

2 2 1 ⎡ 5π / 6 v 7π / 6 v ⎤ = ab d()ωt + ac d()ωt ⎢∫α ∫π /3+α ⎥ π ⎣ 4 4 ⎦

2 2 1 ⎡ 56π / 6 sin ()ωt +π / 6 7π / sin ()ωt −π / 6 ⎤ V0 = 6Vs d()ωt + d(ωt) ⎢∫∫α π /3+α ⎥ π ⎣ 4 4 ⎦

2 2 1 ⎡ 5π / 6+π / 6 sin ωt 7π / 6−π / 6 sin ωt ⎤ V0 = 6Vs d(ωt) + d(ωt) ⎢∫∫α +π / 6 π /3+α −π / 6 ⎥ π ⎣ 4 4 ⎦

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 32 2 2 1 ⎡ π sin ωt π sin ωt ⎤ V0 = 6Vs d(ωt) + d(ωt) ⎢∫∫π /66++α π / α ⎥ π ⎣ 4 4 ⎦

1 ⎛ 5π α sin 2α 3 cos2α ⎞ rms Output V = 6V ⎜ − + + ⎟ 0 s ⎜ ⎟ phase voltage π ⎝ 24 4 16 16 ⎠

V I = 0 P = 3I V 0 R 0 0 0 rms output Output power Phase Current

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 33

SectionSection 33

CYCLOCONVERTERSCYCLOCONVERTERS

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 34 SECTIONSECTIONSECTION’S’’SS CONTENTSCONTENTSCONTENTS

1. SINGLE-PHASE 2. THREE-PHASE

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 35

SINGLESINGLE--PHASEPHASE CYCLOCONVERTERCYCLOCONVERTER

P-converter N-converter + − T ' ' 1 T3 T2 T4 Variable voltage variable frequency v01 vs v02 Load converter output T ' ' voltage. T4 2 T3 T1 − +

vs fs fout = (n = number of positive half cycles) Vsm n N-converter π 1 2 on V = v dθ 0 π ∫ s 0 α α t 1 ⎛ sin 2α ⎞ P-converter = Vs ⎜π −α + ⎟ on π ⎝ π ⎠

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 36 THREETHREE--PHASEPHASE CYCLOCONVERTERCYCLOCONVERTER

Three-phase/single-phase

P-converter N-converter + − ' ' ' T1 T3 T5 T2 T T A 6 4 v C B 01 v02

Load B C A T ' ' ' T4 6 T2 T5 T3 T1 − +

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 37

Three-phase/three-phase cycloconverter

Three-phase supply P N P N P N

Phase a Phase b Phase c load load load

Neutral

18 are used to obtain a 3 full-wave three-phase converter.

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 38 SectionSection 44

APPLICATIONSAPPLICATIONS && SUMMARYSUMMARY

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 39

APPLICATIONSAPPLICATIONS

‰ Light .

‰ Soft starting of ac motors (compressors, pumps, etc.)

‰ Variable speed drives for appliances an tools.

v ‰ static tap changers. p v0

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 40 SUMMARYSUMMARY ¾ Ac voltage controllers can use on-off control or phase-angle control. ¾ The on-off control is more suitable for systems having a high time constant. ¾ Due to the switching characteristics of thyristors, an inductive load makes the solutions of equations describing the performance of controllers very complex and simulation is more convenient. ¾ The input power factor of controllers, which vary with the delay angle, is generally poor, especially at low voltage output range.

Dr. Adel Gastli AC VOLTAGE CONTROLLERS 41