<<

AN ABSTRACT OF THE THESIS OF

Elisabeth Santoso for the degree of Doctor of Philosophy in Chemical Engineering, presented on April 21, 1987.

Title: CHARACTERISTICSOFCOOLING TOWERWATER CONTAINING INHIBITORS. Redacted for Privacy

Abstract approved : Dr. James G. Knudsen

The fouling characteristics of containing various corrosion inhibitors and other additives on heat transfer surface have been investigated. Corrosion inhibitors investigated included zinc-chromate and phosphates. In addition, additives including polyacrylate and phosphonate (HEDP and AMP) were used to determine their effectiveness as antifoulants.

The tests were conducted in a simulated cooling tower water system. The parameters investigated were: test section surface temperature 130, 145 and 160 OF, velocity in test

section 3.0, 5.5 and 8.5 ft/sec, pH 6.0 - 8.0, and material of the fouling surface (stainless steel, carbon steel, 90/10

/nickel, and admiralty brass). The water bulk

temperature in all tests was 1150F. The water had a total hardness of 800-1000 ppm as CaCO3z, total sulfate of 800-1000

ppm as SOA and silica of 40-45 ppm as SiO2. For each test, a fouling resistance time curve was obtained. This curve was fitted to the equation Rf = Rf* (1- exp(-(0-ed)/ec)) to the values of ec and Rf*. Rf is the fouling resistance predicted by the regression equation,

Rf* is the asymptotic fouling resistance, e is time, ed is dead time and ec is the time constant for the asymptotic decay.

The values of ec and Rf* from regression analysis have been correlated with the various parameters by the Heat Transfer Research, Inc., (HTRI) fouling model. For the range of conditions studied, the correlation equations 7-1 to 7-4 relate the fouling resistance, Rfj to the surface temperature, wall shear stress and water quality. Seventeen different water qualities were investigated to determine the values of 5 parameters, which are specific for each water quality.

For each of the seventeen water qualities studied threshold curves for three threshold values of Rf* have been developed as a function of velocity and surface temperature. These curves are useful to obtain the conditions required to maintain a desired value of Rf* in a . P-OILJL_INIG CHARACTER I ST ICS OF COCILINIG TOWER WATER com-rnI NI I NG ccolFtIFICIS I ON I 1111-1I 1E3 I TORS

b y

Elisabeth Santoso'

A THESIS submitted to Oregon State University

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Completed April 21, 1987 Commencement June 1987 APPROVED:

Redacted for Privacy

(Ofssor of Chemical engineering Department in charge of maj r

Redacted for Privacy Chairman of Chemical Engineering Department

Redacted for Privacy

Dean of Grad School (I

Date thesis is presented : April 21, 1987

Typed by Utomo Santoso for : Elisabeth Santoso This thesis is dedicated to my beloved father Joseph A. Tjitrasmoro, my husband Utomo, and my lovely baby Sharon Putri. ACKNOWLEDGEMENT

My deepest thanks are addressed to my major professor,

Dr. James G. Knudsen, for having given me the opportunity to work on this research project, for his advice, encouragement, and also for his financial support.

I would like to thank to all the teaching faculty of the Department of Chemical Engineering, Oregon State

University, for having contributed to my academic and learning experience, also to Dr. Charles E. Wicks whose concern and assistance has been most helpful.

I am particularly grateful to Nick Wannenmacher for his help of equipment maintenance and also to Nick Frederick,

Scott Herbig and Lynne Kilpatric-Howard for their help with the chemical analyses.

My appreciation is also extended to Heat Transfer

Research, Inc., for providing the researchgrant for this project, to Betz Laboratories for conducting the necessary analyses and for the Du Pont company for conducting the deposit analyses.

Special thanks are also extended to my husband, Utomo, and my father J.A. Tjitrasmoro, whose support and encouragement has made this possible and whose love has made

it worth it. TABLE OF CONTENTS

PAGE:

I. INTRODUCTION 1

II. GENERAL REVIEW AND LITERATURE SURVEY 3

Heat Transfer Equations 3

Fouling Mechanism 4

Important Parameters 5

Fouling Models 7

Chemical Treatments 11

III. EXPERIMENTAL EQUIPMENT 17

Heat Exchanger System 17

Test Sections 19 Cooling Tower System 22

Data Aquisition system 23

IV. EXPERIMENTAL PROCEDURES 25 Experimental Program 25

Procedure 28

V. CALCULATION PROCEDURES 33 Calculation of Fouling Resistance 33

Error Estimation 36 Calculation of Inner Wall Shear Stress 39

Fitting the Fouling Curves 41

VI. RESULTS AND DISCUSSION 42 Experimental Results 42 Run Descriptions 44

Deposit Analysis 59 Regression Analysis of Data 60

Correlation of Data 67

Conditions Showing Insignificant Fouling77

Scale Strength 85

VII. APPLICATION OF RESULTS AND EXAMPLES 87 The use of Threshold Values 87

The use of Correlational Equations 87

Application to Other Geometries 98

Numerical Examples 109

VIII.SUMMARY AND CONCLUSIONS 113

Summary 113

Conclusions 118

BIBLIOGRAPHY 121

APPENDICES Appendix A - Nomenclature 124

Appendix B Calibration Equations 128

Appendix C - Chemical Analysis Procedure 130

Appendix D Sample Calculations 135

Appendix E - Summary of Test Results 145

Appendix F Rf vs Time Plots 167

Appendix G - Composite Plots of Selected Runs218

Appendix H - Deposit Compositions 229

Appendix I- Nonlinear Regression 231 AppendixJ -Water Quality 259

AppendixK -System Flowrates 276

AppendixL Summary of Run Statistics 286

AppendixM -Plots of Correlational Curves . 318 LIST OF FIGURES

FIGURE PAGE:

III-1. Schematic Flow Diagram of Experimental Equipment.18

111-2. Annular Geometry of Test Section 20

IV-1. Water Conditioning System 29

V-1. Cross Section of Clean and Fouled Test Section 33

VI-1. Normalized -ln Od vs velocity 69

VI-2. Error plot of deposition rate 73

VI-3. Error plot of time constant 76

VI-4. Error plot of fouling resistance 78

VI-5. Curves of Constant Rf* on Grid of Velocity vs Surface Temperature 89

VI-6. Curves of Constant Surface Temperature on Grid of Rf* vs Velocity 100 LIST OF TABLES

TABLE PAGE:

III-1. Heat Transfer Research, Inc. Rods Specifications 21

IV-1. Constituents of the City Water and System Water 26

IV-2. Additives Used in Each Group of Tests 27

IV-3. Typical Volumes and Flowrates 31

VI-1. Regression Analysis 63

VI-2. Constants to be used in equations (6-6), (6-11), and (6-13) 80

VI-3 Comparison of experimental values vs model equations for Od, ec and Rf* 81

VI-4 Threshold value for various additives 84 FOULING CHARACTERISTICS OF COOLING TOWER WATER CONTAINING CORROSION INHIBITORS

I. INTRODUCTION

The term "fouling" is used to mean any deposit on heat transfer surfaces which increases the resistance to heat transfer.

Cooling towerwater is used as the coolant for many industrial heat exchangers. Untreated cooling tower water may contain significant concentrations of scale - forming ions, suchas Ca'2, Mg' 2, COs-2, SO4-2, PO4-5, and SiO3-2, which can form low salts at high temperature and deposit on the hot heat transfer surface.

Control of pH and the addition of scale inhibitors are the common methods by which fouling of cooling tower water can be reduced or prevented. As pH decreases, the solubility of many scale forming constituents increases and the deposition rate is significantly reduced. The pH is usually reduced tothe range 6.5 to 7.0 by the addition of sulfuric to the cooling water system. Under these conditions, water is slightly corrosive to the materials in the system, therefore, the addition of corrosion inhibitors are necessary. Zinc-chromate has long been used, but because of its toxicity in the environment, phosphate inhibitors are now being used to meet environmental requirements(21). The corrosion inhibitor 2

itself results in additional minerals in the water, which under somecircumstances can be the source of fouling on heat transfer surfaces. Corrosion inhibitor is commonly used in conjunction with antifoulants such as polyacrylates and phosphonates (HEDP and AMP).

The aim of this investigation was to study the fouling characteristics of cooling tower water containing corrosion inhibitors. Corrosion inhibitors investigated included zinc- chromate and phosphate inhibitors. In addition, polyacrylate, HEDP and AMPwere used to determine their effectiveness as scale inhibitors.

The amountof deposit on a heat transfersurface is measured in terms of the fouling resistance. Generally, if the fouling resistance is less than .0001 ft hr OF /Btu, the amount of fouling is tolerable, and the heat exchanger operates essentially as a clean heat exchanger.

The most important variables that affect the fouling process are surface temperature of the heated surface,fluid bulk temperature, flow velocity/shear stress, and water quality.

Obviously, a correlation between the important controlling variables and the fouling threshold would be most useful to the designer and operator of commercial heat exchangers. 3

II. GENERAL REVIEW AND LITERATURE SURVEY

HEAT TRANSFER EQUATION

The effect of fouling on design of heat transfer equipment is expressed in the fundamental equation for the overall heat transfer coefficient based on the outside surface area:

1 = 1 + Ao 1 + Rf. + Ao RfA + RM, (2-1) Uo ho Ai hi Ai

Where: U = overall heat transfer coefficient h = convective heat transfer coefficient A = surface area R = heat transfer resistance

and subscripts:

o = outside i = inside f = fouled condition w = wall

Values for the convective heat transfercoefficients and for Rwcan be determined using well established techniques and correlations.

The fouling resistance isoften a major oreven the dominating term in the equation. However accurate general methods for predicting the fouling resistances have not been developed. The heat exchanger designer selects the values for fouling resistances from some tabulated values or from experience based sources whichoften do not have any relevance to the actual operating conditions. This can result in the exchange equipment operating belownormal 4 efficiency or over designof the exchanger. Thus there is substantial incentive to develop correlationswhich will reliably predict fouling resistances or determine conditions under which fouling would not occur.

FOULING MECHANISMS

The primary types of fouling occurring in cooling tower water systems are crystalization of inverse solubility salts, , corrosion of the heater surface and biological growth.

Crystalization of inverse solubility salts

One of the most common causesof fouling is due to crystalization of salts having inverse solubility, i.e. when the temperatureof the system is raised, as by contact with a hot surface, their decrease. Common inverse solubility salts include CaC05, CaSO4, and Mg(OH)2. This type of fouling is referred to as scaling or precipitation fouling.

An induction period of a certain time duration is normally present, during whichonly negligible fouling deposition isobserved. At a certain point in the fouling process, the nucleation sites become so numerous they combine together and the fouling increases rapidly. Precipitation fouling has been reviewed by Hasson "" 5

Sedimentation

This refers to the deposition of particulate matter such as rust and dust particles commonly contained in cooling tower . It is frequently superimposed on crystalization fouling processes. This type of fouling was reviewed by Gudmundsson ""

Corrosion Corrosion fouling involves an electrochemical reaction producing roughening of the surface and corrosion products which can promote and influence other fouling mechanisms and hinder heat transfer.

Biological growth

Warm surfaces can provide suitable environments for , and fungi, which can form layers and reduce the rate of heat transfer. is usually prevented by adding . A review of biofouling was given by

Characklis(4)

IMPORTANT PARAMETERS

The parameters that appear to be the most important in effecting the fouling process are velocity/shear stress, surface temperature, water chemistryand material of the heated surface "27). 6

Velocity Effects

Velocity affects the fouling process with respect to both deposition and removal. For the deposition term; velocity effects the transport of fouling material to the surface. Theeffect of velocity on removal is characterized by wall shear stress and themechanical strength of the deposit.

Temperature Effects

In cooling water systems, the temperature of the surface ishigher than the bulk fluid temperature. In such cases, theinorganic substances that are inverse solubility salts may deposit on the high temperature surface. The surface temperature of the deposit is an important parameter and thedeposition rate function is of the Arrhenius form, which is characteristic of chemical reactions. Under constant heat flux conditions, as the temperature within the deposit increases there will be a portion of the deposit undergoing additional transformation. Such processes would affect thestrength of the deposit and thereby the removal rate of the deposit.

Water Chemistry Affects

Generally, pH and the concentration of different mineral saltcomponents have been used to characterize the water chemistry. These quantities can be related to fouling tendencies of water. 7

FOULING MODELS

The basic equation, which is the starting point of several postulated models for fouling processes, is based on the following general material balance.

dRf = Od - Or (2-2) de where: Rf = fouling resistance = Xf/kf 0 = time Od = deposition rate Or = removal rate Xf = instantaneous fouling film thickness kf = of fouling deposit

The basic problem in fouling research is to determine the parameters whichaffect Od and Or and to develop predictive correlations to account for these effects. Kern and Seaton"°' were the first to develop a fouling mechanism which involved simultaneous deposition and removal rates.

The deposition rate was assumed to be constant, and the removal ratewas assumed to be proportional to the shear stress and to the instantaneous thickness of the deposit. They postulated the following model for the material balance equation.

dXf = K. Ci W Km r Xf (2-3) de where: K1 C1 W = rate of deposition Km T Xf = rate of removal

K1 , Km = constants C1 = concentration of the foulant W = constant flow rate of the liquid I = shear stress Upon integration the equation for Rf becomes: 8

Rf = Rf* (1-exp(-0/0c)) (2-4)

with:

Rf* = K. Cl. W (2-5) Km kfT

and,

eC= 1 (2-6) K2T

where,

Rf* = asymptotic fouling resistance (which is at the condition of equal rates of deposition and removal and is attained aftera long period of time) 0c = time constant

In equation (2-3), as 0 becomes very large, Rf approaches

Rf*.

The inclusion of a removal term in the form given above leads to the important result that the fouling resistance will reach an asymptotic value, Rf*.

Watkinson Epsteinc°7) obtained experimental data for sour gas oil and compared the data against the fouling model proposed by Kern and Seaton"c". It was found that the asymptotic fouling resistance was inversely proportional to the mass flow rate squared, in contrast to the mass flow rate to the first power in the Kern's model (eq. 2-4). They also found that the initial fouling ratewas inversely proportional to the mass flow rate and depended exponentially on the temperature. In Kern's model, the initial fouling rate, which is a product of Rf* and 1/0c given in eqn 2-4 & 2-5, is directly proportional to the mass flow rate to the first power and independent of temperature. 9

Their term for the removal rate was same to that of the Kern

& Seaton's model Reitzer"rs, considered the rate of scale formation in tubular heatexchangers. The change of scale thickness

(dxf/dt) was related to the mass build up of scale (dM/dt)

dM = A rf dXf (2-7) dO de

He assumed a linear temperature relation and an n" order chemical reaction for crystal growth and his analysis resulted in expressions forconstant wall temperature and for constant heat flux. Reitzer'smodel is limited by the fact that he did not account for scale removal, as a result his equation for fouling resistance under constant heat flux operation is linearly dependent on time, and suggests no asymptotic fouling resistance

Taborek, et al. of Heat Transfer Research, Inc., Alhambra, California, (4" obtained a large amount of data on the fouling characteristics of cooling tower waterusing industrial cooling towers. They used the Kern Seaton concept of deposition and removal topostulate a fouling model that also considered water chemistry and its effect on the fouling resistance. The deposition term is a function of the scale surface temperature in an Arrhenius type reaction term and a water chemistry parameter. A velocity function is also included in the deposition term

Od = CI Fv ft" exp(-E/Rg(Ts+460)) (2-8)

where: 10

Cs.,n = constant Fv = velocity dependent function

ST = water quality factor E = activation energy Rg = gas constant Ts = surface temperature of fouling deposit

The removal term is assumed to be a function of the wall shear stress, the scale thickness, and bonding strength of the deposit

Or = C2 T Xf (2-9)

where

C2 = constant = strength of deposit factor The resulting expression for the fouling rate is obtained by combining Eq.(2-8) and (2-9) and substituted into Eq.(2-2).

dRf = Ci Fv ft^ exp(-E/Rg(Ts+460)) Ca T kf Rf (2-10) de

Integration of eqn (2-10), gives the expression for the fouling factor as a function of time

Rf = Kz (exp-E/Rg(Ts+460))(1-exp(-K4 0)) (2-11) K4

where

Km = CI Fv 11^ K4 = C2 T kf/Y

If time becomes very large, the asymptotic fouling resistance, Rf* is given by:

Rf* = Km exp(-E/Rg(Ts+460) (2-12) K4

The asymptotic fouling resistance is obtained when the deposition and removal rates become equal. Writing equation (2-10) in terms of Rf* 11

Rf = Rf* (1-exp(-e/ec) (2-13)

where

ec = 1 /Ka = Y (2-14) C=Tkf

CHEMICAL TREATMENTS

Cooling water is the most commonly used medium for removing heat in industrial processes. Cooling water systems designed to reuse thewater are used extensively. Water caused corrosion, deposition and microbiological growth can reduce operating efficiency and increase plant maintenance cost. An effective, well-designed program can reduce many of the problems incurred. Most industrial cooling waters are chemically treated to inhibit corrosion and or fouling.

Corrosion Inhibitors

Corrosion inhibitors are classified as anodic, cathodic or both, depending upon the electrochemical corrosion reaction which each controls.

Anodic inhibitors build a thin protective film along the anode and prevent the corrosion reaction. The film is initiate at the anode although it may eventually cover the entire metal surface. Stainless steel naturally forms such film"2). Cathodic inhibitors often form a visible film along the cathode surface, which polarizes the metal by restricting the access of dissolvedoxygen to the metal substrate. The film also acts to block hydrogen evolutionci). 12

Corrosion inhibition usually results from one or more of threegeneral mechanisms. First, the inhibitor molecule is absorbed on themetal surface forming a thin protective film, either by itstself, or in conjunction with metallic ions. Second, some inhibitors cause a metal to form a protective filmof metal . Third, the inhibitor reacts with a potentially corrosive substance in the water").

POLYPHOSPHATES

Polyphosphates are cathodic inhibitors. The molecule adsorbs or bonds withcalcium ions to form a colloidal particle; these positively charged particles migrate to the cathode to form a film. Polyphosphates also have the added benefit of being a scale inhibitor at a threshold levels as low as 1-5 ppm. One of the most commonly used polyphosphates is sodium hexametaphosphate('.

The principal problem associated with the use of polyphosphates is their reversion to orthophosphate.

Orthophosphate is a weak anodic inhibitor whichcannot provide the protection afforded by polyphosphate. The primary causeof reversion are high temperature and low or high pH. Calcium can react with orthophosphate, and because calcium orthophosphate is an inverse solubility )it is usually formed first on heat transfer surfaces.

Metal ions in the water occasionally affect polyphosphate. Dissolved iron in the water will have both positive and negative effects on the inhibitor. The 13 beneficial effect is the strengthening of the film resulting from the inclusion of iron. Iron, however, can complex with polyphosphates thereby rendering them useless as inhibitors.

Another disadvantage of using polyphosphate is their nutrient potential for algal growth, when reverted to orthophosphate «i °'. Recent has substantially minimized the limitations of polyphosphate by blending them with other materials.

CHROMATES

This anodic inhibitor forms a highly passive film of ferric and chromic , similar in composition to that naturally found on stainlesssteel, at the anode surface. Initially formed at the anode, it can eventually protect the entire metal surface. Chromates can also prevent cathodic depolarization by adsorption of the chromate on the cathodic surface, thereby preventing the of dissolved .

The primary problem in the use of chromates is their environmental toxicity. Chromium like other heavy metals is known to be toxic to many forms of aquatic lifec). Chromates areusually usedwith another cathodic inhibitor to form a synergistic blend.

ZINC

Salts of zinc are the most commonly used cathodic inhibitors in cooling water systems, they rapidly form a 14 film on the metal surface. Because the film is not very durable, zinc is usually not used alone, but is found in many synergistic blends which take advantage of its rapid film forming abilities.

Zinc presents toxicity problems to aquatic life, and its use, as is that of chromates, has consequently been restricted in recent yearsc=".

PHOSPHONATES

Phosphonates can stabilize ironor hardness salts and form inhibitor films on metal surfaces. Phosphonates do not hydrolyze as easily as polyphosphates. Themost commonly used phosphonates are aminomethylenephosphoric acid (AMP) and 1-hydroxyethylidene-1, 1-diphosphoric acid (HEDP).

ORTHOPHOSPHATES

Thse are anodic inhibitors. They are rarely used alone for corrosion control because of the danger of calcium phosphate formation in the bulk water. 15

SYNERGISTIC BLENDS

In actual plant operation, the use of only one corrosion inhibitor is rare, usually two or more inhibitors are blended to utilize the advantages of each inhibitor to minimize their respective limitations. Frequently, anodic and cathodic inhibitors arecombined to give better total metal protection (synergism). Alsomany combination of cathodic inhibitorscan give additional polarization at the cathode and effectively control corrosion. In less common situations anodic inhibitors may be combined to give extra passivation.

Antifoulants

The introduction of antifoulants into cooling water systems isnow as common a practice as the addition of corrosion inhibitors. As in the case of corrosion inhibitors, twoor more antifoulants areoften blended to maximize their advantages and minimize their disadvantages.

POLYPHOSPHATES

Polyphosphates as sequestrants have been used to control iron and hardness salts (calcium and magnesium) for a numberof years. A sequestrant is an agent which prevents an ion from exhibiting its normal property by complexing with it below stochiometric levels. 16

POLYACRYLATES

Polyacrylates are being used as .

Polyacrylates can be adsorbed on foulant surfaces imparting a like charge to them and thereby causin the particles to remain in suspension because of charge repulsion. Polyacrylates are also used to coat the surface of heat transfer equipment to reduce the adhesion of the scale.

PHOSPHONATES

Phosphonates reduce the attractive forces between individual ion particles byadsorption of the phosphonates to the particle surfaces. As corrosion inhibitors, they should beused with zinc, polyphosphate, etc., to provide multi-metal protection. Phosphonates are better deposit control agents than polyphosphates, whereas polyphosphates are as known as superior corrosion inhibitorsc"). 17

III. EXPERIMENTAL EQUIPMENT

The equipment used in this study was designed to simulate theoperating conditions of a commercial cooling tower system. A schematic flow sheet of the complete system is shown in Fig III-1. It consists of three main parts; the heat exchanger system, testsections and the cooling tower system. Toeliminate the effect of corrosion on the fouling characteristics as much as possible, non-corrosive materials are used throughout the cooling towersystem. Piping was primarily of polyvinylchloride (PVC) or chlorinated polyvinylchloride (CPVC), stainless steel and glass.

HEAT EXCHANGER SYSTEM In order to maintain a constant bulk temperature of the water being tested a heat exchanger system was employed. The heat exchanger system isa closed loop circulating system.

City water, heated to 120 1300F in a 40 gallon domestic electric water heater is pumped to the shell side of a counter current shell and tube heat exchanger. The cooling water to be tested is heated in the tube side of the heat exchanger. The heat exchanger has 19 stainless steel tubes with 1/2 in OD, 16 BWGwall, and a lengthof 7 feet. A temperature controller regulates the heated water flow rate 18

F Rotameter

oN No WO

Temperature Sensor

Cooling Tower

Slowdown and DomesticSample Tap Water Heater Level Control Valve *----- 220 VAC

Storage Tank Test Sections

Flow Circulating Pump City Control Hot Water Water Valve Pump Water Meter

Fig. III-1. Schematic Flow Diagram of Experimental Equipment. 19 to the heat exchanger to maintain a constant water bulk temperature in the test system.

TEST SECTIONS

After the coolingwater is heated in the heat exchanger, it flows through the test sections. A test section of annular geometry is shown in Figure 111-2. The heater rod has an outside diameter of .42 in and is heated electrically over a length of 4 in. Four chromel-constantan thermocouples are embedded in the heater wall to record the wall temperature as deposit accumulates on the rod surface.

They are located on the same cross-sectional plane 900 apart from each other. The outer glass tube has an inside diameter of .75 in and the overall length of the test section is 16 in. The test sections are mounted in Portable Fouling

Research Units (PRFU) provided by Heat Transfer Research,

Inc., (HTRI).

The test fluid flows through the annular section between the heater rod and the glass tube. Fouling occurs on the outside of the heated portion of the inner tube. Conditions such as flow rate and surface temperature of the heated section can be set easily to the desired level by making appropriate adjustment in the flow rate of the water to be tested and the power input to the heater. 20

16 in

Outer Glass Tube 14in Scale Formed on II Inner Core Flow / Heater Surface A A .75 in .42 V V V

Wall Resistance IIThermocouple/ Heater

Fig. 111-2. Annular Geometry of Test Section. 21

TABLE III-1 HTRI Heater Rod Specifications ======-"======

: : HEATED 1 k/x (Btu/hr ft °F) : ID IMATER-10UTSIDE

1 1 (THERMOCOUPLE 1 it 1 IAL :DIAMETER:SECTION

1 D .' : C : A 8 .' '. LENGTH .'

' . 1 : : (in) ', (in)

: : : 1 1 : :

: : 3,044 : - : : 236 1 SS 1 0.421 3.90

: : 1 2,095 :17,391 1 : 7,215 : 4.00 9,099 : 235 1 SS 0.420

......

1 9,568 : 1 : 9,414:73,373 :16,254 1 221 I SS 1 0.420 3.80 . . .

: - 1 : : - :15,725 1 6,039 1 222 : SS : 0.422 3.96

. . . 1 . .

1 : 1 4,989 : 1 5,569 4,574 113,147 1 215 : SS : 0.419 3.85 . . . . . :

: 1 : 7,171 1 :11,565 : 6,414 : 216 : SS : 0.422 3.85 . : . 1 . .

: 1 - : : :25,611 - : 4.09 :16,054 1 179 1 SS 0.423

: . I :

I 4,720 : : 5,711:28,615 :17,891 1 210 : SS 1 0.421 3.75

. . .

: 1 - :33,982 :17,392 : : 3.90 :30,881 : 117 1 Ad 0.421 . . . , 1 . . .

: :19,040 : : :15,677 : 3.90 :11,701 : 124 1 CN 0.420

: : - : 8,362 : :18,349 1 3.90 :11,442 1 96 : CS 0.419 ======

Note: SS = Stainless Steel Ad = Admirality CN = Copper-Nickel (90-10) CS = Carbon Steel 22

Heater rods and specifications such as dimensions and thermal resistances of the tube wall are provided by HTR1. These values of each rod are summarized in table III-1.

COOLING TOWER SYSTEM

The cooling tower system consist of three major parts.

The spraycooling tower, the cooling tower sump and the blowdown unit. The total volume of cooling tower water in the system is about 260 1. Cooling water is circulated through the system, absorbing heat in the heat exchanger and in the test sections and then is cooled in the spray cooling tower.

SPRAY COOLING TOWER

The spray cooling tower is a cylindrical empty 2 feet in diameter, 20 feet high. It is mounted concentrical above the cooling tower sump. After water flows through the test sections, it flows to the top of the cooling tower where it is sprayed through spray nozzles and falls through the tower. An induction fan at the top of the cooling tower draws air up through the the tower and out of the top.

COOLING TOWER SUMP

The cooling tower sump is a cylindrical tank 4 feet high, 34 inches in diameter, with 1/8 inches thick stainless steel wall. Later in this study, this stainless steel cooling tower sump tank was replaced with a reinforced plastic tank of the same size. Water from the cooling tower 23 spray is returned to the cooling tower sump to be recirculated.

Fortified city water was supplied to the cooling tower sump from the make up tank through a level control valve to make up for evaporation and discharge losses. Other additives to the systemwere added directly to the cooling tower sump by means of metering pumps. (.05N) flows by gravity through a solenoid valve which was activated by pH controller.

BLOW DOWN UNIT

As the cooling tower water evaporates, the concentration of the mineral constituents increases due to the input of fortified city water and other additives being fed continuously to make up for the evaporative losses. In order to maintain aconstant cooling tower water quality (mineral content), blowdown was withdrawn from the bottom of the cooling tower sump. A metering pump was used to control the rate of blowdown from the system, and the discharge was collected in the calibrated blowdown storage tank.

DATA AOUISITION SYSTEM

Two dataAquisition Systems were utilized. Initially, from run 117 - 169, only a Digitec 1000 Datalogger was used.

This equipment was capableof scanning the system sensors

(temperature. flow, and power) at desired intervals (one minute to five hours) and print out the results in 24 millivolts on a paper tape. These data were then processed on the OSU Central Computer Facility after completion of a test. The disadvantage of this method of data acquisition was the difficulty in following the progress of a test on a day-to-day basis, because the output data was in the form of millivolts.

Hence, beginning with run 170, a Hewlett-Packard 3540

Data logger was used in conjunction with a Hewlett Packard

HP85 micro computer for data aquisition. With this combination, it was possible to scan the system at any desired timeduring a test. Flows, temperatures, heat fluxes, fouling resistances, pH, conductivity and corrosivity could be printed out after each scan. At the end of a test all data were tabulated and plots of velocity, surface temperature, fouling resistance, pH, conductivity and corrosion rate as a functionof time were produced by the computer. Typical time plots for run 173-301 are shown in Appendix F. Such composite plots are useful in relating any changes in operating conditions to changes in the fouling resistance. 25

IV EXPERIMENTAL PROCEDURES

EXPERIMENTAL PROGRAM

Several parameters which significantly affect fouling were investigated. Three different velocities (3, 5.5 and 8 ft/sec) and surface temperatures (130, 145 and 160 OF) were covered. The two major water chemistry parameters investigated were pH, and corrosion inhibitor additives.

Initially, the fouling characteristics were investigated at the most severe fouling conditions (highest surface temperature and lowest velocity).

The main constituents of the city water and additive free systemwater are shown in Table IV-1. For runs 117 to

148, the total hardness ranged between 850 and 1150 ppm with magnesium hardness being only 25 ppm and calcium hardness making up the difference. These are referred to as the low magnesium tests. Beginning with run 149, the magnesium hardness was increased to constitute approximately one third of the total hardness. These are referred to as the high magnesium tests. The higher level of magnesium was accomplished by adding the required amount of magnesium sulfate to the fortifying tank containing the saturated .

Table IV-2shows theadditives that were used in each group of tests. 26

Table IV-1. Constituents of the City Water and Additive-freeSystem Water

Stele Water

Constituent City Water . Rums 117-146 Runs 149-101

Specific conductance, micromho 100 1500-2200 1606-1800 Sulfate, ppm 504 10 960-1200 800-1050 Chloride, ppm Cl 10 43- 100 23-70 Total hardness,ppm CaC01 - 850-1150 875-1080 Calcium hardness, ppm CaC0 27 823-1125 510-630 Magnesium hardness, ppm CaCO3 - 23 360-450 Copper, ppm Cu - 0.1 0.1 Iran, ppm Ye - 0.6 0.1 Sodium, ppm Ma - 60 60 Zinc, ppm Zn - 0.9 0.9 Chromate, ppm Cr04 - 1.0 1.0 Total phosphate, ppm PO4 - 0.4 0.2 Silica, ppm Si02 20 40-54 40-45 Suspended Solids, mg/1 - 10 10 27

Table IV-2. Additives Uesd in Each Group of Tests.

Additives

Run Nos. None Zn Cr04 SS HEDP AMP PA PP OP

117-118 x -- -- Low 119 -125 -- 18-22 3-5 -- -- Magnesium 126 -133 36-44 6-10-- 134 -148 18-22 3-5 200

149-151 -- 18-22 3-5 -- 152 -163 18-22 3-5 2-4 -- 164 -166 18-22 3-5 2-4 2-4

167-172 NIMIM 18-22 3-5 -- 2-4-- 173 -178 -- 18-22 3-5 -- 2-4-- High 179 -187 -- 18-22 3-5 ------Magnesium 187 -199 18-22 3-5 -- 2-4 -- -- 200 -202 -- 18-22 3-5 -- 2-4 2-4 -- 203 -205 18-22 3-5 -- --

206 -214 18 -22 3-5 --2-3 5-7

215-235 -- 18-22 3-5 -- 2-3 2-32-3 7

236-247a -- 2-3 2-32-3 5

245b,c-247b,c -- 2-3 5-7 248-253 ------2-3 2-3 254-277 -- -- 4-5 5-6 278-301 -- 2-4 -- 4-5 5-6

*Numbers represent ppm

Cr0 Chromate added as NaCr0 4 2 4 Zn - Zinc added as NaSO4 SS Suspended solids (STANDARD AIR-FLOATED CLAY from Georgia Kaolin Co., Inc., Elizabeth, NJ) HEDP - 1-Hydroxyethylidene-1, 1-diphosphonic acid PA - Polyacrylate PP - Polyphosphate added as Na2P207

OP - Orthophosphate added as Na3PO4 AMP - Aminomethylene phosphonate 28

PROCEDURE

SYSTEM TO OBTAIN DESIRED WATER QUALITY

The local city watercontains about 20 ppm of calcium

hardness and about an equal amount of silica. It is

therefore, necessary to fortify the city water with calcium to obtain the compositions shown in Table IV-1.

The completewater conditioning system is shown in Fig

IV-1. City water (floatcontrolled) and saturated calcium sulfate (provided by a metering pump) flow into the well agitated make-up tank. The saturatedcalcium sulfate solution (fortifying solution) is prepared by mixing city water with powdered nativecalcium sulfate from Fisher

Scientific. For the high magnesium tests, the required amount of magnesium sulfate also added into the fortifying solution.

The mixture from the make up tank flows through a float controlled valve to the cooling tower sump. The water to be

tested waspumped through the cooling tower system by the circulation pump. The bulk water temperature was adjusted to

the desired set point. The circulation of water was continued until the hardness and silica concentrations

increased to the desired level, after which the blowdown was withdrawn fromthe cooling tower sump by a metering pump to maintain the desired water quality.

Other materials were added directly to the cooling

tower sump. Zinc-chromate corrosion inhibitor of appropriate composition flowed by the gravity at a constant rate through 29

City Water

yoz Selected Corrosion Level Control Inhibitor Solution Additivesr- Saturated Capillary Tube Metering Flow Control Make-up CaSO, Solenoid Valve Tank Solution

s

s Metering Pump

Control

%1111111111110 Level Control

Circulating s Cooling Tower Pump L Sump to Fouling Drain 0 Test Unit 11B1°Twan"wnTank

Metering Pump

Fig. IV-1. Water Conditioning System. 30

a long capillary tube into the cooling tower sump. Other corrosion inhibitors and antifoulant (whenever used) additives were mixed and added together directly to cooling the tower sump by means of a metering pump.

PH wascontrolled at the desired level by the addition of sulfuric acid (.05N) which flowed by gravity through a solenoid control valve which was activated by a pH controller.

RUN INITIATION

After thedesired water quality for a particular run was obtained, the heater rods were fitted into the test sections. Then flow rate and surface temperature were set to the desired values by making appropriate adjustment in the flow rate and the power input to the heaters.

The data logger was activated and set torecord ten readings at two minute intervals for calibration purposes, after which for the remainder of the test, the data logger was set to monitor the systemat five hour intervals when the Digitec 1000 data logger was used, and at six hour intervals when the Hewlett Packard 3540 data logger was used.

PROCESS MONITORING

The systemwater wasanalyzed everyday for hardness, silica, sulfate, chloride and level of additives. Samples were taken at the beginning and at the end of each set of 31 runs and were sent to Betz laboratories for complete analysis. Themethods used for water analysis are listed in appendix C.

Corrosion, conductivity and pH were measured by on-line instruments and recorded by the data logger.

The amount of blow of blowdown, fortifying solution, city water and additiveswere recorded daily. Evaporation rates werecalculated from daily flowratemeasurements. Typical flow rates and volumes are given in Table IV-3

The blowdown rate is adjusted so that the Holding Time

Index (HTI) in the system is about 24 hours. The HTI is the time required for the concentration of a constituent in the system to be reduced by 50% without addition of that constituent to the system. Variation in environmental conditions in the laboratory brought about fluctuation in the evaporation and city water rate. The fluctuation was not serious, because the mineral content of the city water is small compared to the amount of minerals in the cooling tower water. The flowrateof the fortifying solution could be adjusted manually to maintain a constant water composition.

Table IV-3 Typical volumes and flowrates

Volume in the system 260 1 Evaporation 100 - 200 1/day City water 200 300 1/day Blow down 175 1/day Saturated CaSCI., solution 70 - 90 1/day Inhibitor solution 2 - 3 1/day 32

Flow ratesand power levels were monitored daily and adjusted manually whenever they were found to deviate from their original set values. A volume of 100 ml commercial chloride bleach was added daily directly into the cooling tower sump for control of biological growth.

RUN TERMINATION

Generally runs were terminated when the fouling resistance reached a constant value or when essentially no fouling wasobserved (i.e. the measured fouling resistance was less than .0002 hr ft2 0F/Htu after about 150 hr duration). In many instances, runs were terminated while the fouling resistance was still increasing. Usually, in these runs, sufficient data were obtained, so that the correlational methods used in Section VI were applicable and it was apparent that the ultimate asymptotic fouling resistance would not be acceptable in an operating heat exchanger. When runs were terminated, the heater power and water flow in the test sections was turned off, the heater rods were removed from the test sections and the deposit, if any, wasscraped off from the rod. After it was thoroughly dry, the sample was sent to the DuPont Company for chemical analysis, and then the heater rods were reused after they were cleaned by polishing with fine steel wool. 33

V CALCULATION PROCEDURES

CALCULATION OF FOULING RESISTANCE

Clean Fouled

Fig. V-I. Cross Section of Clean and Fouled Test Section

The method of calculation of the fouling resistance is based on the quantitiesdefined in Fig.V-1. During a test, flow rate in the test section bulk temperature and heater > power remained essentially constant. Under the conditions the temperature at the liquid/solid interface (Ts) is assumed to remain constant.

The wall temperature, Tw, was calculated from the wall thermocouple temperature, Tc, and the thermal conductance k/x between thermocouple and the heater wall by the equation 34

Tw = Tc 0/AH (5-1) k/x Where 0/AH = heat flux, Btu/hr ft

At constant heat flux and constant velocity, the difference between the surface temperature, Ts and the bulk temperature, Tb is constant. The surface temperature is determined as follows:

Ts Tb = 0/AH (5-2) h

where, h = heat transfer coefficient, which must be calculated.

The local bulk water temperature is calculated with the equation (5-3):

Tb = 0 + Tin (5-3) 8.0208 (f) (Cop) (M.)

Where: 0 = heater power consumption, Btu/hr

P = water density, lbm /ft5

C1 = water heat capacity . Btu/lbm

Wp = volumetric flowrate , gpm Tin= inlet water temperature, OF 8.0208 is the multiplication factor to convert gpm to ft2;/hr

Clean condition (beginning of the run)

Ts. = Tw = Tc - 0/AH (5-4) k/x where subscript . denotes the clean condition 35

Thus the heat transfercoefficient for a clean rod, h., is calculated from equation (5-2) using Tse found in equation

(5-4):

h. = 0/AH (5-5) Ts. Tb

It is related to the flow velocity by equation (5-6):

h. = K V.m (5-6) where: K = proportionality constant m = .7 if V>4 ft/sec = .93 otherwise

and subscript . denotes clean condition.

When a run is started, 10 scans of the data sensors are made at 2 minute intervals, from which an average value of K is calculated.

10

Kavg = ( E hi/Vim ) / 10 (5-7) i-i

The value of Kavg computed above remains constant provided the assumption of constant bulk temperature holds.

Fouled condition:

For a given velocity,

h = Kavg Vm (5-8)

The surface temperature for the fouled condition Ts, can now be determined from eqn. (5-2):

Ts = O /AH + Tb (5-9) h and finally, the fouling resistance Rf can be calculated by eqn.(5-10):

Rf = ( Tc - Is ) 1 (5-10) WAH k/x 36

For run 117 169 the calculations were carried out by

CDC Cyber 170 model 720 mainframe computer at Oregon State University. Beginning with run 170, thecalculations were

carried outby a Hewlett Packard 85 computer in conjunction

with an HP 3054 Datalogger.

ERROR ESTIMATION

This is an estimate of the possibleerror in the

measured value of the fouling resistance.

The relativeerror in the heat flux can be calculated

from equation (5-11):

d(O/AH) = dO ± dDROD ± dL (5-11) (Q/AH) 0 DROD

where 0 = heater power consumption Drod = outside diameter of clean heater rod L = heated length section

and

d0 = dOmv (5-12) 0 Omv

the heat flux and bulk temperature are relatively constant

during a run.

Using eqn. (B-2), the relative error of Tc and Tin can be calculated by the following equation:

.949 dTmv Tmv < -1.0 (Tmv + 5.02) dT = (5-13) T .8765 dTmv Tmv k -1.0 (Tmv + 4.72) 37

The relative error of the bulk temperature is calculated from equation (5-3):

dTb = Z. d0 ± Zi dWF ± Zi Zm WFTin dTin (5-14) Tb Q WF Q Tin where: ZA. = 0 0 + Zm Tin WF

Zm = 8.0208 (r) (Cp) and from equation (B-3)

dWF = dWmv (5-17) WF (Wmv - 4)

Clean condition

From equation (5-4) dTsc = (k/x)Tc dTc ± (Q /AH) d(Q/AH) ± (Q /AH) d(k/x) (5-18) Tsc Zm Tc Z. Q/AH Z3 (k/x) where Zs = (k/x) Tc - Q /AH (5-19) and from equation (5-15)

dhc = d(Q/AH) ± Ts. dTs. # Tb dTb (5-20) he Q /AH Tsc-Tb Tsc Tsc-Tb Tb

Fouled condition

The relativeerror in surface temperature is obtained by differentiating eqn.(5-9)

dTs = (Q /AH) d(Q /AH) ± Q/AH dh ± hTbdTb (5-21) Ts Z4 WAN Z4 h Z4 Tb where Z4 = Q/AH + hTb (5-22) 38

Since the flow velocity also remainsessentially constant throughout a run

dh = dhc (5-23) h he

Finally, fromeqn. (5-10) the relative error of the fouling resistance is: dRf = (k/x) Tc dTc ± (k/x) Ts dTs ± (k/x)(Tc-Ts) Rf Zs Tc Zs Ts Zs

d(Q/AH) ± 0/AH d(k/x) (5-24) 0/AH Zs k/x where Zs = (k/x) (Tc-Ts) - Q/AH (5-25)

Setting appropriate errors to each measured variable,

dTmv = ± .005 millivolts dD2 = ± .0005 millivolts dO = ± .005 millivolts dL = ± .005 millivolts d(k/x) = ± 50 millivolts d(Wmv) = ± .005 millivolts the numerical values of the maximum relative error of the surface temperature and fouling resistance can be calculated from equations (5-21) and (5-24).

Appendix Dcontains an example of the relative error calculation. The maximumexperimental error in absolute value of the measured fouling assistance is ±157.. Within a run, the precision ismuch less than this as indicated by fouling resistance time plot in Appendix F. 39

CALCULATION OF THE INNER WALLSHEAR STRESS FOR FLOWING WATER

Properties of water (50 T 2000F)

p = viscosity, lbm/ft sec

( 242 / 3600 ) (5-26)

) 2.1482 - 120 ( Er2 + 8078.4]0 + r

where:

r = ( T+459.72 )- 281.615 (5-27) 1.8

T = temperature, of

r = density, lbm/ft2 = 63.45 - .01567

= kinematic viscosity,ft2/sec

= P1r

Flowrate / velocity:

GPM = flowrate, gallon/minute

V = velocity, ft/sec

The fluid properties are evaluated at the bulk temperature of the flowing fluids

Smooth Annular Ducts

dm = I.D. of outer tube, inches

di = O.D. of inner tube, inches

V = velocity, ft/sec = (.4085) GPM /(d22 dx2)

Re = Reynolds number (5-28) = ( 4 rH ) V (12) (a) 40 where:

4 rm = dm2 - dmax2 , inches (5-29) dm

dmax= = ( d2 -2 d12 1 , inches (5-30)

ln( d22/d12 )

= friction factor

= .079 Re -.25 Re > 4,000 (5-31) m = shear stress on outer wall, lbf/ftm

= frV2 (5-32) 2g ri = shear stress on inner wall, lbf/ft=

= Tm ( dm/di ) ( dmax= d42 ) (5-33) d22 dmax2

Smooth Tubes

d = ID of tube, inches

V** = water velocity, ft/sec

Re = Reynolds number = (d/12)"P /

f = friction factor

= .079 (Re--25)* (Re > 5000)

I = wall shear stress, 1bl/ft=

= frV2/2 g.

g. = 32.17 lbm ft/lbf sect combining all relationships:

= .0395 p-25 f-7° V"75 (5-34) gm (d/12)-25

If the tube wall has a known roughness, a friction factor equation that also includes roughness should be used. 41

* * If water flow in tube is known in terms of gallons per minute (GPM), then the velocity (ft/sec) is V = 4(GPM) / [(60)(7.48)(11)(d/12)2]

FITTING THE FOULING CURVES

From the model developed by Heat Transfer Research,

Inc. (HTRI), it was expected that the most of fouling resistance vs time curves could be represented by the equation A Rf = Rf* (1-exp(-0/0c)) (5-35)

The above equation assumes that fouling begins as soon as the test begins. However, on many of the runs in this study, an induction period or dead time of a certain duration was

observed, during which negligible fouling deposition _ occurred. Therefore, it was necessary to modify the above equation to include the induction period as follows

Rf = Rf* [1-exp(-(0-0d)/0c)] (5-36)

Where Od is the induction period or dead time.

In order to solve for the constants Rf* and Oc, it was necessary to use anonlinear regression since equation (5-

35) can not be linearized. The sum of squares (SS) of the difference between the measured value, Rfi and the predicted value, Rf, must be minimized.

SS = E (Rfi-R1*(1-exp-(0i-Od)/Oc))11 (5-37) Where ei time for the i" observation.

The details of the iteration procedure used to minimize the SS are given in Appendix I. 42

VI RESULTS AND DISCUSSION

EXPERIMENTAL RESULTS

RUN DATA (RUN 117 THROUGH 301)

The data (both raw and calculated), photographs of deposit, water analyses are available at Department of

Chemical Engineering, Oregon State University. Average cooling tower water quality and system flow rates for each run can are tabulated in appendices J and K, respectively. The summary of runs containing run number, termination date, total run time, heater rod number, test section and run statistics (mean and standard deviation) of bulk, surface and ambient temperature, heat flux and velocity are listed in appendix L.

FOULING RESISTANCES

A summary of all runs is shown in table E-1 in Appendix

E. This table indicates the run duration, the run conditions

(velocity, surface temperature, pH), and the additives used. Appendix Fshows plotsof the fouling resistance as a function of run duration, in which beginning with run 173, adjacent plots of fouling resistance, velocity, surface temperature and water quality (pH, conductivity, corrosivity) areshown as a function of run duration. These plots allow one to determine if variations of any of these 43 parameters during the run has an effect of the fouling resistance.

The final fouling resistances at run termination are shown on a series of three dimensional figures, Figs. E-1 through E-18 in appendix E. These are pictorial representations of all runs grouped according to the cooling water with the same additives. Fora given constant water quality, the three major parameters of interest are water velocity in the test section, surface temperature of the heated section and the pH of the water in the system.

Temperature-velocity matrices are shown at various pH levels as indicated on the left. Not all of the cells in the temperature-velocity matriceswere investigated. In cell showing data, the information includes the run number, the value of the final fouling resistance at the completion of the test, and the heater rod material. In a cell, there may be more than oneset of data which signifies duplicate or triplicate runs. The results shown on these figures display the effect (in a qualitative manner) of velocity, surface temperature and pH. For a given water quality, it is nearly always thecase thathigh velocity (8 ft/sec), low surface temperature (1300F) and low pH (6.0 to 7.0) are conditions at whichvirtually no fouling occurred for any of the additive combinations. The results also show that the final fouling resistance usually increases with decreasing velocity, increasing surface temperature, and increasing pH. 44

In the discussion of runs, the reader is also refer to the plots in appendix F

RUN DESCRIPTIONS

LOW MAGNESIUM TESTS:

1. No additive (Runs 117-118). The additive free water deposited scale at a pH of

8.6 (run 117), which deposit was removed when the pH

was reduced to 6.8. Run 118 indicates that the water

without inhibitor was in a non scaling condition at a

pH of 6.5.

2. Additive: 20 ppm CrO.,, 4 ppm Zn (runs 119-125)

No significant fouling occurredup to pH of 7.2,

at a velocity 5.5 ft/sec and surface temperature of

1600F (run 122). At pH of 7.8 considerable deposition

occurred with a surface temperature of 1600F,

particularly at a velocity of 3 ft/sec. With this

additive combination, at a pH of no greater than 7.0,

with velocity maintained above5.5 ft/sec and surface temperature less than 1600F, fouling was insignificant.

3. Additive: 40 ppm CrO.,, 8ppm Zn (runs 126-133)

At pHof 6.5, no significant fouling was observed

even at a velocity 3 ft/sec and surface temperature

1600F. With this high concentration of inhibitor, significant deposition occurred at pH 7.0, particularly at high surface temperature (1600F) and low velocity (3 45

ft/sec). At this pH, a velocity greater than 5.5 ft/sec

and surface temperature below 145°F would be suitable

to minimize fouling.

4. Additive: 20 ppm C,04, 4ppm Zn, 200ppm Suspended Solids (run 134-148). Since equal values of pH were not investigated for

inhibitors with suspended solids and without suspended solids, direct comparison was not possible. However the

effect of the presence of suspended solids can be hypothesized by comparing runs at similar pH. At low pH

(6.5-7.0) it appears that higher final value of fouling

resistance are obtained with the presence of suspended

solids. When suspended solids are present, at a pH of

7.0 and surface temperature 1600F, in order to assure

only slight fouling, velocity should begreater than

5.5 ft/sec.

HIGH MAGNESIUM TESTS:

1. Additive: 20 ppm CrOm, 4ppm Zn (runs 149-151,179-187, 203-205)

All runs for this additive were at a surface temperature of 160 0F. The sets of runs 179,180,181,and

203,204,205 at pH 7.5 were duplicates of runs 149, 150

and 151. They do not agree well with runs 149,150 and

151, butagree quite well witheach other, except at

velocity of 3 ft/sec. This is because the pH of runs 149,150 and 151 were closer to 8.0 than 7.5. Those runs

were also in better agreement with runs 182-187 which 46

were in the range of pH 8.0. The sets of runs 182, 183 and 184 were performed while the pH changed from 7.7 to 8.2. In runs 149-151, an immersed electrode was used in

the cooling tower sump to determine pH. It was quite

unstable becauseof the spray fromthe cooling tower

falling on it.

The significant effect of 'velocity for this

inhibitor combination is shown in Figures (6-1) in

which runs 182,183, and 184 are compared. An increase of velocity considerably reduces the amount of fouling.

For this inhibitor combination, at pH=7.5, no

fouling would be expected if surface temperature were

maintained below 1600F and velocity above 5.5 ft/sec.

This is in essential agreement withresults obtained with the same additive in the low magnesium water (runs

121 through 125).

2. Additive: 20ppm Cr04, 4ppm Zn, 3 ppm HEDP, (runs 152- 163, 188-199) All runs were operated at a surface temperature of

1600F. The pH of the series of runs 152-154, 155-157,

158-160, and 161-163 is considered to be in error (low

by about 1 unit). The series of runs 188-190 and 197- 199 were duplicated and they agree quite well except at

velocity 3 ft/sec.

It appears that the presence of HEDP considerably

inhibits fouling. With the addition of HEDP, no

significant fouling appears to occur at pH equal to or 47

less than 8.0, at any surface temperature below 1600F

and any velocity above 5.5 ft/sec. The effect of the present of HEDP is also shown in fig. 8-2 in which runs

184 (noHEDP) and 196 (with 3ppm HEDP) are compared at

pH 8.0 with all other condition being thesame. The

final fouling resistances are .001 and .00017 ft hr

,F /Btu respectively.

3. Additive: 20 ppm CrOA, 4 ppmZn, 3 ppm PA (runs 167- 178).

With this combination of additives, deposition occurred at pH = 6.5, in which previous combinations of

additives showed virtually no fouling condition even at

pH of 7.5. At pH 6.5, periodic sloughing off the

deposit wasexperienced for all runs. At this pH,

insignificant fouling only occurred at a velocity of 8

ft/sec and surface temperature of 1300F.

The natureof thedeposit at pH 6.5 is such that

as it reached a certain thickness, the shear stress at

the solid liquid interface removed the deposit. As

shown in the fouling resistance time curve in appendix

F, the curves for runs 167, 168 and 169 have nearly the

same sawtooth pattern, indicating periodic removal of

the depositafter a build-up of fouling resistance to

.0002 .0003 ft hr oF/Htu. No effect of velocity is

apparent. 48

The effect of lower surface temperature is evident

in figure E-7. At 1300F and all velocitiesminimum

deposition occurs. At 1450F, it is expected little

deposition would occur at velocities above 5.5 ft/sec.

Figure G-3 shows theeffect of surface temperature in which runs 167 (1600F) and 170 (1300F) are compared. At

1300F, virtually no fouling occurred, but at 1600F, the fouling resistance reached values to about .0004 ft2 hr

0F/Btu before the deposit sloughed off, and the fouling

resistance approaches essentially zero before another

periodic build up of the deposit.

The effectof pH is shown in Figures G-4 and 8-5

for runs 171, 174, 177 (1450F, 5.5 ft/sec) and 172,

175, 178 (130°F, 3ft/sec). It appears that in both

plots the results for pH 6.5 and 7.0 were similar, but much higher fouling resistance were obtained at pH=7.5.

With this additive combination it appears that at

pH=6.5 and surface temperature of 1450F, velocity

higher than8 ft/sec would be suitable conditions to

minimize fouling. At higher pH values (7.0 and 7.5),

insignificant fouling could beexpected at a velocity

of 8 ft/sec and a surface temperature of 1300F.

Comparing the series of runs 179-181 (without

polyacrylate) and series of runs 176-178 (with

polyacrylate), it appears that at pH of 7.5 the presence of polyacrylate has insignificant influence on 49

the fouling characteristics in the presence of zinc

chromate inhibitor.

4. Additive: 20 ppm CrOA, 4 ppm Zn, 3 ppm HEDP, 3 ppm polyacrylate (PA), (runs 164-166, 200-202).

All runs with this additive exhibited spontaneous

sloughing of the deposit. Runs 200, 201 and 202 were

duplicate sets of runs 164, 165 and 166. They agree

quite well with each other. Figure G-6 shows the effect

of velocity for runs 200, 201 and 202. Spontaneous

removal of the deposit occurs at about the same value

among these three runs (.001 to .0014 ft2 hr °F /Btu),

indicating that the effect of velocity is

insignificant. Also the fouling resistance time curves

in appendix F for runs 164, 165, 166 indicate the same

behavior. It was apparent that this combination of

additives appeared to produce a deposit whichwas

easily removed even at low velocity. Here, again with

this combination of additives, significant fouling

occurred at a pH of 6.5.

5. Additive: 20ppm Cr04, 4 ppm Zn, 3 ppm PP (runs 206- 214).

With this additive, the water contained 5-6 ppm

orthophosphate. Significant fouling occurred for all

runs (at pH=6.0 and 6.5), except at a surface

temperature of 1300F and velocityof 8 ft/sec. The

effect of surface temperature is shown in fig. G-7 for 50

runs 206 and 209. As expected, the fouling increased as

surface temperature increased.

The effectof velocity is shown in fig. G-8 for

runs 206, 207 and 208. The velocity has a significant

effect on the fouling.

6. Additive: 20 ppm CrOA, 4ppm In, 2.5 ppmPA, 2.5 ppm AMP, 2.5 ppm PP, 5.5 ppm OP (runs 215 -235).

With this additive, triplicateruns were made at

pH=6.0, surface temperature of 1450F and at three

different velocities. They agreequite well with each

other. Duplicate runs were also made at pH of 6.5,

surface temperature 1450F and velocity 3 ft/sec. They

also agreeeach otherwell. At pH=7.0, insignificant

fouling occurred at avelocity of 8 ft/sec and a surface temperature of 1300F.

The effectof pH is shown in Figures. G-9 through

G-12. Figures 9, 10 and 11 comparing runs 221 and 227; runs 222 and 228, and runs 223 and 229 respectively.

These figures indicate little effect on fouling until

the pH reached 6.5. Results for pH = 6.0 and pH = 6.5

are nearly identical. However, as shown in fig. G-12

comparing run 230 (pH=6.5) and run 235 (pH=7.0), considerably increase in fouling occurred as the pH

increase from6.5 to 7.0. Figs. G-13 through G-16 and

G-17 through G-20 indicate the significanteffect of the velocity and the surface temperature respectively. 51

Comparing the tests with this additive and those

without polyacrylate and AMP, it appears that at surface temperature of 1600F, no significant difference

is observed, but at 1450F, the presence of polyacrylate

and AMP will causesome reduction in the amount of

deposit.

7. Additive: 2.5ppm PA, 2.5 ppm AMP, 2.5 ppm PP, and 5.5 ppm OP (runs 236-247a).

With thisadditives, at pH 7.0, velocity of 5.3

ft/sec and surface temperature of 1450F, insignificant

fouling wasobserved. Theeffect of the presence of

zinc chromate is shown in fig. G-21 in which runs 235

and 239 are compared at pH of 7.0, velocity 3 ft/sec

and surface temperature of 1300F. Run 239 indicates

very little deposition when the zinc chromate was

absent. Higher fouling resistance was obtained when

zinc chromatewas present as shown in run 235. Also

when the fouling resistance vs time curves in Appendix

F, runs 236, 237, 238 at pH=7.0 are compared with runs

215, 216, 217 at pH=6.0, andwhen runs 240, 241 at

pH=7.0 are compared with run 219/222, 220/223 at pH of 6.0, it is apparent that less fouling would be expected

in the absence of zinc chromate. As indicated in fig.G-

22 throughG-24 where runs 238, 239, 241, and 242, 244

247a and 243, 246a respectively are compared, surface

temperature hasonly a slight effect on the fouling up

to about 1450F. The effect of pH is shown in fig.G-25 52

through G-30 where runs of pH 7.0 are compared with

runs of pH 7.5 for thesame surface temperature and velocity.At surface temperature of 1300F, the curves

are nearly identical but at higher surface temperature

(1450F and 1600F), increasing pH will have the effect

of increasing fouling significantly especially at a surface temperature of 1600F

The effectof velocity is shown in figs. G-31

through G-34.

B. Additive: 2.5 ppm PP, 5.5 ppm OP (runs 245b 247c). The seriesof runs 245b, 246band 247b resulted from discontinuing the addition of polyacrylate and AMP

to runs 245a, 246aand 247a after these runs reached

285 hours duration. Theeffect of the discontinuation

of theseadditive was negligible since the fouling

resistance continued to increase in the same fashion.

In the case of run 247, some sloughing off the deposit occurred, but following this occurrence, deposition was quite rapid and comparable to that prior the removal of

the deposit. The seriesof runs245c, 246c and 247c

resulted from reducing the pH from7.5 used in runs

245b, 246b and 247b to 6.5 after about 100 hours

duration. When the conditions werechanged, the equipment operated continuously and the test sections

were not removed. Reducing the pH resulted in a significant reduction in the fouling resistance but not

to thevalue of zero or near zero. This indicated that 53

this pH reduction caused the removal of some constituents of the deposit.

9. Additive: 2.5 ppm PP, 2.5 ppm OP (runs248 through 253).

Since wall thermocouples were broken in runs 249

and 250, the fouling resistance for those runs (249a-b

and 250a-b) were observed visually. At 1600F, very

little depositionwas observed up to pH of 7.5. During

runs 248, 249, and 250, the increase of pH from 6.5 to

7.5 caused only a slight increase in fouling, however

at pH of 7.8, significant fouling occurred at all

conditions observed, (runs 251,252 and 253), and at

this high pH, the deposit was removed periodically.

Figure G-35 is a plot comparing runs 251 (SS) and

252 (Ad) with all otherconditions, except heater

material, identical. The fouling rates are about the

same for both runs, but it appears that the deposit is

more adherent to the stainless steel than to the

admiralty, since the fouling resistance is higher for

the stainlesssteel before the depositsloughed off.

Figure G-36 is a plot comparing run 252 (Ad) and 253

(C-N). While both runs employed different heater

materials, themajor difference between these two runs is considered to be due to the velocity difference (5.5

and 3.0 ft/sec, respectively). 54

10. Additive: 4.5 ppm PP, 5.5 ppm OP (runs 254-277).

In the range of pH investigated (6.5 to 7.0) significant fouling occurred at all runs except for run

258 (pH 6.5, velocity of 5.5 ft/sec and surface

temperature of 1600F). At pH = 7.0, periodic removal of deposit wasobserved atsurface temperature of 160°F.

Using thisadditive, investigation of different heater

materials was undertaken. Runs 256(SS), 275(99),

276(Ad) and 277(Cu-Ni) are at identical conditions except for heater material. Runs 256 and 275, which are

exact duplicates, compare with each other quite well. The composite plots comparing runs 275, 276 and 277 are

shown in fig.G-37, the curves are nearly the same. The

curves for runs 275(SS) and 277(Cu-Ni) are almost

coincident, while that for run 276(Ad) is slightly

higher but not considered significantly different from

the other two. Fig.G-38 compares runs 254 and 269, which are also

exact duplicate with the same heater rodmaterial (SS).

During runs 272, 273 and 274, at about 33 hours

duration, the solenoid valve controlling sulfuric acid

flow malfunctioned and the pH dropped to about 3. The

pH of 6.5 was reached at 70 hours. During the period of

this very low pH, deposition was ver rapid for all

runs, particularly at low velocity (run 274, 3 ft/sec)

and reached a maximum value of fouling resistance of about 5x10* for run 272(SS); 7.0x10-4 for run 273(Ad), 55 and 12x10-4 hr ft2 °F /Btu for run 274(C-Ni). Only in the case of the high velocity, run 272, 8 ft/sec, and run 273, 5.5 ft/sec, partial removal of thedeposit occurred after the pH had reached its control value.

These results indicate that even at very low pH, phosphate inhibitors will deposit under the conditions of these runs.

As expected, higher fouling resistance was observed as velocities decreased. High velocity (8 ft/sec) and low surface temperature (1300F) produced lowest fouling rate. The effect of surface temperature is shown in fig.G-39 and fig.G-40comparing runs 255 and 258, and runs 260 and 263 respectively. The effect of velocity is shown in fig.G-41 and G-42 comparing runs 254, 255 and 256 and runs 263, 264 and 265 respectively. The effect of pH is shown in fig.G-43 and

G-44 comparing runs 254and 260, and runs 256 and 262 respectively. At the higher pH of 7.0, a significantly greater deposition rate isobserved and at this pH, periodic removal of the deposit is also observed.

The combined effect of velocity and surface temperature on initial deposition rate is shown in fig.G-45, in which run 257 (8 ft/sec, 1450F) is compared with run 258 (5.5 ft/sec, 1300F) with all other conditions being constant. The deposition rates for both runs were almost thesame withvery little fouling taking place. It appeared that the decrease in 56

surface temperature from 1450F to 1300F which would

decrease the tendency for deposition, is equally compensated by the decrease in velocity from 8 ft/sec

to 5.5 ft/sec which would increase the tendency for

deposition.

11. Additive: 4.5 ppm PP, 5.5 ppmOP, 2.5 ppm HEDP (runs 278-301).

With this additive, a number of different heater materials were investigated extensively. The effect of

material on the heatersurface isshown in fig.G-46

through G-52. In figureG-46, the curves for runs

278(SS), 279(Ad) and 280(Cu-Ni) are virtually

identical. In fig.G-47 the curves for run 283(Cu-Ni) is

above that for run 281(SS). But the difference is

considered to be insignificant, since in both cases

fouling is very small. In fig.G-48, run 284(SS) and

286(Cu-Ni) agree well eachother. In fig.G-49, the curves for runs 287(SS) and 289(Cu-Ni) both indicate

periodic removal of thedeposit during runs. In each

run, the removal occursat about the same level of fouling resistance. On the stainless steel, the rate of

fouling appears to beslightly greater. In Fig.G-50,

the curves for runs 293(SS) and 294(CS) indicate

virtually identical fouling rates for both cases.

However, the initial deposition rate on the carbon

steel is greater, resulting in a slightly greater

absolute value of fouling resistance on the carbon 57 steel compared to that on stainless steel. In fig.G-51, the curves for runs 296(SS) and 297(CS) are compared at conditions at which fouling is very low, and again as shown in fig.G-50 the absolute value of fouling resistance on the stainless steel was slightly than that for carbon steel. Fig.G-52 compares run 299(SS) ,

300(CS) and 301(Ad). As observed previously in fig.G-50 and G-51, the curves for CS and SS were nearly the same with SS showing a slightly lower absolute fouling resistance. Run 301 (admiralty) shows significantly higher deposition rate, and the reason is unknown, since previous runs indicated that admiralty behaved similarly to the stainless steel and copper-nickel surfaces.

The effect of surfacetemperature is shown in fig.G-53 comparing runs 284 and 287, and in fig.G-54 comparing runs 286 and 289. At the high surface temperature (1600F), periodic removal of deposit is observed and the fouling rate is much higher than at

130 OF.

The effectof pH is shown in fig.G-55 comparing runs 295(pH=7.0) and 298(pH=6.5) and in fig.G-56 comparing runs 281(pH=6.5) and 284(pH=7.0). It appears that in the range of pH 6.5 to 7.0 the effect of pH is not significant at conditions of low surface temperature (1300F), however ata surface temperature of 1450F, the initial deposition rate appears to be 58 unaffected by pH, but ultimately the fouling resistance was muchgreater at the higher pH of 7.0. This is believed due to a difference in the strength of deposit produced at different pH values.

Comparing the runs with HEDP and the runs without

HEDP, the effect of the presenceof HEDP is shown in fig.G-57 comparing runs 265 (withdut HEDP) and run 284

(with HEDP) at pH of 7.0, surface temperature of 130°F and velocity 3ft/sec; and fig.G-58 comparing runs 275

(without HEDP) and 278(withHEDP) pH of 6.5, surface temperature 1600F and velocity3 ft/sec. At pH of 7.0 and low surface temperature (1300F), the fouling rate is significantly less whenHEDP was present. At pH of

6.5 and high surface temperature 1600F, HEDP appeared to have only littlesignificant effect on the fouling rate, which was slightly less when HEDP is present, but at theseconditions the fouling is unacceptable in either case, with of without HEDP. Figure G-59 shows the combined effect of velocity and pH. Comparing runs

283 (CuNi, 3.0 ft/sec, 6.5 pH) and 285 (Ad, 55 ft/sec,

7.0 pH) with other conditions being the same, assuming that no difference arecaused by heater surface material, (since deposition rate for run 283 is greater than that of run 285), It appears that increasing velocity from 3.0 to 5.5 ft/sec, whichdecreases deposition tendency, more than compensates for 59

increasing pH from 6.5 to 7.0, which increases

deposition tendency. It appears that both curves may

reach nearly the same asymptotic ouling resistance,

which ineither casewould be a fairly low asymptotic

fouling resistance.

DEPOSIT ANALYSIS

In most cases, thedeposits contained a major

constituent along with a number of minor constituents.

The major constituents of the deposits obtained in

several runs shown in appendix H.

For the runs in which the additive was just zinc

chromate, the major component of the deposits was zinc

with minor amounts of calciumand magnesium

silicate. X-ray diffraction for run 124 indicated that

the major compound of deposit was zinc pyrosilicate

(Zn4(OH)=Si7.H=0). Thisdeposition of zinc silicate occurs with the silica content in the range of 40 to 55

ppm Si02and with the zinc concentrations as indicated

in the tests.

For the runs in which suspended solids were added

to thesystem, therewas no evidence of these solids

appearing in the deposit which occurred during these

runs. In addition , water samples were filtered and the

filtered precipitate showed no effidence of zinc

silicate. There appears to have been little or no 60

interaction between the zinc silicate deposit and the aluminium silicate suspended solids.

When HEDP was presentalong with zinc chromate,

deposit analysis indicate that the major components of

deposits are zinc and calcium phosphates with a minimum

amount of silica present. This differs from results

when HEDPwas absent in which the deposit was mainly

zinc silicate. Thus the presence of HEDP favors the deposition of phosphates rather than .

When polyacrylate is added along with zinc

chromate, the major constituentsof deposit are zinc silicate and calcium silicate. Thus the presence of the

polyacrylate appears to increase the amount of calcium

in the deposit relative to zinc. For water containing the phosphate inhibitors, the

major constituent is calcium phosphate.

REGRESSION ANALYSIS OF DATA

A nonlinear regression, employing a fixed value for ed and giving the least squares values for 8c and Rf* was used employing equation 5-11.

Some of the runs had a few points at the beginning of the test when the increase in fouling was sluggish or when the fouling was low. In this case regression was done using various values of the dead time (8d) for each run. A value of dead time was chosen whichwould give the best least squares fit. 61

For the runs that had a positive value of fouling resistance atthe beginning of the run, the abscissa was shifted before performing the regression analysis, these are indicated in Table VI-1 (see footnotes).

In some cases, the deposit sloughed off during the run, these are indicated in Table VI-1 (see footnotes), and for these runs usually a portion of the curve could be fitted to eq.5-11 ,in which analysiswas madeusing data before a large decreaseof foulingoccurred. In some of these runs, the fouling resistance reached nearly the same value before each time sloughing occurred. In this case, values of Rf* obtained from regression equation would be nearly the same as the value of fouling resistance when sloughing occurred.

Some of the runswere terminated prematurely, because of power failure, broken wall thermocouple, or other problems occurred during runs. For these runs, the slope of the first few points of data was analyzed to determine the initial deposition rate, Od.

The plotsof the fouling vs time curves for some runs have an increasing deposition rate (concave upward). These are also indicated in Table VI-1 (see footnotes). Thus a constant deposition rate model in equation (2-8) does not fit to these runs. No regression analysis was made for these runs.

Sometimes the fouling resistance for a run is so low that the curve fitting procedure wasunreliable. Thus the final value of fouling resistance was used as the asymptotic 62 value, usually between 0 to .0001 ft2 hr 0F/Eltu. However the data for a few runs with values of Rf* in this range could be fitted to eq.5-11 and for these runs, values of Ad, Sc,

Rf*, Od and r2 are reported. It is observed that when the

fouling resistance is insignificant ( the value of Rf* is low),r2 is also low.

For some of the runs, the fouling resistance-time curves areclose to a straight line. These runs were analyzed according to the linear equation

Rf = Od (e-Ad )

In this case the quantities of Rf* and Ac are meaningless

The results of the regression analysis are given in table VI-1 in which Ad, Sc, Rf*, Od (= Rf*/0c) and r2 (the correlation coefficient) are tabulated. In most cases the model fitted the data quite well. For the remainder of the data analysis, the resulting values for Ac and Rf* from the regression analysis were used in the HTRI fouling model. The data points and the regression curves are plotted in appendix I. 63 Table Regression Analysis ======222=12:22 1.22221=====22222=22:2222.7222 :2222=222 22222 2222=22iii=2222= ==

I . . .. :DEAD TIME 1 TIME l(RFI)1110"41 id : .

. .. .. : 2 1 MI / ic . .. .. RUNS 1 id 1 CONSTANT (FTA2 HR 1 r

,I I0 11 : 8 c I F/IITU) 1 II 1 (HOURS)

1 1 1 11 :1 : 1 1 Of : : .. II 117 I 66 I 74.32 : 3.97 : 5.3418E-06 0.970

I:1) 118 1 1 1 27.98 1 0.41 1 1.4653E-06 1 0.404 D shift abscissa

I 111) 119 I 22 I 46.39 I 1.68 I 3.6215E-06 1 0.876

.' I I 0.609 : :I 1208 : 0 I 1.4960E-07

: : 111) 121 I 0 I .' : 1.7000E-06 0.714

II 122D I 0 1 48.22 I 0.03 I 6.2215E-08 I 0.376 I) shift abscissa

It 11 I 2.2821E-06 I 0.990 I II 123 I 60 I 298.75 6.82 1 II I 7.6187E-06 I 0.999 Dvel.t from 3 to 3.3 fps after 260 hrsl: I1 124 : 0 1 537.10 40.92 1 .. 1 : 0.943 I 1: .. 125 : 26 1 176.06 1 1.87 1.0621E-06 II II 1 I 0.784 I I I 11 126 : 5 : 71.32 I 0.51 7.1509E-07 I I I I I I I. .. 127 1 58 1 , : 2.7581E-07 I 0.354 I.. I 1 42.76 : 0.33 1 7.7175E-07 I 0.349 : :13) 128 : 2 II 1 5 I II 129 I 0 : 24.65 I 3.06 1 1.2414E-05 0.968 I) shift abscissa " 1 130 I 0 I 63.62 1 6.35 1 9.9811E-06 0.935 I) shift abscissa i.

: 1 0.843 1 5 5 131 : 40 I 89.92 1.61 1.7905E-04 1

. It I 15 :13) 132 : I 0.00 : I I I 0.791 : I I II 133 1 30 1 89.83 1 2.00 I 2.2264E-06

113) 134 I 1 .' 0.10 : .. . , .. : I . :13) 135 : . . 0.30

II I II 51 136 : 38 1 36.53 I 0.78 : 2.1352E-06 1 0.863 I II 1: 1 0.893 1 I I 137 1 69 1 29.07 0.86 1 2.9514E-06 I I I 11 : 1 0.822 1 II 131 1 48 1 44.25 : 1.27 2.8701E-06 .. . . II :12) 139 : . I . I, I. II 140 : 0 : 90.52 I 0.48 1 5.3027E-07 I 0.549 : IS 1: 141 1 0 : 166.80 1 2.82 1 1.6906E-06 1 0.916 1 I I .5 : .. .. 142 : 0 I 348.92 I 12.98 1 3.7201E-06 : 0.991

, 1 I I: 113) 143 : .' . 0.10 :

1 1 I: 144 1 0 1 115.76 I 1.40 : 1.2094E-06 1 0.586 I .. II 145 : 0 : 27.61 1 0.56 1 2.0283E-06 I 0.588 I .. .I 146 I 75 I 187.88 I 2.98 1 1.5141E-06 : 0.936 : .. 51 147 1 75 I 171.84 I 6.06 I 3.5265E-06 1 0.972 1 I I I I 1 75 : 200.90 I 4.50 : 2.2399E-06 : 0.943 : ".I 148 II t 5 I : 1 4.54 1 : 0.929 1 II. 149 I 30 23.70 1.9156E-05 If I I 0.996 I .. I. 150 I 0 : 129.68 1 5.60 I 4.3183E-06 1 .. I 0.990 I .. II 151 : 30 : 172.82 1 18.37 1.0630E-05 : 0.991 !Mgrs. the 2nd slope- ",s 1:1) 152 I 3 I 16.27 1 11.32 1 6.9576E-05 1 I I I I : of the saletooth curve I I 153 I 3 : 27.29 I 10.36 1 3.7963E-05 I 0.991 I I 0.962 :Amy'. the 1st slope- IS 1:1) 154 1 3 I 31.43 I 24.98 : 7.9478E-05 I .. . , .. I I of the sastooth curve :13) 155 : . . 0.00 : .. . 5 I 113) 156 I I 0.10 1 I III I :13) 157 : 0 : 9.50 I 0.20 1 2.1053E-06 I 0.575 1 .. It I D shift abscissa 113) 158 : .' 0.00 : I I . , II . I> shift abscissa :13) 159 1 . 0.00 :

I 113) 160 1 .' .' 0.00 : II II i. I 0.988 I 161 I 0 1 80.60 : 12.77 1 1.5844E-05 I I Of I 0.968 : 162 : 0 I 81.06 : 1.97 1 2.4303E-06 IS : I 163 : 0 I 175.27 I 11.72 : 6.6868E-06 0.918 SZZZ2ZZUZZ=2111222ZZUZZSZLIZZ2S2SZSZSIZZ=22.1111ISZ2221112 .12X2122 222222 SS= VVZSZVZSIIIZZlinS 64 Table VIA (can't) Regressioe Analysis ZZZZZ =i1182232222=22=222=2

11 I II II :DEAD TIME : TIME 1(1F1)i10441 $d II 2 II I . r 11 Il RUNS I lie I CONSTANT 1 (FYI HR 1 Rft / ic II II I 1 II II 1 (HOURS) 1 -11c 1 F/lITU)

, 1 --11 II : 1 1 1

. 11 I 11 :12) 164 1 '. . . 11 :12) 165 : I . '.

. . , . : ,1 112) 166 1 . . I . 11 41 HI) 167 1 0 1 27.53 : 3.73 1 1.3549E-05 1 0.997 Mays. the slopes- .. .. I:1) 168 1 0 1 38.87 : 3.66 : 9.4160E-06 1 0.984 1) of the santooth- ., .. :11) 169 : 0 I 30.16 : 4.29 1 1.4224E-05 I 0.995 I) curve .. . .. 113) 170 1 . 0.00 1 1 1) Bulk Teep. decreased ,I II 11 171 1 0 1 68.46 : 1.71 1 2.4978E-06 1 0.930 1) to 95 F after -

01 1: 01 172 1 0 1 101.38 : 1.63 1 1.6070E-06 : 0.992 1) 70 hours duration.

, . :13) 173 1 . 1 0.00 : 1 ,

'. 112) 174 1 : 1 S . . 1:2) 175 1 1 ,. . . , II II 0.760 1 II II 176 : 0 1 170.80 : 0.69 I 4.0398E-07 1 II 11 1 11 .. 177 : 5S 1 603.46 : 40.80 1 6.7610E-06 1 0.997 11 1 11 178 1 45 1 783.50 : 15.23 : 1.9438E-06 : 0.995

1.1. . . 113) 179 : . I 0.10 : I .

" 1 .. 180 1 19 1 17.04 1 0.92 i 5.3991E-06 1 0.797 0.995 1 II 181 : 20 : 481.50 1 9.34 1 1.9390E-06 1 .. 11 II 182 : 0 I 23.15 : 2.36 : 1.0194E-05 : 0.984 :

11 :1 183 : 0 1 35.74 , 8.66 1 2.4231E-05 1 0.999 1 11 SS 11 184 1 0 1 24.30 1 11.87 : 4.8848E-05 : 0.999 1 11 II : 11 I. 185 1 20 1 10.81 1 0.99 : 9.1582E-06 1 0.981

II 11 11 186 1 0 1 31.61 1 2.63 1 8.3202E-06 1 0.918 : 11 II 187 1 0 1 68.57 1 6.24 1 9.1002E-06 1 0.984 1 11 1 11 1:3) 188 I '. 0.10 S 1 ,1 11 113) 189 1 '. 0.20 1 S . II 11 190 I 3 1 178.01 I 1.42 1 7.9771E-07 1 0.694 I IS

. .. :13) 191 1 '. . 0.00 1 ' .. 11 11 192 1 0 : 6.99 : 0.38 1 5.4363E-06 : 0.694 1)Shift abscissa II 11 II 193 1 0 1 7.97 1 0.45 1 5.6462E-06 : 0.650 1)Shift abscissa

, ' 1: :13) 194 : .' 0.10 1 . . .. 1: 11 195 1 0 1 165.95 1 1.38 1 8.3158E-07 1 0.955 1 11 . , 1 01 11 196 1 0 1 288.66 : 4.22 1 1.4619E-06 1 0.984 .. , II 1:3) 197 1 '. . 0.10 : II 11 0.871 : II 11 198 1 0 1 57.06 1 0.74 1 1.2969E-06 1 I I. I 0.977 1 1 11 199 : 0 1 241.62 1 5.04 1 2.0272E-06 1 1 11 :12) 200 : 1 . . . . , , 11 :12) 201 1 1 S . . .

I 1: 112) 202 1 1 1 1 .' . II :13) 203 1 1 1 0.00 : . 1 , IS 113) 204 1 1 1 0.00 1 1 I 11 11 11 11 205 1 0 1 389.89 1 0.72 1 1.8467E-07 1 0.401 1 II 11 11 11 206 : 160 1 147.52 1 3.96 1 2.6844E-06 1 0.989 1 II It '1 207 : 160 : 184.56 1 11.39 1 6.1714E-06 I 0.997 1 ,1 :I 0.999 1 11 208 1 160 : 202.72 : 25.26 1 1.2461E-05 1

, ,, S 1 11 113) 209 1 S . . 0.30 1 11 11 210 1 29 1 285.29 : 8.82 1 3.0916E-06 1 0.995 1) shift abscissa 11 .1 11 11 211 : 30 1 354.47 1 8.63 1 2.4346E-06 : 0.994 : Z ======65 Table YI.1 (can't) Regression Analysis 2.2 22 ''222 .222

1 11 . 11 11 :DEAD TINE : TINE l(RF1)110441 $1 : 11 .. r 2 : 1 (F142 HR I Rik / -0c : 11 RUNS : Od 1 CONSTANT

11 : I F/8111) II : (HOURS) : 41c :

: 1 II: 1 :

, i i . 1 . 0.00 1 ::3) 212 1 11 0.971 : :I II 213 1 225 : 27.50 1 9.45 : 3.4364E-05 : ,, 0.988 : II 11 214 1 230 1 163.23 : 12.35: 7.5660E-06 1 ,, .. 1 I 0.977 1 :1 .. 215 1 0 : 61.97 0.81 1.3071E-06 1 II 1 II 11 216 1 0 1 107.43 1 4.14: 3.8537E-06 1 0.991 11 I I: si 217 1 0 1 164.09 1 10.43: 6.3563E-06 1 0.995

11 218 : 0 : : , ', 4.9920E-07 1 0.873 : ', :1 219 1 0 : 69.41 : 3.51 I 5.0569E-06 : 0.993 :)Power failure after- ,, ., 220 1 0 1 77.62 I 7.02 1 9.0441E-06 1 0.996 1) 80 hours of duration

:13) 221 I .' .' 0.10 1 11 11 222 : 113 1 123.67 1 1.99: 1.6091E-06 1 0.966 : ., II 223 : 108 I 141.81 1 4.97 I 3.5047E-06 : 0.988 I .. .. 224 : 101 1 1,489.12 I 4.96 : 3.3301E-07 I 0.965 :Amor failure at- 11 0.990 1) 100 hours, resumed- II 225 1 101 1 627.58 I 10.50 1 1.6731E-06 1 .. 0.997 I) at 120 hours .. 226 1 70 : 387.61 I 13.28 1 3.4261E-06 1 ,, 1 0.977 1 .. 227 : 20 : 833.13 1 2.95 I 3.5409E-07 ,. .. 228 : 20 1 607.43 : 6.75 1 1.1112E-06 I 0.992 1 .. 10.00 1 1.9732E-06 1 0.991 1 .. :1 II 229 : 40 1 506.78 I s. ,, 1 0.930 I 11 .. 230 1 0 1 361.19 1 6.31 1.7470E-06 1 11 11 1 11 11 231 : 0 1 306.66 1 24.29 1 7.9201E-06 1 0.991 II . . . ., :12) 232 1 . . . 1 :: 1 1 1 1.2961E-06 1 0.933 1 11 11 233 1 0 64.04 0.83 .. 1 0.994 1 11 234 : 0 1 3,233.67 1 61.30 1 1.1957E-06 0.993 1 11 :: 235 1 0 1 I 3.19991-041 1

. . 113) 236 : . 0.20 : . is .. 237 1 0: 92.99 1 2.20 1 2.3658E-06 1 0.956 1 :I 238 1 0: 187.50 1 10.76 1 5.7317E-06 1 0.991 1

":1 239 1 0 1 91.43 1 2.38 1 2.6031E-06 1 0.934 1 0.793 : "11 240 I 0 1 21.90 1 0.55 1 2.5114E-06 1 0.943 I "11 241 1 0 : 30.90 1 1.20: 3.1135E-06 1 ,. 0.977 1 ., ,, 242 1 0 I 645.17 : 13.10 : 2.0305E-06 : 0.996 1 11 "1: 243 : 8 1 362.72 1 8.09 1 2.2304E-06 :

1 $$ 244 1 11 1 503.13 1 22.03 1 4.3786E-06 1 0.997 245 1 0 1 286.45 : 6.75 1 2.3564E-06 1 0.999 1 0.996 : 1: 246 1 0 1 318.78 1 18.69 1 5.8630E-06 : 11 ., 11 is 247 1 0 1 347.33 1 39.44 1 1.1355E-05 1 0.997 :

i , 11 . IS 113) 248 1 1 I 0.20 1 . 0.637 I) wall TC broken after- so :: 249 I 20 1 1 . 1 1.5662E-06 1 .. : :) 11 250 : - I .' 20 hours 11 : 0.994 1) deposit removed during runs - ::11 251 : 0 : 3,731.95 : 508.68: 1.3630E-05 11 slope taken from the 1st few - 11 :11) 252 : 0 1 1 1 1.4999E-05 1 0.993 1) 0.996 1) points before large drop of Rf. 11 :11) 253 1 0 1 344.99 1 81.85 : 2.3725E-05 1 .. 0.995 1 :1 254 1 20 1 360.13 1 6.64 1 1.8438E-06 1 ., 0.998 : Io ., 255 : 2 1 275.96 1 16.25 1 5.8815E-06 1

0.999 I 256 : 0 : 166.88 1 23.55 1 1.4112E-05 1 11

.' : 0.974 *power failure at 50 hours- 257 1 53 : 1 . 6.0345E-07

1 1 0.951 1) resumed at- 258 1 73 1 31.27 : 0.45 1.4391E-06 4.2620E-06 1 0.117 1) 70 hours 259 1 80 I 219.38 1 9.35 : 222 S 32 2 2 == 222 2 2.22 22 22 22 3822=iii 2211122:2Z2Z2Z2 66 Table 11.1 (con't) Regression Analysis 22 2 112222 22 2 22222 2

1 1 11 11 1 TIME 1(11FI)x10441 id :DEAD TIME 2 r 11 11 RUNS id CONSTANT : (FTA2 HR 1 Rf / 4c 11 (HOURS) F/BTU) 1: 11 1 : : 1 1 1 11 11 :11) 260 1 1 1 18.07 : 8.57 1 4.7427E-05 1 0.995 1)Sawtooth curve, rears. 11 11 111) 261 1 1 : 18.11 1 12.30 1 6.7918E -05 : 0.987 1)1st few points before II 11 111) 262 1 0 1 27.92 : 19.96 1 7.1490E-05 : 0.995 :Marge drop of Rf II 11 II 263 1 2 1 187.14 1 5.42 1 2.8962E-06 1 0.988 : 11 .. ..:1 264 1 4 I 278.88 1 6.99 1 2.5065E-06 1 0.995 1 11 II 11 265 1 4 1 498.07 : 26.08 1 5.2362E-06 1 0.114 1 II 11 266 1 0 1 9.19 1 0.79 1 8.5963E-06 1 0.951 1) lost of water - 11 11 11 267 1 1 : 17.15 1 1.95 1 1.1370E-05 : 0.951 1) after 24 hrs; run267:shift abscissa 1: II 11 11 268 1 0 1 20.38 : 6.10 1 3.3366E-05 1 0.992 1 .. 11 II 269 1 0 : 60.39 1 2.23 1 3.6927E-06 1 0.983 1 11 11 :: 11 270 : 3 : :' .' 5.7694E-06 1 0.969 1) wall TC broken after 24 hrs

. 01

:1 271 : . : . :) wall TC broken after 2 hrs 11

II 11 11 272 : 0 1 10.39 1 0.63 1 6.0635E-06 1 0.819 1) pH excursion to 2.9 at 23 hrs, 11 00 273 1 0 : 23.13 : 1.98 1 8.5603E-06 1 0.924 I) back at 6.5 at 56 hrs.

11 II 11 274 1 0 1 13.72 : 2.70 1 1.9679E-05 1 0.920 1) Data bfr pll excursion used.

II 11 11 275 1 2 : 38.85 1 11.57 : 2.9781E-05 1 0.985 1 II 11 11 276 : 2 : 20.89 1 12.37 1 5.9215E-05 1 0.959 1

11 11 11 277 1 2 : 27.52 1 10.119 1 3.9571E-05 1 0.974 1

11 $1 278 : 7 1 189.19 1 22.92 1 1.2115E-05 1 0.197 1 11 1 1: 11 279 1 1 1 180.02 1 20.24 I 1.1243E-05 1 0.997 11 : 0.999 : ::10II 210 : 2 : 199.62 22.15 1 1.1096E-05 1 II 11 II 281 1 10 1 131.64 1 6.16 1 4.6794E-06 1 0.912 1(Velocity increased

is ::II 282 : 4 : 44.32 : 0.58 : 1.3017E-06 1 0.974 : ( after 66 hours II 11 1 II 11 283 1 2 1 26.50 1 2.54 : 9.5149E-06 1 0.951 ...... :12) 214 1 . . . 1 11 11 285 1 29 : 53.33 1 1.51 1 1.1953E-04 1 0.977 1 11 11 11:1 286 1 39 : 111.31 : 4.90 1 2.6193E-06 : 0.994 1 II II HI) 287 1 0 : 86.46 1 46.91: 5.4256E-05 : 0.996 1(Data taken before 11 11 111) 211 1 1 1 21.58 1 14.47 1 6.7053E-0S 1 0.956 1( large drop of Rf II is 111) 289 1 0 1 84.36 1 35.72 1 4.2342E-05 1 0.995 1 II 11 Ii II 290 1 10 1 32.55 1 8.24 1 2.5315E-05 1 1.000 1

II 11 11 291 1 0 1 32.02 1 8.92 1 2.7858E-05 1 0.996 1) wall TC broken after 24 hrs. II .. 292 1 0 1 44.88 1 12.29 1 2.7384E-OS 1 0.989 1) power failure after 95 hrs. 10 . . 11 :12) 293 : . 1

11 1: 11 294 1 1 1 .' 6.6357E-06 1 0.994 1 11 11 11 295 : 0 1 75.34 1 11.06 1 1.0104E-05 1 0.992 1 II 11 11 296 1 0 1 32.32 1 0.34 : 1.0520E-06 1 0.948 1

II 1: 11 297 1 0 1 12.48 1 1.35 1 1.0117E-05 1 0.747 I II 1.1 II 298 1 0 1 178.21 1 11.64: 7.1202E-06 1 0.917 : 11 .. 299 1 0 I 1,439.37 1 47.20 1 3.2792E-06 : 0.979 1 .. II 300 1 13 1 1 1 2.9360E-06 1 0.933 : II II 11 301 1 0 1 148.49 1 11.77: 7.1265E-06 1 0.975 : 242222 222222222222222222222222222 222222222 222 22

1) deposit removed during runs

2) deposition rate increases with time

3) no fouling, Rft = final value of Rf 67

CORRELATION OF DATA

HEAT TRANSFER RESEARCH, INC., MODEL DETERMINATION OF CONSTANTS

The HTRI fouling deposition removal model is used to correlate the fouling data obtained in this study. Sets of data were selected in such groupings to isolate single effects and to permit determination of the function required for solution of the HTRI deposition and removal model, equations (2-7) and (2-8) respectively

Od = Ci Fv S2^ exp (-E/Rg (Ts+460)) (2-8)

Or = Cm T Xf/Y (2-9)

DEPOSITION RATE (0d)

When a constant water quality is maintained, equation

(2-7) reduces to the form of equation (6-1)

Od = Cm Fv exp(-E/Rg (Ts+460)) (6-1)

where: C-K = constant Fv = velocity function E = activation energy of deposition reaction Rg = gas constants Ts = surface temperature

The initial deposition rate Od, is the slope of the fouling resistance vs time curve at 9=9d. Thus Od can be determined from the equation of fouling.

Rf = Rf* [1-exp(-(0-0d)/9c)] (5-11) by differentiating and evaluating the derivative at19 = ed

Od= dRf/d0 :e-ed = Rf*/19c (6-2) 68 wherevalues of Rf* and $c were predicted from the experimental data by the regression of equation (5-11) described in Appendix I.

The experimentally obtained the value of Od was then used to determine the velocity function Fv and constants Cm and E of equation (6-1) as described below

The velocity function Fv

Sets of data wereselected, eachwith the same water quality and surface temperature. Od was plotted versus velocity on a logarithmic scale to fit the equation

in Od = In Cd. V /C, (6-3)

These plots are shown in Appendix M. Normalizing these plots by plotting In (0d/C4.) vs velocity (Fig. VI-1), the average slopeof .352 (=1/C7) is obtained with standard deviation of 11%. Thus, the velocity function Fv is the form of

Fv = exp(-.352 V) (6-4)

Since Od is proportional to Fv in the model, increasing velocity will have the effect of decreasing deposition rate.

The velocity function, Fv, was then used for the evaluation of activation energy E. 3.6 3.4 025 3.2 C1110 VB 139 3 (1/C7)average = .352 2.8 std dev. =±.11% 2.6 206 Z.' 2.4 O 123

-13 49- 2.2 ,e655 0 2

1.8 183, 216 ..,.../E1207, 246 1.6 1.4 1.2 i4 V 124 184, 21724 ri 1 208 0.8 2 4 6 8

Velocity (ft /sec) Fig. VI-1. Normalized -14dvs Velocity. 70

The activation energy constant E.

Rewriting equation (6-1), results in equation (6-5)

Od/Fv = C5 exp (-E/Rg (Ts+460)) (6-5) which can be rewritten as:

ln(Od/Fv) = In C5 (E/Rg)(1/(Ts+460)) (6-6)

Sets of data were selected each with the same water quality.

Ln(Od/Fv) is plotted against (1/(Ts+460)) to determine the values of E and Cm for each of seventeen water qualities considered. These plots are shown in Appendix M, the values of these are tabulated in Table VI-2. Results indicate that both theconstant C5and activation energy E are dependent on water quality.

As expected the presence of suspended solids appears to make the activation energy, E smaller. Since the formation of nuclei from precipitated ions is an energy consuming process, and suspended solids can serve as nuclei for precipitation, thus its presence make the activation energy smaller.

In general, higher pH has a tendency to increase E.

This is probably becauseusually a solution with higher pH has a lower solubilityproduct, result in higher degree of , thus more energy is required for the formation of nuclei from precipitated ions.

The presence of additional additive(s) suchas HEDP,

AMP, polyacrylate, polyphosphate and orthophosphate, also 71 has a tendency lower E, since they provide more heterogeneous nucleation. The results also indicate that the value of E has an effect on thevalue of Cz. A higher or lower value of E will result in higher or lower C=, respectively. Thus, the constant C, is also dependent on water quality. There is a considerable variation of the activation energy E ranging froM2.09E5 to 1.44E4 Btu/lbmol. No particular pattern is noted with respect to pH or the type of additive used. It is therefore appears that for the present, the individual values of CS and E should be used with the specific additive combinations for which they were derived. With the functions determined above, the model equation for adeposition rate function Od in equation (6-1) can now be used to calculate the deposition rate foreachwater quality in this study.

In Figure VI-2. the experimentally obtained logarithm of the deposition rate is plotted against the results calculated by the model equation (6-1). The standard deviation of the ratio (experimental values over the model values) is 1:36%.

REMOVAL RATE

The time constant (0c) in the exponential equation Rf =

Rf* (1-exp(-0/0c)) is the time required for Rf to reach a value of 63% of the value of Rf*. In three time constant the 72 fouling resistance is 95% of the asymptotic fouling resistance.

e = ec , Rf = .63 Rf*

6 = 30c , Rf = .95 Rf*

The time constant 6c was predicted from experimental data by the regression equation (5-11) as described in

Appendix I. The experimentally obtained $c can now be used to determine a functional relationship as given in equation

(3-13):

@c = (3-13) Cm T kf

The HTRI model is based on the assumption that the _ characterizing function of thedeposit structure Y is an increasing function with flow velocity, thus

Y aV4' with a>0 (6-7)

However, the HTRI model and other studies to date have not quantified the effect of temperature on the removal process.

As the temperature within the deposit increases, the strength of the deposit should be affected and thereby also the removal rate of the deposit. Thus in the present analysis it is assumed that Y is a function of both surface temperature and velocity according to the relation:

Y a V* Ts* (6-8) In Ocl, Predicted by Model Equation

Ctid : ft2 °F / Btu Fig. VI-2. Error Plot of 4d 74

Shear stressnot velocity is the more fundamental parameter in removal rate. For the HTRI test sectionswith water flowing at 1150F, the fluid wall shear stress T is related to velocity by the equation:

(lbf/ft-12) = 1.1159 x 10-.7 V"7° (6-9)

where V = ft/sec.

The calculation of shear stress for the HTRI test section is described in appendix D. Hence, the removal rate function $c can be expressed as,:

Oc = Ca.T Tsbwith a = (a/1.75)-1 (6-10)

The quantities of CA,a and b for each additive combination are obtained from theexperimental data by multiple linear regression analysis. The plots of time constant as a function of surface temperatureand velocity are shown for each water quality in Appendix M. The coefficient CA includes the proportionality constant relationship in equation (6-8) and the quantities of Cmkf (which are assumed constant foreach water quality) inequation (2-14). The values of these removal rate terms ( Cm,'a' or in terms of a and 'b') are tabulated in Table (VI-2). CA, a and b appear to be alsodependent upon waterquality. The results tabulated in table (VI-2) indicate that the values of 'a' for all water qualities are greater than 0, indicating that the scale strength factor is an increasing function with velocity. Thevalues of b are either positive or negative. 75

This parameter b will be discussed later in this section. In most cases, the presence of additional additives, such as

HEDP, polyacrylate, AMP, zinc chromate, poly and orthophosphate or lower the pH will decrease the value of CA and a, and thus a.

In figure VI-3, the experimental value inOc is plotted against the results calculated by the model equation (6-11).

The standard deviation of the ratio (experimental values over the model values) is 197..

Rf -TIME CURVE AND ASYMPTOTIC FOULING RESISTANCE, Rf*

With the correlations shown above, the _fouling resistance-time curve for any of the water qualities upon which the correlations are based may be constructed. The deposition rate is

Od = Cz Fv exp E (6-1) Rg (Ts+460) and the removal rate is

0, = [ 1 ] Rf (6-11) C4 i°(Tsb

Eqs.(6-1) and (6-11) may be substituted into Eq.(2-2) and the result is integrated to give

Rf = C3 C4 Fv TO( Tst. exp[- E 3 [1 -exp[- 6 ]] Rg(Ts+460) C4 '04 Ts

(6-12)

When time becomes large, Eq.6-12 becomes

Rf* = Cz C4 T4X Tsb Fv exp(-E/Rg (Ts+460)) (6-13) 8

7

6

5

4

3

2 2 4 6 In(Ge), Predicted by Model Equation hours ec : Fig. VI-3. Error Plot of Oc 77

With all the functional relationships numerically determined from experimental data, equation (6-13) is now a predictive model equation for the asymptotic fouling resistance for each water quality.

In Eqs.6-12 and 6-13, Fv may be obtained from equation

(6-14), (in terms of shear stress)

Fv = exp(-4.6 T-67) (6-14)

The values of the parameters C3, C.', g, b and E may be obtained from Table VI-2. The useof these parameters are limited towall shear stress .08 i 1 i .43 lbf/ft° and surface temperature 130 1 Is i 160°F and are unique for each water quality indicated. Ithas not yet been possible to develop correlations, so that a single set of parameter will apply to all water qualities. In figure VI-4, the experimentally obtained of asymptotic fouling resistance is plotted against the values determined from the model equation (6-13). Thestandard deviation of the ratio (experimental values over the model values) is 42%.

Table VI-3presents the comparison of experimental values and values obtained from the model equation for deposition rate Od, time constant ec and asymptotic fouling resistance. CONDITIONS SHOWING INSIGNIFICANT FOULING:

There werecombinations of additive, flow conditions and surface temperature that for which virtually no fouling occurred over the duration of the tests. Table (VI-1) 5 7 9 11 In(Rf*), Predicted by Model Equation Fig. VI-4. Error Plot of Rf*

Rf* : f t2 hr ° F / Btu 79

indicates that for some runs, the value of Rf* is less then

.0001 ft° hr oF/Eitu which isconsidered to be negligible.

The conditionsof these runs may be used to show those additive combinationsand conditions for which a threshold value of Rf* = .0001 fta hr OF /Btu will not be exceeded. In the operation of heat exchangers, it is desirable to operate with low velocity, high surface temperature, and high pH.

Table (VI-4) presents threshold values of pH, velocity

(shear stress) and surface temperature in the test section for several additive combinations. The shear stress shown in this table are calculated from Eq.6-9 for the HTRI test section with water flowing at 1150F.

In this table the basis of determining the threshold is the expectation that the asymptotic fouling resistance would be equal or less than 0.0001 fta hr 0F/8tu. Other bases for establishing a threshold may be used, such as .0002 or .0003 ft° hr oF/Htu.

As an example of the use of table VI-4, consider the water used in this study containing 20 ppm CrOm, 4 ppm Zn, 3 ppm HEDP. The fouling resistance would not expected to be greater than .0001 ft° hr 0F/Btu if theseconditions are maintained: pH lower than 8, velocity in HTRI test section greater than 5.5 ft/sec or shear stress greater than .220 lbf/ft° and the heater surface temperature less than 1600F.

In term of operating conditions, the best additive in table VI-4 is the combination 20 ppm chromate, 4 ppm zinc, and 3 ppm HEDP. TAKE: VI-2 Constants to be used in equations (6-6),(6-11),(6-13) (Rq 2 1.907 Itu/lboole °II) 130 z( Ts 2( 160°F .08 =a7( .43 lbf/ffl

222.2222222222221122222====22211222212222.222.2222222 s_=___ iZZ__az__ Itmassataz-zsz===ammenss

1: WATER: ADDITIVES (ppm) : C3 1 E C4 I a or_ I b 1: I ft2ovatilltu/lbool hr

1: 1 1:

1: 1 140 Cr04,111n I 2 7.0 2.11E+16 5.88E+04 2.3550E+04 0.0812 1-0.9536 I -1.6362 11

11 2 :20 Cr04,41n,200 SS 1 1,3 7.5 1 1.10E+00 1 1.44E+04 -3.1853E-26 0.3894 1 -0.7775 12.3320 11

11 3 :20 Cr04i41n,200 SS 1,3 8.0 13.69E+03 1 2.36E+04 12.6390E+05 1.8973 1 0.0842 1-1.4308 :1

4 120 Cr04,4in 8.0 1 1.13E+60 1.03E+05 1.8723E+57 1.2763 I -0.2707 -25.1063 ::

5 120 Cr04,043 HEDP 1 1,4 8.5 1 1.18E+39 1.21E+05 9.4562E+16 1 1.5170 1-0.1331 1 -7.0900 I: 6 :20 Cr04,41n,3 NEDF 1,4 8.0 9.70E+68 2.09E+05 1 2.0282E-16 1 0.4770 i -0.7270 1 7.7692 1:

7 :20 Cr04,41n,3 PA 1 1,5 6.5 3.05E+20 6.90E+04 17.2991E+14 2.0042 0.1910 1 -5.9876 1:

8 120 Cr04,41143 PA 1 1,5 7.5 12.72E+30 9.62E+04 i5.4018E-12 I 0.1971 1 -0.0874 i 6.2300 1:

9.:20 Cr04,01,3 PP,5.5 OP 1 1,7 6.0 11.85E+10 4.15E+04 9.2255E+08 1 1.5509 1-0.1138 1-3.0791 1:

:1 10 120 Cr04,41n,2.5FA,2.5AMF, 1:

I ,2.5FP,5.50F 1,5,6,7 6.0 17.47E+07 3.28E+04 1 2.9468E+03 1 0.9868 -0.4361 1 4.8024 11

11 11 120 Cr04,41n,2.514,2.5AMP, II I ,2.5141,5.50F 1,5,6,7 6.5 14.09E+10 4.34E+04 6.5345E+04 2.6900 1 0.5371 I -0.7813 1:

:1 12 12.5141,2.5AMF,2.5PF,5.50, 5,6,7 7.0 7.74E+01 1.09E+04 2.0413E-35 0.1875 1 -0.4929 16.5026 ::

1: 13 12.5FA,2.5AMF,2.5FP,5.50F 5,6,7 7.5 4.71E+11 4.57E+04 1.6007E+08 1.4623 -0.1644 -2.6425 11

1: 14 14.511,5.50F 1 0 6.5 1.18E+15 5.53E+04 4.9960E+08 2.5386 1 0.4506 1 -2.7085 ::

11 15 14.5PP,5.50F 1 8 7.0 3.37E+24 7.92E+04 i1.6180E+30 1.1477 1 -0.3442 -13.2104 ::

:1 16 14.511,5.50P,2.5 NEDP 1 8,4 7.0 4.06E+14 5.24E+04 1 4.2352E+03 0.6101 1 -0.6114 -1.0887 1:

11 17 14.511,5.50F,2.5 HEDP 8,4 6.5 7.38E+04 . 2.65E+04 1.2238E -03 0.0681 1 -0.9611: 1.8721 1: 2 2 222Z

Note: t) 5:2-3 Polyacrylate 1: 18-22 Cr04, 3-5 In 6:2-3 MP (Aoinomethylenephosphonate) 2: 36-44 Cr04, 6-10 in 7:2-3 Polyphosphate, 5-6 Orthoposphate 3: 200 SS (Suspended Solids) 8:4-5 Polyphosphate, 5-6 Orthoposphate 4: 2-3 NEP (Hydroxyethylidene-1,diphosphonate) Table VI-3 Si. Comparisons of Experimental Values vs Model Equations for 4d' 44E, and Rf*

i 2 22..22 m

WATER RUN 1 Id Id 1 8c -8c (RfOE+4 (Rf1)E+4

I I I exp't predict. RATIO exp't predict. RATIO exp't predict. RATIO by eqn.6-1 by 6-11 by 6-13

1 129 1.2414E-05 4.6392E-062.6759 24.65 23.03 1.0702 3.06 1.07 2.8638 130 9.9811E-06 1.3429E-05 0.7433 63.62 68.49 0.9289 6.35 9.20 0.6904 131 1.7905E-06 1.1390E-06 1.5720 89.92 91.30 0.9849 1.61 1.04 1.5482 132 1.5147E-06 28.75 0.00 0.44 133 2.2264E-06 4.4481E-060.5005 89.83 79.64 1.1279 2.00 3.54 0.5646

2 140 5.3037E-07 5.8261E-07 0.9103 90.52 85.64 1.0570 1 0.48 0.50 0.9620

141 1 1.6906E-06 1.4046E-061.2036 1 166.80 141.51 1.1787 I 2.82 1.99 1.4188 142 3.7200E-06 3.3864E-06 1.0985 348.92 316.39 1.1028 12.98 10.71 1.2115

143 1 1.0722E-06 45.41 1 0.10 0.49 0.2054

144 1.2094E-06 2.5851E-060.4678 1 115.76 101.53 1.1402 1 1.40 2.62 0.5334 145 2.0282E-06 1.9084E-06 1.0628 27.61 26.41 1.0455 0.56 0.50 1.1112

3 1 146 1.5861E-06 1.4263E-06 1.1120 187.88 188.84 0.9949 2.98 2.69 1.1064

147 3.5265E-06 3.5713E-060.9874 1 171.84 173.52 0.9903 6.06 6.20 0.9779

148 2.2399E-06 2.0857E-061.0739 200.90 202.78 0.9907 1 4.50 4.23 1.0640

4 149 1.9156E-05 1.9211E-05 0.9971 23.70 23.70 1.0000 1 4.54 4.55 0.9971

150 4.3183E-06 3.4395E-06 1.2555 129.68 151.78 0.8544 1 5.60 5.22 1.0727 151 1.0630E-05 8.2922E-06 1.2819 172.82 202.26 0.8544 18.37 16.77 1.0953

5 1 152 6.9576E-05 6.9791E-050.9969 16.27 16.27 1.0001 11.32 11.35 0.9970

153 1 3.7963E-05 3.1247E-05 1.2149 27.29 28.65 0.9526 1 10.36 8.95 1.1573

154 7.9478E-05 7.2728E-05 1.0928 1 31.43 32.85 0.9567 24.98 23.89 1.0454

6 161 1 1.5844E-05 1.5887E-05 0.9973 1 80.60 80.60 1.0000 1 12.77 12.80 0.9973

162 1 2.4303E-06 1.9664E-06 1.2359 1 81.06 77.20 1.0499 1 1.97 1.52 1.2976

163 1 6.6868E-06 3.6004E-061.8573 1 175.27 158.95 1.1027 1 11.72 5.72 2.0480

7 1 168 1 9.4160E-06 3.6824E-062.5571 1 38.87 43.88 0.8859 1 3.66 1.62 2.2652

1 169 1 1.4224E-05 2.1404E-050.6646 1 30.16 31.39 0.9608 1 4.29 6.72 0.6385

170 1 1.7523E-07 1 164.46 1 0.00 0.29

171 1 2.4978E-06 1.5933E-06 1.5677 1 68.46 78.14 0.8761 I 1.71 1.25 1.3734

172 1 1.6078E-06 1.0185E-061.5786 I 101.38 118.49 0.8556 1 1.63 1.21 1.3506

8 1 176 1 4.0398E-07 3.3165E-071.2181 1 170.80 165.98 1.0290 1 0.69 0.55 1.2534

177 1 6.7916E-06 6.1605E-06 1.1024 1 603.46 594.68 1.0148 1 40.80 36.63 1.1137

178 1 1.9441E-06 1.6182E-06 1.2014 1 783.40 711.24 1.1015 1 15.23 11.51 1.3233 1=2 82 Table VI-3 (con't) Comparisons of Experimental Values vs Model Equations for i)d, 4(2' and FT*

WATER 1 RUN -Oc (RfI)E+4 (Rft)E+4 # # exp't predict. RATIO exp't predict. RATIO exp't predict. RATIO by eqn.6-1 by 6-11 by 6-13

9 206 1 2.6844E-06 2.5230E-061.0640 147.52 166.19 0.8877 3.96 4.19 0.9444 207 6.1714E-06 5.5611E-06 1.1097 184.56 181.90 1.0146 11.39 10.12 1.1260 208 1.2460E-05 1.3888E-05 0.8972 202.72 205.97 0.9842 25.26 28.60 0.8831 209 4.2786E-07 322.55 0.30 1.38 0.2174

210 3.0916E-06 2.2700E-061.3619 1 285.29 252.15 1.1314 8.82 5.72 1.5410

211 2.4346E-06 2.4869E-060.9790 1 354.47 392.10 0:9040 8.63 9.75 0.8850

10 215 1.3071E-06 1.2186E-061.0726 61.97 74.02 0.8372 0.81 0.90 0.8980 216 3.8537E-06 2.8363E-061.3587 107.43 97.58 1.1009 4.14 2.77 1.4958

217 6.3563E-06 7.1386E-060.8904 164.09 154.20 1.0641 1 10.43 11.01 0.9475

218 1 4.9902E-07 6.0674E-070.8225 1 79.38 0.48

1 221 1 6.8779E-07 1 79.26 0.10 0.55 0.1834

222 1 1.6091E-06 1.5304E-06 1.0514 1 123.67 105.07 1.1770 1 1.99 1.61 1.2376

1 223 1 3.5047E-06 3.6896E-060.9499 1 141.81 166.88 0.8498 4.97 6.16 0.8072

224 1 3.3308E-07 6.3477E-070.5247 1 78.94 0.50

1 225 1 1.6731E-06 1.5852E-06 1.0554 1 106.55 1.69

226 1 3.4261E-06 3.6896E-060.9286 1 166.88 6.16

11 1 227 1 3.5409E-07 5.1060E-070.6935 1 833.13 844.68 0.9863 1 2.95 4.36 0.6800

1 230 1 1.7470E-06 1.1251E-06 1.5528 1 361.19 368.09 0.9812 1 6.31 4.14 1.5237

231 1 7.9208E-06 7.0283E-06 1.1270 1 306.66 302.81 1.0127 1 24.29 21.28 1.1413

12 1 236 1 9.9584E-07 1 73.61 1 0.20 0.73 0.2740

237 1 2.3658E-06 2.3178E-06 1.0207 1 92.99 100.13 0.9287 2.20 2.32 0.9479

238 1 5.7387E-06 5.9332E-06 0.9672 1 187.50 190.11 0.9863 1 10.76 11.28 0.9539

239 1 2.6031E-06 2.6516E-06 0.9817 1 5.57 0.15

240 1 2.5114E-06 1.5986E-06 1.5710 1 21.90 17.87 1.2255 1 0.55 0.29 1.8966

241 1 4.1100E-06 3.6248E-06 1.1339 1 30.90 26.12 1.1829 1 1.27 0.95 1.3413

13 1 242 1 2.0305E-06 2.0675E-06 0.9821 1 645.17 621.04 1.0389 1 13.10 12.84 1.0203

243 1 2.2300E-06 2.1101E-06 1.0568 1 362.72 398.90 0.9093 1 8.09 8.42 0.9611

1 244 1 4.3786E-06 5.0873E-06 0.8607 1 503.13 474.89 1.0595 22.03 24.16 0.9119

1 245 1 2.3564E-06 1.7255E-061.3656 1 286.45 295.21 0.9703 1 6.75 5.09 1.3252

246 1 5.8630E-06 4.4194E-06 1.3266 1 318.78 323.30 0.9860 1 18.69 14.29 1.3081

1 247 1 1.1355E-05 1.0029E-05 1.1322 1 347.33 391.45 0.8873 1 39.44 39.26 1.0046 211 s s X 21222== 83 Table VI-3 (can't) Comparisons of Experimental Values vs Model Equations for +d' oc, and Rf*

2

WATER 1 RUN 1 fd fd ilc 8c 1 (Rft)E+4 (Rft)E+4

II t exp't predict. RATIO exp't predict. RATIO 1 exp't predict. RATIO by eqn.6-1 by 6-11 by 6-13

14 254 1.8438E-06 1.9222E-06 0.9592 1 360.13 376.80 0.9557 6.64 7.24 0.9168 255 5.8885E-06 5.1625E-06 1.1406 275.96 271.70 1.0157 16.25 14.03 1.1585 256 1.4112E-05 1.2016E-05 1.1744 166.88 170.91 0.9764 23.55 20.54 1.1468

257 1 6.0345E-07 7.0079E-070.8611 479.67 3.36

259 4.2620E-06 3.6430E-061.1699 219.38 227.79 0.9631 1 9.35 8.30 1.1267

270 1 5.7694E-06 5.5510E-06 1.0394 267.12 14.83 274 1.1979E-05 1.2446E-05 0.9624 166.40 20.71

15 260 14.7427E-05 2.5335E-05 1.8720 18.07 15.92 1.1347 8.57 4.03 2.1242

261 6.7918E-05 6.1080E-051.1120 1 18.11 19.96 0.9075 12.30 12.19 1.0091 262 7.1490E-05 1.4726E-04 0.4855 27.92 28.75 0.9712 19.96 42.34 0.4715 264 2.5064E-06 2.3292E-06 1.0761 278.88 310.50 0.8982 6.99 7.23 0.9665 265 5.2362E-06 5.6154E-060.9325 498.07 447.32 1.1135 26.08 25.12 1.0383

16 1 285 1 2.8314E-06 2.1492E-06 1.3174 1 53.33 52.31 1.0195 1.51 1.12 1.3431

286 1 4.4021E-06 6.2424E-060.7052 111.31 100.32 1.1095 1 4.90 6.26 0.7824

287 5.4256E-05 4.6712E-05 1.1615 1 86.46 81.37 1.0626 1 46.91 38.01 1.2342

289 1 4.2342E-05 4.6712E-050.9064 1 84.36 81.37 1.0368 35.72 38.01 0.9398

295 1 1.4680E-05 1.4608E-05 1.0049 1 75.34 88.11 0.8551 11.06 12.87 0.8593

17 1 278 1 1.2115E-05 1.1418E-05 1.0611 1 189.19 194.12 0.9746 1 22.92 22.16 1.0341

279 1 1.1240E-05 1.1027E-05 1.0193 180.02 191.86 0.9383 1 20.24 21.16 0.9567

280 1.1096E-05 1.1027E-05 1.0062 199.62 191.86 1.0405 1 22.15 21.16 1.0469

281 1 4.6794E-06 4.0987E-061.1417 131.64 147.79 0.8907 1 6.16 6.06 1.0169

282 1 1.3087E-06 1.4720E-06 0.8890 1 44.32 45.40 0.9762 1 0.58 0.67 0.8678

296 1 2.0520E-06 1.1945E-06 1.7179 1 32.32 31.42 1.0287 1 0.34 0.38 0.9060

298 1 7.1208E-06 6.6945E-06 1.0637 1 178.21 161.45 1.1038 1 12.69 10.81 1.1741

!STD (n): 0.3965 1 0.1844 1 0.4414

!AVERAGE: 1.0957 1 0.9720 1 1.0634

. I IX DEVIATION: 36.1911 18.97%1 41.51%1 222=2 2 2 84

Table VI-4

Threshold Values for Various Additives

= = =

.' Threshold Value For Fouling

! :

ADDITIVES :VELOCITY: SHEAR STR !SURFACE :

. . p H : ft/sec 1 lbf/ft**2 ! TEMP. :

. .' . : Eq.(6-10) : F .'

: Low Magnesium Water

:NONE : =<7.0 : =>3.0 : =>.076 1 =<160 1

. . 1 . : .

120 Cr04, 4Zn 1 =<7.2 : =>5.5 : =>.220 : =<160 !

. . . . .

:40 Cr04, 8Zn : =<7.0 : =>5.5 : =>.220 : =<145 :

:20 Cr04, 4Zn, 200 SS : =<7.5 ! =>5.5 : =>.220 I =<145 :

! 1

! ! ! ! 1 High Magnesium Water

. , . . . . . , :

! , . . . . .

:20 Cr04, 4Zn : =<7.5 : =>5.5 I =>.220 : =<160 1

......

:20 Cr04, 4Zn, 3PA 1 =<7.5 : =>8.0 : =>.425 : =<130 1

. . , . . . . 8

:20 Cr04, 4Zn, 3HEDP : =<8.0 ! =>5.5 : =>.220 : =<160 1

1 ! : : :20 Cr04, 4Zn, 3HEDP, 3PA! * * * *

:20 Cr04,4Zn,2.5PP,5.50P : =<6.5 I =>8.0 : =>.425 =<130 :

......

:20 Cr04, 4Zn, 2.5PA, : =<7.0 1 =>8.0 I =>.425 : =<130 :

. : .' '. . . : 2.5 AMP,2.5PP,5.50P

. . , . . I i 1 i .

. . , . * . :2.5PP, 5.50P : * : * . *

. . . . 1

:2.5PA,2.5AMP,2.5PP,5.50P: =<7.0 : =>5.5 : =>.220 I =<145 :

:4.5PP, 5.50P : =<6.5 : =>5.5 1 =>.220 : =<130 : . . , ......

: :4.5PP, 5.50P, 2.5 HEDP ! =<6.5 : =>5.5 : =>.220 : =<130

* Not found in ranges investigated (asymptotic fouling resistance was always greater than .0001 hr ft F/8TU) 85

SCALE STRENGTH

From the HTRI model,

ec = Y (2-14) Cmr kf

Assuming constant thermal conductivity of the deposit kf, the time constant ec is proportional to the ratio of the deposit strength Y to the fluid shear, T.

ec a Y

or

Y a (Oc) I

Since Y a v.. Tsb , (6-8)

(0c)i or Y relates the sensitivity of deposits to velocity and surface temperature.

Plots of (0c)i, which is proportional to the scale strength Y, surface temperature and velocity for each water quality are shown in Appendix M. All figures indicate that strength of deposit Y is an increasing function of flow velocity. This indicates that for the same deposit, higher velocity tends to produce a deposit of higher strength. Effect of surface temperature on the scale strength can also be postulated. Some deposits appear to breakdown at higher temperature. That is, as surface temperature increases, the deposit may easily slough off after it reaches a certain thickness. The scale strength of this kind of deposit is a decreasing function of surface temperature and thevalue of b is less than 0. (in equation 6-8). For this kind of deposit, the deposit growth could be much 86 easier controlled by fluid shear (even low shear stress will probably have good effect on removal of deposit). On the other hand when b>0, solidencrutations may result as surface temperature increases. It can be concluded from the scale strength and deposit analysis, that even if the deposits have similar composition, theirstrengths are different as different additives are added or a different pH is used. Thus the waterquality appears to strongly influence, thestrength of the deposit and thus the fouling process. 87

VII. APPLICATION OF RESULTS AND EXAMPLES

THE USE OF THRESHOLD VALUES

The threshold values given in table (VI-4) may be used to select additives combinationsalong with the velocity

(shear stress) and surface temperature of heater surface so that the fouling resistance is not expected to exceed the low value of .0001 ft2 hr of /Btu

THE USE OF CORRELATIONAL EQUATIONS

The correlation equations developed may be applied in several ways. In summary, these equations are: a. The time constant, Oc

Oc = C4 1°(Tsb (7-1) b. The velocity (shear stress) Function, Fv

Fv = exp(-4.6 T"v7) (7-2) c. The Fouling Resistance, Rf as a Function of Time

Rf =C5 Fv ec [exp(- E )][1-exp(-0/0c)] (7-3) Rg(Ts+460) d. The Asymptotic Fouling Resistance, Rf*

Rf* = C3 Fv Oc [exp[- (7-4) Rg(Ts+460)

where: Oc : hours

: lbf/ft2

Ts : of

C5 : ft2 0F/Btu

C4 : hours

E : Btu/lbmol

Rg : 1.987 Btu/lbmol oR

Rf,Rf* : ft= hr of /Btu

Again, values of C5, C4, a, b and E may be obtained from

Table VI-2, Which are unique foreach of the 17 water 88 qualities investigated in this work. Theyare limited to surface temperature 130 i Is 1 160 OF, and wall shear stress

.08 i 1i .43 lbf/ft2 Development of Threshold Curves

For a given additive, equations 7-1, 7-2, and 7-4

may beused to develop threshold curves as a function

of velocity and surface temperature. These curves may

be used to obtain the conditions required (velocity/wall shear stress and surface temperature) to

maintain adesired value of Rf*. Figures VI-5(a-q) are

threshold curves for the 17 water qualities

investigated (water #1 to water #17 in Table VI-2) for

the threshold values of Rf* of .0001, .0002 and .0003

ft2 hr oF/Eitu. Other desired values of Rf* may be used

as basis of the threshold values.

Development of Charts to predict Rf*

The sameequations 7-1, 7-2 and 7-4, may also be

used toconstruct plots of Rf* as a function of

velocity (or surface temperature) with surface

temperature (orvelocity) held constant at various

values. Figures VI-6(a-q) are the plots of Rf* as a

function of velocity at three different surface

temperatures (130, 145 and 160°F) for the 17 water

qualities studied. These plotscan be used to predict

the fouling that might occur in a heat exchanger under certain conditions (velocity/shear stressand surface

temperature). WATER #: 1 12 89

11-1

10 -1 Rf-.0001 9 - 8 - Rf.0002 Rf..0003 7 - 6 - a- 4 - 3 -, 2 - 1 -

0 , r 1 100 120 140 160 180 200 Surface Temperahre ('F) [is. VI-58 Curves ofCoutut bysptotie belly os Grid of Veloeity vs Surface ',operators

WA1ER # ; 2 12 11 - Rf....0001 10 9 - R1...0002 8- Rf.0003

7 6-

6-4 4 - 3 - 2- 1 -

0 r i I I I 100 120 140 160 180 200 Surface Temperature (°F) continue... !is. VI-51) Curves of Contact Isysptotic /alias os Grid of Velocity vs Surface Tesperatere WATER # ; 3 14 90 13 12-' Rf.0001 11

10 Rf...0002 9-4 a- Rf -.0003 7- 6-

4- 3- 2- 1- 0 100 120 140 160 160 200

Solace Temperature

fig. TI -Sc Carves of Contest Asymptotic Tulin os Grid of Velocity vs Striae* Tesperatere

WATER # : 4 14 13 -

12 Rf.0001

11 -4

10 Rf...0002

9 -* Rf.0003

a - 7 -. 6 -

4

3-4

2 "4

0 110 130 160 170 190

Surface Temperature(4F)

fig. VI-Sd Carves of Cosstast Isysptotic continue... [alias os Grid of Velocity vs Surface Tesperatore WA .9 #6 16 15 14 13 12

11 10 9 6 7 6 6

4

3 2

1

0 120 140 160 180 Suffix* larponiture (PF) /4,71-Se Cortes of Contort leysptetic koalas of arid of Velocity to Striae() feaperatore WATER # s 6 15 14

13 12

11 10 9 8

7 6 a

140 150 160 170 160

Scorfince 74rripsookure (°F)

fig. 71-5f Coma of Coastast loyeptotic continue... ballot ot Grid of Velocity VV Sorface Tesperators WATER 0 : 7 14 92 13 -

12 - M.0001 11

10 W4002 9 - 0- Rf -.0003 k 7 6 - 6-

4 3- 2-

0 110 130 180 170 190 Surface Times mituns (IF) fig. VI-51 Curves of Coutut Isysptotic /any os Grid of Velocity vs Surface fesperatere

WATER # : 8 24

22 - Rf.0001

20- Rf....0002 R/...0003 19- 16 - 14 - 12 - 10-

6 -4 4- 2-

O 100 120 140 160 180

(pF) SurfxsTemperature continue... fib. TI-Si Curves of Coastast Isysptotic /alias os Grid of Velocity vs Surface iesperatare WATER0: 9 93

Rfr.. 0001

RI ..0002

Rf -.0003

7

6 6

80 100 120 140 160 180 Surface Temperature en fig. VI-Si Curves of Contest Asymptotic foellsg os Grid of Velocity vs Serface Temperature

WATER0: 10

0 I I I I t v I I I 90 110 130 160 170 190 210 Surface Temperature (°F) continue... fib. VI-53 Carves of Cosstast Asymptotic follisg la Arid of Velocity vs Surface Tesperatere WATER # :11 22 94 Rf.0001 20- 190002 19 -1 M0003 16 -/

14

12 -/

10 a- 6- 4- 2- 0 100 120 140 160 190 200 Surface Torpoindhune (IF) fig. 11-5k Curves of Cosstast Isysptotic foslisg os Grid of Velocity vs Surface Tesperature

WATER # : 12 14 13-+ Rf.0001 12 It Rf.0002 Rf -.0003 10 a9 7 - 6 "1

a -

4 3 2 1 "

0 120 140 160 190 200

Surface Tomponlhans(0F) continue... Fig. 11-51 Carves of Cosstast Isysptotic Foully os Grid of Velocity vs Surface Tesperatere WATER # :13 16 95

14 Ftf..0001 13-4 12 - Rf.0002 11 - 10 -4 9 - 8 -4 7 6- 6- 4 3 -4 2 - I

0 I I I I 80 100 120 140 160 180 Surface Temperature ( F) fig. II-52 Carves of Coastaat isroptotic [maim oc Grid of Velocity vs Surface Imperatore

WATER # 14 19 18 -4 17 16-4 16 -4 14 - 13 - 12 11 re 1 0 9 -4 8 -4 7 -4 6 -4 5 -4 4 -4 3 -4 2

1 -4

0 I I 120 140 160 180 Surface Temperature (°F) continue... fig. II -Ss Carves of Coastaat Isloptotic Podia' os Grid of Velocity vs Surface Imperatore 96

Surface Tempengure (°F) [is. VI-So Carves of Coutut Isysptotic follig of Grid of Velocity vs Serfage Tesperstare

WATER # : 16 12 11 - 10 9- a 7 -

6 5-

4 3-r 2 1

0 r I I I 90 110 130 150 170 190 Surface TernpenAure (°F) continue... fib. VI-Sp Caves of Coutut isyaptotic [maim os Grid of Velocity vs Surface Temperature WATER # 17 97

Rf...0001

9- Rf.0002 e Rf...001:13 67 - 5 4 3- 2 1-'

0 90 110 130 150 170 190 210 Surface Temperature (0F)

!is. II-541 Carves of Coestaat Isysptotie /albs os Grid of Velocity vs Striae* Tesperattre 98

Development of Fouling Resistance Time Curves

Eqs.7-1 to 7-3 may be used to develop the fouling

resistance-time curves. The coefficient CzFvelc [exp(-

E/Rg(Ts+460))) in Eq.7-3 isequal to Rf*. Thus Eq.7-3

may be written in terms of Rf*,

Rf = Rf* (1-exp(-0/0c))

Once the time constant Oc and asymptotic fouling

resistance Rf* are determined from Eqs.7-1 and 7-4

respectively, the time required for the fouling to

reach a certain fraction of the asymptotic fouling

resistance can easily be determined. As mentioned

previously, the time constant is the time required for

Rf to reach a value of 637 of the value of Rf*. In

three time constant the fouling resistance is 95% of

the asymptotic fouling resistance.

0 = Ac Rf = .63 Rf*

=3 ec , Rf = .45 Rf*

APPLICATION TO OTHER GEOMETRIES

The resultsobtained in this study may be applied to flow in other geometries. Since the velocity used is the velocity in the HTRI test section, the more fundamental approach would be to use thewall fluid shear stress in other geometries. The corresponding shear stresses in other geometries should be used for comparable deposition behavior. FiguresVI-5(a-q) are threshold curves for the 17 99 water qualities investigated, each for the threshold values of Rf* of .0001, .0002 and .0003 ft2 hr 0F/Htu. Other desired value of Rf* may be used as a basis of the threshold value. WATER # ;1 18 100 17 -4 16-' 15 -4 14 13 12 11 - t0 - 0 9- N 8- 7

6 - 146°F 5 - 4 -* 3 - 2 -- 130°F

1 0

1 3 5 7 9

Vsk>cny (Vsec) fig. VI-la Carves of Cosstast Surface ?superstore oa Grid of Asymptotic loons* lesistasce vs Velocity

fig. VI -Sb Ceres of Contest Surfaceiesperatare oc Grid of Asymptotic fouling lelistaace vs Velocity WAlER # 3 12 101 11 - 160°F 10 9-A 8- 3 146°F

6-I .c 5 -ft 4 -I

3

2 -` 1 -

3 5 7 9 Velocity (/t /sec) fig. 11-10 Corm of Coutut Surface %operators ol Grid of Asymptotic foelisg Resistance vs Velocity

WAlER dr: 4 26 24 -

22

20 -1 18 - I 16

14 -4 0 .0 12 01 10-

8 148°F

4

2 130°F

0 I I

1 3 5 7 9 Velocity (ft /Mc) continue...

Aid. II-6d Curves of Contest Surface Temperature os Grid of Asymptotic loons( Resistssce vs Velocity WATERI: 5 35 102 1600F

30

25-4

20 0

N 15

10--

145°F 5

130°F 0 3 5 7 9 Velocity (k /ow) fig. VI-6e Curves of Contest ham Tesperatsre os Grid of Isysptotic lesistasce vs Velocity

WAlER # : 6 18 17 16 - 160oF 15 - IA - 13 12 11 1 0 -

7 - 8 - 5 -

3 - 2 - 1 4 5 °F 130 °F

3 5 7 9 Velocity (ft /eisc) continue... fig. VI-If Curves of Cosstast Surface Tesperatsre os Grid of Imptotic hong lesistasce vs Velocity WATER # : 7 10 103

9

0 -

7 -4

6

0 5-

C4 4

3 2 -

1 -

0 3 5 7 9

Velocity (fk/sec) Fig. VI-6g Curves of Constant Surface Tesperature on Grid of Isymptotic fooling Resistance vs Velocity

WATER # : 8 160

400 145°F

100 -

130°F 0- 3 5 7 9

Velocity (fl /roc)

Fig. VI-6! Curves of Constant Surface Temperature continue... on Grid of Isyiptotic fooling Resistance vs Velocity WATER 0 : 9 104 40

35

30- 0( 25 iJ b. 0 20 .c N 15

10 5

0 3 5 7 9 )4142city (ft /sec)

Fig. TI-6i Curves of Coasted Surface Tesperature os Grid of loyoptotic holism Resistalice vs Velocity

WATER # : 10 16 15 - 1613°F 14-4 13 12-

11 10 9- 146°F 8 7

is --

5 130°F 4 -4 3- 2 -4 1 -

1 3 5 7 9 Velocity (k /ow) continue... Fig. TI-6j Curves of Coestut Surface Temperature oa Grid of Isylptotic lollies Resistisce vs Velocity WATER 11 ze 105

26

24 22 160°F 20

18

16

0 14 -4

r1 12

14EPF 0, 10 8

6 130°F 24 -4 0

1 3 5 7 9 VeSocily (ft/sec)

fig. VI-It Carves of Contest Surface Temperature °a Grid of Isylptotic folliag Resistaace vs Velocity

WATER 12 15

14 160°F 13 12 -'

11 10- 89-4 7 6 5 -4 4 3 -4

2 -4 146°F

1

0 3 5 7 9 Velocity (ft/sec) continue... fig. VI-11 Curves of Contest Surface Yeaperatere os Grid of isyaptotic Foglia* Resistaace vs Velocity WATER 0 :13 106 60 160°F

50 -1

40 -4

30

20 130°F 10-

0 3 7 9 Velocity (ft/mac)

flu. VI-le Curves of Coastatt Surface fesperatore os Grid of isysptstic !minim lesistaace vs Velocity

WATER # : 14 24 22 - ea* 20 -

18 16-

14

0 12

10-4 146°F tr 6-

4 130'F

2

0 3 a 7 9

Velocity (ft /ow) continue... fig. VI-6s Curves of Cosstast Surface Tesperatore os Grid of isyiptotic bong teoistaace vs Velocity WATER0: 15 60 107

50

0 145°F 40

O 133°F 0 30

20 I

10-4

0 3 5 7 9 Velocity (fifeemc) fig. 1I-6o Curves of Coestast Surface ?aspirators om Grid of Isysptotic ?alias Assistasce vs Velocity

WATER0: 16 60

160°F

50

40

30

146°F 20

10-4 130°F ss.

0 3 5 7 9 Velocity (ft /sec) continue... fig. VI -6p Carves of Contain Surface Tesperatire oc Grid of Asymptotic foaling lesistatce vs Velocity WATER # ;17 1.08 40

160°F 36

30

26-"

20 145F 15

10 130°F

5

0 3 5 7 9 Vsloc Ity (ft /sec)

Fig. 1I-61 Cleves of Coldest Sadao %operators oa Grid of Isyaptotic Resistatce vs Velocity 109

NUMERICAL EXAMPLES

The use of threshold values

Consider water flowing in a 1 in I.D. tube at 1000F with awall surface temperature of 1450F. The high hardness water contains the additive 2.5 ppm PP, 5.5 ppm OP, 2.5 ppm

AMP and 2.5 ppm PA. The pH is 7.0 (water no.12 in Table VI- 2). From Table VI-4, the wall shear stress should be greater than .220 lbf/ft2, so that the fouling resistance would not be greater than .0001 ft0 hr 0F/Btu after a long duration of operation. At a bulk temperature of 1000F for water:

f = 61.9 lbm/ft5

p = 4.6 x 10-4 ibm /ft sec

Determine velocity required to give wall shear stress of .22 lbf/ft2. Use Eq. 5-34: .22 = (.0395) E(4.6)(10-m)72' (61.9)" p''5 (32.17) (1/12)25

From which V = 7.0 ft/sec

Determination of the Velocity-Surface Temperature Curve for a given value of Rf*

Water is flowing in a 0.75 inch I.D. smooth tube, at a bulk temperature of 1000F. For both water No.1 (Table VI-2) determine the relationship between velocity and surface temperature so that the asymptotic fouling resistance would not be expected to be greater than 0.0005 hr ft2 oF/Htu 110

Using Eq. 5-34 determine relationship between velocity

and shear stress.

At 1000F

P = 61.9 lbm/ft5

V = 4.60 x 10-4

T = .0395 [(4.60)(10-4)]-25 (61.9)-75 V1-75 (32.17)(.75/12)-2'

T = (7.937)(10-5)V2--75 and V = 15.86 T-571

For water No.1 (Table VI-2)

a = -.954

b = -1.636

Cm = 2.11E+16 ft2 of /Btu

= 2.355E+04 hr

E = 58,800 Btu/lbmol

Solution

By Eq.7-1 to 7-4

Oc = (2.355E+04) T--"P64 Ts --L.856

Substituting velocity in place of shear stress as calculated above:

Oc = (2.355E+04) [7.937E-03 V2-.75]--*"5 Ts-1-454

= (2.375E+06)V-1 -67° Ts-1 -656

Fv = exp(-4.6 T--57) and replacing T with velocity Fv = exp(-4.6 [7.937E-03)W-75]-57)

= exp(-.292 V)

Substituting these results intoEq.7-4 with Rf* = .0005 hr

of /Btu 111

.0005 = (2.11E+16)(exp(-.292V)(2.375E+06)V-"*.7° Ts-"66

exp-[ 58,800 1.987 (Ts+460)

To obtain V as a function of Ts this equation must be solved by trial and error. Theequation is rearranged to express V as a function of Ts and V and solved by the method of successive substitution. The results are as follows for several different surface temperatures.

TsOF V ft/sec

130 2.0 140 2.7 150 3.6 160 4.6

Determination of Time Constant, Asymptotic Fouling Resistance, and Fouling Resistance as a function of time.

Water with a composition equivalent to that of No.16 in

Table VI-2, at an average bulk temperature of 1000F flowing in a .75 inch I.D. smooth tube. The velocity is 6 ft/sec, and the average surface temperature is 1600F. Determine Oc,

Rf* and Rf as a function of time.

For water No.16:

a = -.611

b = -1.089

C3 = 4.06E+14 ft 0F/Btu

C4 = 4.235E03 hr

E = 52,400 Btu/lbmol

Properties of water at 1000F bulk temperature

P = 61.9 lbm/ft

V = (4.60)(10-4) ibm /ft /sec 112

Solution

From Eq.5-34

T = .0395 [(4.6)(10-4)] =5 (61.9)-.7° (6)"7° (32.17)(.75/12)."

= .182 lbf/ft=

By Eq.7-1

Oc =(4.235E+03)(.182)-ail(160)-'

=47.7 hr

By Eq.7-2

Fv =exp(-4.6 (.182)"")

=.175

By Eq.7-4

52,400

Rf* =(4.06E+14)(.175)(47.7)exp 1 (1.987)(160+460)

= 1.1418E-3 hr ft= oF/Eitu

By Eq.7-3, the fouling resistance as a function of time is given by

Rf = (1.1418E-3) [ 1-exp(-0/$9c) ]

The results are tabulated below:

0/ ec Time,hr Rf,hr ft= oF/Htu x

0 0 0 .2 9.5 2.1 .4 19.1 3.8 .6 28.6 5.1 1 47.7 7.2 1.5 71.6 8.9 2 95.4 9.9 3 143 10.8 4 191 (8days) 11.2 5 239 (10days) 11.3 6 286 (12days) 11.4 m m 11.4 113

VIII SUMMARY AND CONCLUSIONS

SUMMARY

Zinc-chromate is the most common treatment used in the

past and is an effective corrosion inhibitor, but because of

its toxicity to theenvironment, it is being replaced by

phosphate inhibitors. In thisstudy, both inhibitors were

tested with different additivecombinations. The results show that they could be used without significant fouling as

long as suitable flow conditions weremaintained. However some were found to be considerably more effective than others. ThepH, velocity (shear stress), and heater surface

temperature significantly influence the fouling characteristics of the variousadditive combinations that

have been studied. High velocity (8 ft/sec), lowsurface

temperature (1300F) and low pH (6.0 to 7.0) are conditions at which virtually nodeposition occurred for anyof the additive combinations.

The water with no inhibitor deposited at pH of 8.6 but not at a pH of 7.0. The fouling characteristics of water containing high magnesium hardness with 20 ppm CrO4 and 4 ppm Zn is not significantly different

from the water whichcontained virtually no magnesium

hardness. With this additive combination, it was determined

that at a pH level of 7.2 to 7.5, there was minimum fouling

if velocity is maintained greater than 5.5 ft/sec and surface temperature less than 1600F. For water with 40 ppm 114

Cr04, 8 ppm Zn, fouling occurred at pH of 7.0, but fouling could beminimized at this pH level when velocity is maintained greater than 5.5 ft/sec and surface temperature maintained lower than 1450F. With zinc-chromate inhibitor, the deposit was mainly zinc silicate. The presenceof suspended solid in water containing 20 ppm Cr04 and 4 ppm Zn appears to slightly increase the tendency for fouling. At pH 7.5, fouling could be minimized if velocity is greater than 5.5 ft/sec and surface temperature lower than 1450F. No interaction was apparent between the zinc silicatedeposit and aluminum silicate suspended solids.

For water containing 20 ppm Cr04, 4 ppm Zn and 3 ppm polyacrylate, at pH of 6.5 deposition occurred at surface temperature of 1600F and all velocities investigated.

Periodic sloughing off the deposit occurred during the runs and the curves are virtually identical at all velocities. In all caseswhen fouling resistance reached about .0003 to

.0004 ft hr oF/Eltu, the deposit is removed followed by a sudden drop in fouling resistance to a value near zero. At pH of 7.5, insignificant fouling would be expected as long as velocity is greater than 8 ft/sec and surface temperature is 1300F or lower. The deposit with this additive combination was zinc and calcium silicate. The presence of polyacrylate appears to increase the the amount of calcium in the deposit relative to zinc. 115

For waterwith the additive of 20 ppm Cram, 4 ppm Zn, and 3 ppm.HEDP, insignificant fouling could be expected at pH of 8.0, velocity above 5.5 ft/sec and surface temperature is 160°F or lower. The presence of HEDP appeared to have a beneficial effect in terms of extending the pH and surface temperature threshold and permitting to use of velocities less than 8 ft/sec. With thisadditiv'es combination, the major constituents of the deposit arecalcium and zinc phosphate with a minimum amount of silica present. The presence of organic phosphate (HEDP) appears to favor the deposition of phosphates rather than silicates.

When 20 ppm CrOm, 4 ppm Zn, 3 ppm HEDP and 3 ppm polyacrylate were added into the water, significant fouling occurred at pH of 6.5, surface temperature of 1600F and at all velocities investigated. Inall cases when a fouling resistance reached a value of .0008 to .0009 ft2 hr OF /Btu, sloughing of the deposit occurred and a sudden drop of fouling was noted. Velocity appeared not to be a significant parameter.

With the water containing 20 ppm CrOm, 4 ppm Zn, 2.5 ppm polyphosphate and 5.5 ppm orthophosphate insignificant fouling would be expected at pH of 6.5, velocity of 8 ft/sec and surfacetemperature of 1300F. In the pH range of 6.0 - 6.5, the addition of 2.5 ppm polyacrylate and 2.5 ppm AMP to this water caused reduction in the fouling tendency.

For the water containing 20 ppm CrOm, 4 ppm Zn, 2.5 ppm polyphosphate, 5.5 ppm orthophosphate, 2.5 ppm polyacrylate 116 and 2.5 ppm AMP, insignificant fouling could be expected at pH of 7.0_or lower, velocitygreater than 8 ft/sec, and surface temperature lower than 1300F. The absence of zinc chromate in this water resulted in less fouling, and insignificant fouling could be expected at the same pH, but at velocitygreater than 5.5 ft/sec and surface temperature lower than 1450F.

For zinc chromate inhibitors, the best additive composition was 20 ppm CrO4, 4 ppm Zn, and 3 ppm HEDP.

The effect of discontinuing the addition of 2.5 ppm polyacrylate and 2.5 ppm AMP in water containing 2.5 ppm polyphosphate and 5.5 ppm orthophosphate was negligible and the fouling rate behaves in much the same manner as when polyacrylate and AMP were added to the water.

The effect of reducing pH 7.5 to 6.5 in water containing 2.5ppm polyphosphate and 5.5 ppm orthophosphate resulted in a significant reduction in the fouling resistance but not to the value of zero fouling resistance, which indicates that this pH reduction caused the removal of only some of the deposit.

For the additive combinationof 2.5 ppm polyphosphate and 2.5 ppm orthophosphate, little fouling was observed up to pH of 7.5. However at pH of 8.0, extensive fouling occurred and the deposit was removed periodically.

For water with 4.5 ppm polyphosphate and 5.5 ppm orthophosphate, significant fouling occurred in the pH range

6.5 - 7.0 with greater fouling at the higher pH. For water 117 containing phosphate inhibitors at this level, insignificant fouling could be expected at pH less than 6.5, velocity greater than 5.5 ft/sec, and surface temperature lower than

1300F. When 3 ppmHEDP is added in addition to these phosphate additives, at surfacetemperature of 1600F, the presence of HEDP has no significanteffect on the fouling characteristics of water containing no HEDP. However at low surface temperature (1300F), the presence of HEDP reduces the fouling rate by about one half. When HEDP is present, a longer time is taken to reach the asymptotic fouling resistance. Fouling of phosphate inhibitors was investigated on four different heater surfacematerials: stainless steel, carbon steel, 90/10 copper-nickel, and admiralty. No significant differencewas observed in the fouling rate on these surfaces. The only difference noted was that during the initial part of the tests, carbon steel always showed a slightly greater initial deposition rate; but after this initial period, the rateof fouling was virtually the same as that on the other material surfaces. The correlation of fouling data for seventeen different water qualities using the HTRI model has provided parameters which are specific for each water quality.

From this correlation, the asymptotic fouling resistance as well as the fouling resistance-ime curve may be predictedusing the corresponding parameters for each water quality. The correlation equation obtained for time 118 constant may used as a basis for determining the time required for the fouling resistance reach a certain fraction of the asymptotic fouling resistance. Threshold curves developed for the seventeen different water qualities may be used to select velocity/shear stress and surface temperature of heater surface for each of those water qualities, so that the fouling resistance is not expected tobe greater than some desired threshold value of

Rf* Scale strength was found to be a strong function of not only velocity/shear stress, but also surface temperature.

The results of this study can be applied to other geometries, such as flow inside tubes, where the wall shear stresses for flow inside tubes can be matched to those in the annular test sections in which the tests were conducted.

In this study, under closely controlled conditions, the fouling resistance obtained wasin the absence of airborne suspended solids, process leaks, biofouling, and corrosion.

Under fieldconditions, these factors may be contribute to the fouling as well, Thus in the field the fouling resistance may possibly have a higher value than that obtained in the laboratory.

CONCLUSIONS

THE FOLLOWING SPECIFIC CONCLUSIONS ARE PRESENTED:

1. Velocity / shear stress, surface temperature and pH significantly influence the fouling characteristics of 119

cooling tower water containing various additive

combinations.

2. It is possible to minimize fouling resulting from the addition of corrosion inhibitors by maintaining certain

values of the controlling parameters.

3. Zinc chromate and phosphate inhibitors were tested with different additives. Some were found to be considerably

more effective than others. Almost all could be use

successfully as long as the controlling parameters were

maintained at appropriate values.

4. High velocity (8 ft/sec), low surface temperature

(1300F) and low pH (6.0 - 7.0) are conditions at which

virtually no fouling occurs for any of the additive

combinations investigated.

5. For the zinc chromate inhibitor, the best additive

composition was20 ppm Cr04, 4 ppm Zn, 3 ppm HEDP. It

could be expected to give Rf* < .0001 ft2 oF/Htu at V>=

5.5 ft/sec, TS =< 1600F, pH =< 8.0.

6. For the phosphate inhibitors at 4.5 ppm PP and 5.5 ppm

OP, Rf* < .0001 ft2 hr °F /Btu could be expected at V =>

3.0 ft/sec, TS =< 130 OF, pH =< 6.5.

7. Virtually noeffect of the material of the heater surface was observed with the exception of carbon steel

which exhibited slightly higher fouling rate at the 120

onset of a test, but the rate of fouling soon

approached to that for other materials.

8. The H.T.R.I. (Heat Transfer Research, Inc.) deposition/removal fouling model correlates the fouling

data for 17 different water qualities. Thus, given

surface temperature (Ts) and shear stress (1), then

time constant (0c), asymptotic fouling resistance (Rf*)

and fouling resistance as a function of time (Rf=f(0))

may be calculated for a specific water quality. 121

BIBLIOGRAPHY

1. American Public HealthAssociation, The American Waterworks Association and the Water Pollution Control Federation. "Standard Methods for the Examination of Water and Wastewater". 14th Ed. Boyd Printing Co., Albany, New York (1975).

2. Boies, D.B., Levin, J.E., Baratz, B. "Technical and Economic Evaluation of Cooling Systems Blowdown Control Techniques". Environmental Protection Technology Series, EPA-660/2-73-026, November (1973).

3. Bott, T.R., Walker, R.A. "Fouling in Heat Transfer Equipment". TheChemical Engineer, pp. 391-395, November (1971).

4. Charaklis, W.G. "Microbial Fouling". Proceedings of an International Conference on Fouling of Heat Transfer Equipment. E.F.C. Somerscales and J.G. Knudsen editors. Hemisphere Publishing Corp., New York, p. 251 (1981).

5. Fischer, P, Suitor, J.N., Ritter, R.B. "Fouling Measurement Techniques". Chemical Engineering Progress, Vol. 71, No. 7, pp. 66-72, July (1975).

6. Gudmundsson, J.S. "Particulate Fouling". Proceeding of an International Conference of Fouling of Heat Transfer Equipment. E.F.C. Somerscales and J.G. Knudsen editors. Hemisphere Publishing Corp., New York, (1981).

7. Hasson, D., Avriel, M., Resnick, W., Rozeman, T. and Windriech, S. "mechanism of CalciumCarbonate Scale Deposition on Heat Transfer Surfaces". Industrial and Engineering Chemistry Fundamentals, Vol.7, pp. 59-65, (1968).

8. Hasson, D. "Precipitation Fouling". Proceeding of an International Conference of Fouling of Heat Transfer Equipment. E.F.C. Somerscales and J.G. Knudsen editors. Hemisphere Publishing Corp., New York, p. 527, (1981).

9. Kern, D.Q., Seaton, R.E. "A Theoretical Analysis of Thermal Surface Conference". Chicago, Ill., Vol.1, p. 170, August (1966). 122

10. Kern, D.Q., Seaton, R.E. "Surface Fouling How to Calculate Limits". Chemical Engineering Progress, Vol.55, pp. 71-73, June (1959).

11. Knudsen, J.G. "Apparatus and Techniques for Measurement of Fouling of Heat Transfer Surfaces". in Fouling of Heat Transfer Equipment, Somerscales, E.F.C. and Knudsen, J.G., eds., HemispherePublishing Corp., New York, pp. 57-81, (1981).

12. Knudsen, J.G. "Drew Principles of Industrial Water Treatment". Drew Chemical Corporation, New Jersey, 6th ed. (1983).

13. Knudsen, J.G., Katz, D.L. "Fluid Dynamics and Heat Transfer". RobertE Krieger Publishing Co. New York (1979).

14. Knudsen, J.G. "The Effect of Corrosion Inhibitors on the Fouling Characteristics of Cooling Tower Water". Progress Report to Heat Transfer Research, Inc., No.1, July 1983, No.2, January 1984, No.3, July 1984, No.4, January 1985, No.5, July 1985, No.6, January, 1986. Department of Chemical Engineering, Oregon State University, Corvallis, Oregon 97331.

15. Knudsen J.G., Santoso, E., Du-qi, Xu "The Effect of Zinc Chromate Corrosion Inhibitors on the Fouling Characteristics of Cooling Tower Water". AICHE Symposium Series, Vol. 80, No. 236 (1984).

16. Knudsen J.G., Santoso, E., Du-qi, Xu "The Effect of Corrosion Inhibitors on the Fouling Characteristics of Cooling Tower Water". Paper no.134, presented at Corrosion 85, National Association of Corrosion Engineers, Boston, Mass., March 1985.

17. Knudsen J.G., Santoso, E., Breske, T.C., Chenoweth, J.M., Donohue, J.A. "The Effect of Corrosion Inhibitors on the Fouling Characteristics of Cooling Tower Water". paper presented at the 8th International Heat Transfer Conference, San Francisco, August 1986.

18. Knudsen J.G., Santoso, E., Breske, T.C., Donohue, J.M., Chenoweth, J.M. "Fouling Characteristics of Cooling Tower Water Containing Phosphate Corrosion Inhibitors". paper presented at 2nd ASME JSME Thermal Engineering Joint Conference, Honolulu, March 1987. 123

19. Lee, S.H., Knudsen, J.G. "Scaling Characteristics of Cooling Tower Water". ASHRAE Transactions, Vol.85, Part 2, No.2528, pp. 281-302 (1979).

20. Morse, R.W., Knudsen, J.G. "Effect of Alkalinity on the Scaling of Simulated Cooling Tower Water". Vol. 55, pp. 272-278 (1977).

21. Nathan, C.C., Donohue, J.M. "Causes and Prevention of Water-Side Fouling in Industrial Heat Exchange Equipment". paper for presentation at Heat Transfer Research, Inc., Boulder, Colorado, July (1974).

22. Puchorius, P.R. "Controlling Deposits in Cooling Water Systems Material Performance". Vol. 11, No. 11, pp. 19-22, November (1972).

23. Reitzer, B.J. "Rate of Scale Formation in Tubular Heat Exchangers". Industrial and Engineering Chemistry Process Designand Development, Vol. 3, pp. 345- 348 (1964).

24. Story, M.K. "Surface Temperature Effects on Fouling Characteristics of Cooling Tower Water". AICHE Symposium Series No. 174, Vol. 74, pp. 25-29 (1978).

25. Suitor, J.W., Marner, W. J., Ritter, R. B. "The History and Status of Research in Fouling of Heat Exchangers in Cooling Water Service". Presented at the 16th National Heat Transfer Conference, August 1976.

26. Taborek, J., Aoki, T., Ritter, R.B., Palen, J. W., Knudsen, J.G. "Fouling The majorUnresolved Problem in Heat Transfer". Chemical Engineering Progress, Vol. 68, pp. 59-67, February (1972), and Vol. 68, pp. 69-78, July (1972).

27. Watkinson, A.P. and Epstein, N. "Fouling in a Gas Oil Heat Exchanger". Chemical Engineering Symposium Series, Vol. 65, (1969).

28. Watkinson, A.P., Martinez, 0. "Scaling of Heat Exchangers by Calcium Carbonate". ASME Journal of Heat Transfer, Vol. 97, pp. 504-508 (1975). APPENDICES 124

APPENDIX A

NOMENCLATURE 125

A Surface area, ft2

AA Area of flow in an annulus, ft2

AH Area of heated cross-section, ft2 b Exponent in eq.6-11

C1 -C, Constants Foulant concentration, lbmole/ft3

Cp Heat capacity of water, Btu/lbm'oF d Tube diameter, in dl Outside diameter of an annuli, in dm Inner diameter of an annuli, in

DIGLAS Inside diameter of glass tube, in

DROD Outside diameter of heater rod, in

E Energy of deposition, Btu/blmol f Local friction coefficient, lbf/ft2

Fv Velocity dependent g= = 32.17 lbm ft/lbf sect h Convective heat transfer coefficient K,Km..K4 Proportionality constants k Thermal conductivity of rod material, Btu/hr ft of

K Fouling deposition rate, ft2 of /Btu

Km Constant in fouling removal rate term, hr-1 kf Thermal conductivity fouling deposit, Btu/hr ft0F

L Length of heated section of rod, in

M Mass flow rate, lbm/hr m Empirical constant n Exponent on water quality function

0 Rate of power supply, Btu/hr 126

Omv Power transducer reading, millivolts r2 Correlation coefficient

R Heat transfer resistance, ft2 hr OF /Btu

Re Reynolds number

Rf Fouling resistance, ft2 hr OF /Btu

Rfi Fouling resistance of it' point, ft2 hr OF /Btu

(Rf), Final fouling resistance, ft2hr OF /Btu

Rf* Asymptotic fouling resistance, ft2 hr 0F/Btu

Rg Universal gas constant, Btu/lbmol oR

SS Sum of squares deviations

Temperature, OF

Tb Local bulk water temperature, OF

Tc Wall thermocouple temperature, OF

Tin Inlet bulk water temperature, °F

Tmv Temperature, millivolts

Is Temperature of fouling deposit surface, OF

Tw Wall temperature, OF

U Overall heat transfer coefficient, Btu/hr ft°

Fluid velocity, ft/sec

W Mass flow rate, lbm/hr

WF Volumetric flowrate, gpm

Wmv Flow transducer, millivolts xf Instantaneous fouling deposit thickness, in x/k Thermal resistance of tube wall, ft2 hr 0F/Btu

Variables defined in section V 127

SUBSCRIPTS avg Average value c Clean condition f Fouled condition i Inside of tube o Outside of tube my Millivolts reading

GREEK LETTER

a Exponent in eq.6-11

0 Time, hr ec Time constant, hr

Od Time at beginning of test when the fouling rate is essentially zero, hr.

Oi Time at its point, hr p Viscosity, lbm/ft sec

P Density, lbm/ft

T Fluid shear stress at wall, lbg/ft2

Od Deposition rate, ft OF /Btu

Or Removal rate, Ft OF /Btu

Y Deposit strength factor n Water quality function 128

APPENDIX B

CALIBRATION EQUATIONS 129

WATTMETER. TRANSDUCER

0 = 341.3 x Omv (8-1) where:

0 = heater power consumption, Btu/hr Omv = wattmeter transducer reading, millivolts

THERMOCOUPLES: CHROMEL - CONSTANTANT (TYPE E)

T = 32.583( Tcm+5.02 Tcm,<-1.0 (8-2)

T = 38.529 ( Tcm,+4.72 )""d"" Tcm,k-1.0 where:

= temperature, OF

Tcm, = thermocouple output, millivolt

ROTAMETERS

WF = Flowcal (Wmv-4) (B-3) where:

WF = volumetric flowrate, gpm Flowcal = Constant, characteristics of flow transducer Wmv = millivolt reading of flow transducer 130

APPENDIX C

CHEMICAL ANALYSIS PROCEDURES 131

Sample of the circulating water was analyzed daily for total hardness (TH), calcium hardness (CaH), sulfate (904), chloride (C1), silica (Si), and chromate (Cr04), zinc (Zn), suspended solids (SS), orthophosphate (OP), polyphosphate

(PP), HEDP, AMP when they were added. Samples were also taken at the beginning and at the end of each run.

Analysis for TH, CaH, Cl, and M-ilk were carried out using analysiskits provided by Chemax, Inc. Industrial

Chemistry. Cr04, Zn, OP, PP, HEDP and AMPwereanalyzed using chemical test kits and equipment from Hach Chemical

Company.

Suspended solids was analyzed using the procedure outlined in Standard Method(1).

CHEMAX DROP TEST PROCEDURES

The procedures for each test are basically identical. Initially, the titration bottle is filled with the sample to the mark (10m1). After appropriate amount of reagents are added, the solution is then titrated drop wise with titrant solution to an endpoint, noticed by a specific color change.

TOTAL HARDNESS TEST

The reagents used are:

Reagent 1 : chloride-amonium buffer

Reagent 2 : calmagite solution (0.2%)

Reagent 3 : EDTA solution (0.5%)

Five dropsof reagent 1 and three drops of reagent 2 are added to the 10 ml sample. If hardness is present, the 132 solution turns from lavender to red. This solution is then titrated with reagent 3 using microburet until the last trace of violet hasdisappeared, and the solution turns blue. TH (ppm CaC0m) = 150 (ml of reagent 3 used)

CALCIUM HARDNESS TEST

The reagents used are:

Reagent 1 : potassium hydroxide solution (8N)

Reagent 2 : Calver 2 indicator

Reagent 3 : EDTA solution (0.5%) Two drops of reagent 1 and one capsule pillow of reagent are added to the 10 ml sample. If calcium is present, the solution turns to red. The solution is then titrated with reagent 3 using microburetuntil the last trace of violet has disappeared, and the solution turns to blue

CaH (ppm CaC0z) = 150 (ml of reagent 3 used)

Magnesium hardness, MgH (ppm CaC0z) is the difference between total and calcium hardness.

CHLORIDE TEST

The reagents used are:

Reagent 1 : potassium chromate solution (5%)

Reagent 2 : silver nitrate solution

Two dropsof reagent 1 areadded to the 10 ml sample. The solution is then titrated dropwise with reagent 2 until the red-orange methyleneend point is reached. One drop of reagent 2 used is equivalent to 5 ppm as NaCL 133

M ALKALINITY TEST

The reagents used are:

Reagent 1 : mixed bromo-cresiel green and methyl red

solution (0.1%)

Reagent 2 : sulfuric acid (0.0503N)

One dropof reagent 1 is added to the 10 ml sample, if alkalinity is present, the solution will turn to blush- green. Thesolution is then titrated dropwise until the color turns to red.

M-alk (ppmCaC0) = 5 (number of drops of reagent2 used)

HACH PROCEDURE

The chemical reagents used for the silica, sulfate, zinc, chromate, phosphates and phosphonates tests are supplied by Hach Chemical Company. Most of them are in the powder from, packaged in individual pre-measured polyethylene capsulescalled "powder pillow", whicheach capsule contains the exact amount of reagent for each test.

The test were carriedout using colorimeter model DRA 6418 and its manual procedures for the test was used.

GRAVIMETRIC ANALYSIS - SOLID DETERMINATION PROCEDURE"'

The gravimetric analysis is based on determination of constituents of material which involves weighing, , evaporation and combustion.

TOTAL SUSPENDED SOLIDS TEST The sequence procedures and drying are: 134

1. The prewashed and dried filter from desiccator is transferred with a tweezer to balance and the weight is

measured. The filter is then placed in a filtration

appartus and the suction is applied.

2. 50 ml sample ispoured through the filter. Distilled water is used to rinse first the sample container, then

the filter holder and finally the filter.

3. The filter is then removed with a tweezer and dried for

1 hour at 1030C using an aluminium desk to hold the

filter in drying oven. Finally the filter is cooled in

the desiccator before it is reweight.

SS(mg/1) = [weight from(3)mg weight from(1)mg]x 1000 50 135

APPENDIX D

SAMPLE CALCULATIONS 136

FOULING RESISTANCE CALCULATION

The following procedure illustrates the calculation of fouling resistance for a particular location of a thermocouple (location A) in heater rod number 216, during the run 117 in test section 1.

Specification of heater rod can be found in Table

III-1. For heater rod #216:

Rod outside diameter = DROD = 0.4223 in Heated section length = L = 3.85 in

Glass rod inner diameter = DIGLAS = 0.75 in

CLEAN CONDITION

Determination of hi /vi

Raw data from datalogger output: (Tin) = -1.21 my 0m, = 5.13 my

(Tc)m, = 0.68 my Wm, = 8.35 my

Conversion of data to appropriate units for (Tin),,, (Tc)m,, and WF from appendix B:

Tin = 32.583 (5.02-1.21)°- = 115.950F

Tc = 38.529 (4.72+0.68)0-°" ° = 168.940F

WF = 0.544 (8.35-4.0) = 2.37 gpm

Q = 341.3 x 5.13 = 1751 Btu/hr

Annular flow area

AA = n x 1 ( (DIGLAS)2 - (DROD)' ) 4 144

= n x 1 ( (0.75)2 (0.4223)2 ) 4 144

= 2.095x10-3 ft2 137

V = WF 7.4805 x 60 x AA

2.37 7.4805 x 60 x 2.095x10-2

= 2.52 ft/sec where 7.4805 is the dividing factor to convert gallons to ft'5

Local Bulk Temperature

Rod heated area:

AH= n (DROD/12) ( L/12)

= n(0.4223/12)(3.85/12)

= 3.5471x10-2 ft2

From eq. (5-3)

Tb = 0 + Tin (5-3) 8.0208 (e)(Cp)(WF)

1751 + 115.95 8.0208 (62.37)(1)(2.37)

= 117.430F

Local Surface Temperature

From eq. (5-4)

Ts.= Tc - 0 /AH (5-4) k/x

= 168.94 - (1751 / 3.5471x10-2) 6414

= 161.240F

Local Film Coefficient

From eq. (5-5)

h. = 0 /AH (5-5) Ts. Tb 138

1751 / 3.5471.43 x 10-2

( 161.24 117.43 )

= 1127 Btu/hr ft2oF and

K = h (5-6) V=m

= 1127 / (2.52)

= 477 Btu hr ft2 (ft/sec).:3 where

.7 if V > 4 ft/sec

.93 otherwise

The average value of K, Kavg, is found by repeating the above procedure for each of the 10 scans at the beginning of the run, and using eq. (5-7). The result is given below

10 Kavg = 1 E (hi/Vim) (5-7) 10

= 463 Btu hr ft2 °F (ft/sec)-

FOULED CONDITION

DETERMINATION OF Rf (Data collected on July 12, 1983 at 2.00 am.)

Raw Data

(Tin)m, = -1.17mv Om, = 5.04 my

(Tc)m, = 1.05mv Wm, = 8.25 my

Conversion of data to appropriate units from appendix B

Tin = 32.583 (5.02-1.17)°- = 117.110F

Tc = 38.529 (4.72+1.05) D-274'5 = 179.040F 139

WF = -.544 (8.25-4.0) = 2.31 gpm

v = WF / (7.4805x6OxAA) = 2.31 / (7.4805x60x2.095x10-2)

= 2.46 ft/sec

0 = 341.3x5.04 = 1720 Btu/hr

Local Bulk Temperature

From eq. (5-3)

Tb 1720 + 117.11 8.0208 (62.37) (1) (2.31)

= 118.600F

Local Film Coefficient

h = Kavg vm (5-8)

= (463) (2.46)-93

= 1069 Btu/hr ft2 of

Local Surface Temperature

From eq. (5-9)

Ts = 1720 / (3.5471x10-2) + 118.60 1069

= 163.960F

Local Fouling Resistance

From eq. (5-10)

Rf = (179.04 - 163.96) - 1 (1720 / 3.5471x10-2) 6414

= 1.55x10-4 ft2 hr of Btu 140

ERROR ESTIMATION

CLEAN CONDITION 0/AH = 1751 / 3.5471x10-2 = 49364 Btu/hr ft2 OF

from eq.(5-12)

d0 = .005 = 9.7466x10-4 5.13

from eq.(5-11)

d(Q /AH) = 9.7466x10-4 + .0005 + .005 (0/AH) .422 3.85

= 3.4582x10-2

from eq. (5-13) dTin = (.949)(.005) = 1.2454x10-2 Tin (-1.21+5.02)

dTc = (.8765)(.005) = 8.1157x10-4 Tc (.68 + 4.72 )

form eq. (5-17)

dWF = .005 = 1.1494x10-2 WF (8.35-4)

and eq. (5-16) and (5-15)

Zm = 8.0208 (62.37)(1)

= 500.3

Z. = 1751 1751+500.3 (115.95)(2.37)

= 0.01258

Thus, from eq. (5-14)

dTb = .01258 1 9.7466x10-4 +1.1494x10 -3+ 500.3(2.37)(115.95) Tb L 1751

(1.2454x10-2) 1 J

= 1.2569x10-2 141

From eq. (5-19)

Zm =.(6414) (168.94) - 49364

= 1.0342x106 and from eq. (5-18) dTs. = 49364 [(6414)(168.94)(8.1157x10-4)+3.4582x10- + Ts. 1.0342x106 49364

50 1 6414 -I

= 1.3875x10-

from eq. (5-20) dh =3.4582x10-3+161.24(1.3875x10-)+(117.43)(1.2569x10-) h. (161.24-117.43) (161.24-117.43)

= 1.1934x10-

Fouled Condition Q/AH = 1720 / 3.5471x10-2 = 48490 Btu/hr ftz of

from eq. (5-12)

dO = .005 = 9.9206x10-4 5.04

from eq. (5-11) d(0/AH) = 9.9206x10-1 + .0005 + .005 (Q/AH) .422 3.85 = 3.4756x10-3

from eq.(5-13)

dTin= (.949)(.005)=1.2325x10-3 Tin (-1.17+5.02)

and

dTc = (.8765)(.005)=7.5953x10* Tc (1.05+4.72)

from eq.(5-17) 142

dWF = .005 = 1.1765x10-3 WF (8.25-4) and eq. (5-16) and (5-15)

Zm = 8.0208 (62.37)(1)

= 500.3

1720 1720 + 500.3 (117.11) (2.31)

= .01255 from eq. (5-14)

dTb = .01255[9.9206x10-4 + 1.1765x10-3 + 500.3(2.31) Tb

(117.11) (1.2325x10-3) 1720

From eq. (5-23)

dh = 1.1934x10- h and from eq. (5-22)

Z4 = 48490 + (1069)(118.60)

= 1.7532x10°

From eq. (5-21) dTs = 48490 3.4756x10-3 + 1.1934x10-7 + Is 1.7532x10°

(1069) (118.60) (1.2443x10-3) 48490

= 5.1618x10-11

Finally, from eq. (5-25)

Z5 = (6414) (179.04 - 163.96 ) 48490

= 48233 and eq. (5-24) 143

r dRf = 6414 1(179.04) (7.5953x10-.4)+(163.96)(5.1618x10-3) Rf 48233 L

+ (179.04-163.96)+ 48490 ( 50 ) 6414 6414

.1454

The maximum error of fouling resistanceis= 14.54 %

SHEAR STRESS CALCULATION Shear stress applied to HTRI test sectionat bulk temperture of 1150F.

dm = DIGLAS

= .750 in

c12. = DROD

= .420 in

61.66 lbm/ft3 from eq. (5-30)

dimakl= (.7503-.4202) = .383 in ln(.7503/.4202) and eq. (5-29)

4rH = (.7502-.3332)/.750 = .306 in from eq. (5-28)

Re = (.306)(V)(61.66) = (3.987)(103) V (12)(1.42/3600)

f = (.076) ((3.987)(103) V ]--35

= (9.564)(10-3) V--33 from eq. (5-32)

12 = (9.564)(10-3) V--2e. (61.66)(V2) (2) (32.2) = (9.157)(10-3) V-' ti7T pue .ba (22_G)

-= (c-OT)(LGT.6) cc-TA (OZ1./OGL') (=OZt7.-222.) 222.--zOGL.

= (=-0T)(9TT.T) cc-TA

'1 (c4k/kCII) = (c-OT)(9TT'T) cc-TA 38S/14=A6 145

APPENDIX E

SUMMARY OF TEST RESULTS 146

A summary of runs 117 through 301 in run sequence is shown in table E-1. This table indicates the run duration, the run conditions (velocity, surface temperature and pH), and additives.

The results for the final fouling resistance are shown in theseries of figures E-1 through E-18. These are pictorial representation of all 185 runs grouped according to the cooling water with the same additives in each figure.

Temperature-velocity matricesare shown at various levels and the pH levels are indicated on the left. Not all cells in thematrices were tested. Thosecells that contain a number in the lower part of the cell indicate that a test was run and thisnumber is the run number. The numbers in the centersof the cells indicate the value of the final fouling resistance, (Rf)p, (ft oF/Htu)x104, at the completion of a test. When a cell isdivided in half (or third) by a broken line, contains two (or three) sets of numbers, these are duplicate runs. When the symbol "#" is an indication that the fouling resistance was still increasing at a significant rate when the run was terminated. The asterisk (*) indicates that the deposit removal occurred during a run. In this case, the (Rf)p value reported is the highest value observed during the test.

The symbols CS, Ad, and C-N refer toCarbon Steel,

Admiralty and 90/10 copper/nickel. If non of these symbols appear, the material used is stainless steel. Another notations used in the appendix is given below: 147

Run no : number of test run

** : acid leak during run

*** : wall thermocouple failed during run 148 TABLE: E -1 Summary of Runs

: RUN :DURATION: VELOCITY: SURFACE : pH SURFACE :

No. ! (hr) (ft/sec): TEMP.(F) :MATERIAL:

No Additives (Fig. E-1)

117 : 210 2.5 164 8.6 SS

118 : 285 2.6 156 6.5 SS

18-22 ppm Cr04, 3-4 ppm Zn (Fig. E-2)

119 148 2.5 161 6.8 SS 120 590 5.5 156 6.7 SS 121 351 3.0 161 6.7 SS 122 124 5.5 156 7.2 SS 123 369 5.4 156 7.8 SS 124 493 3.2 160 7.8 SS

125 : 266 8.1 159 7.8 SS

36-44 ppm Cr04, 6-10 ppm Zn (Fig. E-3)

126 183 5.5 156 6.5 SS 127 178 3.0 159 6.5 SS 128 179 3.0 130 6.5 SS 129 155 5.8 158 7.0 SS 130 155 3.0 159 7.0 SS 131 369 3.1 129 7.0 SS 132 221 5.6 143 7.0 SS 133 145 3.0 145 7.0 SS

18-22 ppm Cr04, 3-4 ppm Zn, 200 ppm SS (Fig. E -4)

134 336 8.0 165 6.5 SS 135 336 5.5 164 6.5 SS 136 312 2.9 163 6.5 SS 137 432 7.9 160 7.0 SS 138 432 5.4 161 7.0 SS 139 432 3.0 160 7.0 SS 140 456 8.1 159 7.5 SS 141 456 5.6 159 7.5 SS 142 480 3.1 159 7.5 SS 143 192 5.6 145 7.5 SS 144 240 3.1 145 7.5 SS 145 240 3.1 130 7.5 SS 146 336 5.7 145 8.0 SS 147 336 3.0 144 8.0 SS 148 336 3.2 130 8.0 SS

18-22 ppm Cr04, 3 -4 ppm Zn (Fig. E-5)

149 376 8.0 157 7.5 SS 150 376 5.5 159 7.5 SS 151 376 3.0 159 7.5 SS 149 TABLE: E-1 (cont.) Summary ofRuns

RUN :DURATION: VELOCITY:SURFACE 1 pH :SURFACE

No. (hr) i (ft/sec):TEMP.(F) :MATERIAL:

18-22ppm Cr04,3-4 ppmZn,2-4 ppm HEDP(Fig.E-6)

152 233 8.0 159 7.5 SS 153 233 5.4 159 7.5 SS

154 1 233 3.0 159 7.5 SS 155 77 8.0 160 6.0 SS 156 77 5.5 159 6.0 SS

157 1 77 3.0 159 6.0 SS

158 1 114 8.0 160 6.5 SS

159 1 114 5.5 159 6.5 SS

160 1 114 3.0 159 6.5 SS 161 186 8.0 160 7.0 SS 162 186 5.5 159 7.0 SS

163 186 3.0 158 7.0 1 SS

18 -22ppm Cr04,3-4ppm Zn,2-4ppm HEDP,2-4ppm PA (Fig.E-7)

164 317 8.1 158 6.5 SS

165 1 317 5.6 158 6.5 SS

166 1 317 3.0 159 6.5 SS

18 -22 ppm Cr04, 3-4 ppmZn,2-4ppm PA(Fig.E-8)

167 339 8.0 155 6.5 SS 168 339 7.9 157 6.5 SS

169 1 214 2.9 157 6.5 SS

170 1 242 8.0 126 6.5 SS 171 242 5.7 140 6.5 SS

172 1 242 3.0 126 6.5 SS 173 166 8.1 131 7.0 SS

174 t 166 5.7 146 7.0 SS

175 1 166 3.0 131 7.0 SS 176 319 7.9 129 7.5 SS 177 319 5.4 144 7.5 SS

178 1 319 3.0 128 7.5 SS

18-22 ppm Cr04, 3-4ppmZn (Fig.E-9)

179 t 295 7.9 158 7.5 SS

180 1 295 5.6 158 7.5 SS

181 1 295 3.1 158 7.5 SS

182 1 65 7.9 158 8.0 SS 183 65 5.7 158 8.0 SS

184 S 65 2.9 159 8.0 SS

185 1 265 8.1 158 8.2 SS

186 1 265 2.5 159 8.2 SS

187 1 265 3.1 158 8.2 SS 150 TABLE: E-1 (cont.) Summary of Runs

RUN :DURATION: VELOCITY: SURFACE 1 pH SURFACE

No. : (hr) : (ft/sec): TEMP.(F) : :MATERIAL! 18-22 ppm Cr04, 3-4 ppm Zn, 2-4 ppm HEDP (Fig. E-10)

188 92 8.0 158.80 7.0 SS

189 92 5.5 1 158.30 7.0 SS 190 92 3.0 159.20 7.0 SS

191 96 8.0 1 158.60 7.5 SS 192 96 5.6 158.80 7.5 SS

193 t 96 3.0 159.30 7.5 SS 194 163 7.9 158.70 8.0 SS

195 1 163 5.4 159.90 8.0 SS

196 163 3.0 1 158.60 8.0 SS 197 310 8.1 159.60 7.0 SS 198 310 5.7 158.60 7.0 SS 199 310 3.0 160.20 7.0 SS

18-22 ppm Cr04, 3-4 ppm Zn (Fig. E-9)

200 362 8.0 160 6.5 SS 201 362 5.5 160 6.5 SS 202 362 3.1 158 6.5 SS 18-22ppm Cr04,3-4ppm Zn,2-4ppm HEDP,2-4ppm PA (Fig. E-7)

203 265 8.0 158 7.5 SS 204 265 5.5 158 7.5 SS 205 265 3.0 158 7.5 SS 18-22 ppm Cr04, 3-4 ppm Zn, 2-4 ppm PP (Fig. E-11)

206 435 8.0 160 6.0 SS 207 435 5.6 160 6.0 SS

208 1 435 3.0 159 6.0 SS

209 l 350 8.0 129 6.0 SS

210 I 350 5.6 143 6.0 SS

211 1 350 3.0 129 6.0 SS

212 I 329 7.9 130 6.5 SS

213 S 329 5.6 145 6.5 SS 214 329 3.0 130 6.5 SS 151 TABLE: E-1 (cont.) Summary of Runs

RUN :DURATION: VELOCITY: SURFACE I pH :SURFACE No. (hr) (ft/sec): TEMP.(F) :MATERIAL:

18-22ppm Cr04, 3-4 ppm Zn, 2.5 ppm PA, 2.5ppm AMP, 2.5 ppm PP, 2.5 ppm OP (Fig E-12)

215 1 352 8.0 159 6.0 SS

216 1 352 5.5 160 6.0 SS

217 : 352 3.0 160 6.0 SS

218 : 114 8.1 144 6.0 SS

219 : 114 5.6 144 6.0 SS

220 : 114 3.0 144 6.0 SS

221 1 228 7.9 146 6.0 SS

222 : 228 5.5 146 6.0 SS

223 1 228 3.0 146 6.0 SS

224 : 405 8.0 145 6.0 SS

225 : 405 5.4 145 6.0 SS

226 1 405 3.0 145 6.0 SS

227 : 498 8.0 145 6.5 SS

228 : 430 2.5 143 6.5 SS

229 : 498 3.1 145 6.5 SS

230 : 242 3.0 129 6.5 SS

231 : 242 2.9 159 6.5 SS

232 1 242 3.1 144 6.5 SS

233 1 285 8.0 130 7.0 SS

234 : 285 5.6 130 7.0 SS

235 : 285 3.0 130 7.0 SS

2.5ppm PA,2.5ppm AMP,2.5ppm PP,and5ppm OP (Fig.E-13)

236 : 309 8.1 160 7.0 SS

237 : 309 5.6 160 7.0 SS

238 : 309 3.0 161 7.0 SS

239 I 161 3.0 130 7.0 SS

240 : 161 5.5 144 7.0 SS

241 : 161 3.1 143 7.0 SS

242 : 116 3.0 131 7.5 SS

243 I 116 5.6 145 7.5 SS

244 : 116 3.0 145 7.5 SS

245 : 276 7.5 SS

246 : 276 7.5 SS

247 : 276 7.5 SS

2-3 ppm PP and 2-3ppm OP (Fig.E-14)

245 1 114 8.0 156 7.5 SS

245 1 104 6.5 SS

246 1 114 5.5 157 7.5 SS

246 : 104 6.5 SS

247 1 114 3.0 156 7.5 SS

247 I 104 6.5 SS 152 Runs TABLE: E-1 (cont.) Summary of

SURFACE : pH SURFACE : : RUN :DURATION:VELOCITY:

I :MATERIAL: : TEMP.(F) : No. (hr) (ft/sec):

2-3 ppm PP and 2-3ppm OP (Fig.E-15)

248 255 8.0 160 6.5 SS 249 255 5.5 160 6.5 SS 250 255 3.0 160 6.5 SS 248 150 8.0 160 7.4 SS 249 150 5.5 160 7.4 SS 250 150 3.0 160 7.4 SS 251 191 5.5 160 7.9 SS 252 191 5.5 160 7.9 Ad 253 191 3.0 160 7.9 C/N

4-5 ppm PP and 5 -6ppm OP (Fig. E-16)

254 243 8.0 158 6.6 SS 255 243 5.4 159 6.6 SS 256 243 3.0 159 6.6 SS 257 219 8.0 144 6.5 SS 258 219 5.5 129 6.5 SS 259 219 3.0 143 6.5 SS 260 189 8.2 158 7.0 SS 261 189 5.6 160 7.0 SS 262 189 3.1 160 7.0 SS 263 143 8.1 128 6.9 SS 264 143 5.5 128 6.9 SS 265 143 3.0 130 6.9 SS 266 24 8.0 161 6.4 SS 267 24 5.6 158 6.4 SS 268 24 3.1 158 6.4 SS 269 91 8.0 158 6.6 SS 270 91 5.4 160 6.6 SS 271 91 3.0 159 6.6 SS 272 142 8.3 158 6.5 SS 273 142 5.6 157 6.5 Ad 274 142 2.9 159 6.5 C/N

4-5 ppm PP and 5-6 ppm OP (Fig.E-17)

SS 275 : 137 3.0 158 6.5 Ad 276 I 137 3.0 161 6.5 C/N 277 : 137 3.0 159 6.5 153 TABLE: E-1 (cont.) Summary of Runs

RUN :DURATION: VELOCITY: SURFACE : pH :SURFACE : :MATERIAL: No. : (hr) 1 (ft/sec): TEMP.(F) 4-5 ppm PP, 5-6 ppm OP, 2-4 ppm HEDP (Fig. E-18)

SS 278 .' 212 3.0 160 6.5 6.5 Ad 279 .' 212 3.0 160

280 : . 212 3.0 159 6.5 C/N SS 281 .' 118 2.8 130 6.5

282 .' 118 5.6 129 6.5 Ad C/N 283 '. 118 3.1 130 6.5 SS 284 .' 194 3.0 130 7.0

285 ,' 194 5.6 130 7.0 Ad

286 .' 194 3.0 132 7.0 C/N

287 .' 178 3.0 160 7.0 SS 7.0 Ad 288 ,' 178 5.6 161 C/N 289 .' 178 3.0 160 7.0

290 .' 196 8.0 160 7.0 SS

: Ad 291 '. 196 8.2 144 7.0

: 292 ,' 196 3.1 145 7.0 C/N

: 293 i' 276 8.1 144 7.0 SS

1 294 .' 276 8.0 144 7.0 CS

: C/N 295 .' 276 3.0 144 7.0

296 i' 227 8.0 145 6.5 : SS

: CS 297 .' 227 8.1 145 6.5

: C/N 298 .' 227 3.0 145 6.5

6.0 : SS 299 .' 181 3.0 160 CS 300 .' 181 2.9 160 6.0 6.0 Ad 301 .' 181 3.0 160

:Additives:

:Cr04 chromate as Na2 Cr04 :Zn zinc as ZnSO4 :AMP aminomethylene phosphonate (Monsanto 2000) :HEDP 1-hydroxyethylidene-1, diphosphonic acid (Monsanto :PA polyacrylate (Goodrich K732) :PP polyphosphate as Na2P207

:Surface Materials:

:Ad admiralty brass :C/N 90/10 coppernickel :CS carbon steel :SS stainless steel 154 FIGURES E-1 through E-18. MATRIX CHARTS SHOWING RESULTS FORRUN SERIES

FIGURE E-1 (Russ 117-118) No WNW.,

FIGURE E-2 (Rees 119-125) Addithres: 19-22 ppm Cr04, 3-5ppm Zs

FIGURE E-3 (Rees 126.133) Additives: 39.44 ppm C:04,9-10ipm Zs

FIGURE E -4 (Rees 134-148) Additives: 18-22 ppm Cr04, 3-5ppm Zs with 206 ppm Suspended Solids

FIGURE E-5 (Rees 149-151) Additives: 18-22 ppm 004, 3-5ppas Zs

FIGURE E-6 (Rees 152-163) Additives: 18-22 ppm C:04, 3-5ppm Zee, 2-4 ppm HEDP

FIGURE E-7 (Roes 164-166 sad 200-202) Additives: 19-22 ppm C:04, 3-5ppm Zs, 2-4 ppm H EDP, 2-4 ppm PA

FIGURE E-11 (Rees 197-178) Additives: 18-22 ppm Cr04, 3- 5ppees Zee, 2.4ppm PA

FIGURE E-9 (Rees 179-187 and 203-20S) Additives: 18-22 ppm Cr04, 3-3ppm Zs

FIGURE E-10 (Rees 188-199) Additives: 18-22 ppm Cr04, 3-5ppm Zs, 2-4 ppil EDP

FIGURE E-11 (Rues 206-214) Additives: 18-22 ppm Cr04, 3-5ppm Zs, 2-4 ppm PP

FIGURE E-12 (Rees 215-235) Additives: 19-22 ppm Cr04, 3- 5ppen Zs,2.5 ppm PA, 2.5 ppm AMP, 2.Sppm PP, 2.5 ppm OP

FIGURE E-13 (Rums 239-247s) Additives: 2.S ppm PA, 2.5 ppm AMP, 2.5ppm PP, S ppm OP

FIGURE E-14 (Russ 245bic247bac) Additives: 2.5 ppm PP, 5-7 ppm OP

FIGURE E-1S (Rees 2488-253) 155

Additives:2-3 ppm PP, 2-3 ppm OP

FIGUREE-16(Runs254-274) Additives:4-5 ppm PP, 5-6 ppm OP

FIGUREE-17(Runs275-277) Additives:4-5 ppm PP, 5-6 ppm OP

FIGURE E-18 (Runs271-301) Additives:4-5 ppm PP, 5-6 ppm OP, 2-4 ppm HEDP 156

130 145 160 TEMPERATURE, F

FIGURE E-1 (Runs 111-1111) No Inhibitor

continue... 157 1.3 Arv 25 4.6 23 5.5 24# pH 7.8 24 3.0 130 145

8.0 1.0 122 5.5 pH 7-2 130 145 160

8.0 4 0.8 12 5.5 121 3.0 pH 8-8 191.0 Or 130 145 160 TEMPERATURE, F

FIGURE E-2 (Runs 119425) 18-22 ppm Cr04, 3-5 ppm Zn

3.9 29 5.5 1.4 1.8 9.3 pH7.0 131 33 130 130. 145 160

0.4 126 0.4 1.43.0 pH6. 128 127 130 145 160 TEMPERATURE, F

FIGURE E-3 (Runs126-133) 36-44 ppm Cr04,6-10Fum Zn

continue... 158

8.0 Air 5.5 3.30 4.5 3.0 pH8.0 48 47 130 145 160 0.5 40 42.2 5.5 0.7 f.4 3.0 pH7.5 145 44 130 145 1.0 137 8.0 ArAliPr5.5 3.8 pH 7.0Air 139 130 145 160

8.0

0.3 5.5 ('c. 1 35 1.43.0 pH 6.5 36 (fj 130 145 160 TEMPERATURE F

FIGURE E-4 (Runs 134-148) 18-22 ppm Cr04, 3 -5 ppm Zn with 200ppm Suspended Solids

continue... 159

8.0 boa

5.5 FS ""\ pH 7.5 3.0 0`" 4\' 130 145 160 TEMPERATURE, F

FIGURE E-5 (Runs 149-151) 18-22 ppm Cr04, 3-5 ppm Zn

170,. 1 2. 1- 52 8.0 *1 2.3 5 5.5 22* pH 7.5 154 3.0 1 30 1 45 160 170 F 1 1.4 61 1.7 62 5.5 7.2 3.0 pH .0 63 130 145 170F 0.5 8 8.0 0.2 59 5.5 0.2 pH 6.5 60 1 30 I45 160 170 F 0 8.0 boo 5

0.1 5.5 <<`" Ar56 0.2 3.0 0C> pH 6. 57 I30 I45 I60 TEMPERATURE, F

FIGURE E-6 (Runs 152-163) continue... 18-22 ppm Cr04, 3-5 ppm Zn, 2-4 ppm HEDP 160

130 145 160 TEMPERATURE F

FIGURE E-7 (Runs 164-166 and 200-202) 18-22 ppm Cr04, 3- 5ppm Zn, 2-4ppm HEDP, 2-4 ppm PA

130 145 160 TEMPERATURE, F

FIGURE E-8 (Runs 167-178) 18-22 ppm Cr04, 3-5 ppm Zn, 2-4ppm PA continue... 161

130 145 160 TEMPERATURE) F

FIGURE E-9 (Runs 179-187 and 203-205) 18-22 ppm Cr04, 3-5ppm Zn

continue.. 162

130 145 160 TEMPERATURE, F

FIGURE E-10 (Runs 188-199) 18-22 ppm Cr04, 3-5 ppm Zn, 2-4 ppnHEDP

130 145 160 TEMPERATURE, F

FIGURE E-11 (Runs206-214) continue... 18-22 ppm Cr04, 3-5ppm Zn, 2-4ppm PP 163 0.9 233

345.0Alr 5.5 9.14. pH 7.0 235 3.0 130 145

1.4 27 8.0 AV" 5.5 "IP 3.5 6 18.1 pH 6. 30 29232 231 130 145 160 -7/6.3/0.96.1# 18 '221/224 15 8.0 etc.

1 k 5.5 16 ' 4.6y3.3/7.7 6 PH 6.0 20 /223/226 17 3.0 130 45 160 TEMPERATURE, F

FIGURE E-12 (Runs 215-235) 18-22 ppm Cr04, 3 -5ppm In, 2.5 ppm PA, 2.5ppm AMP, 2.5 ppm PP, 2.5 ppm OP

7.8 45a 8.0 11.0 46a 5.5 2.0* 19 16.0* pH 7.5 42 44 247a 130 145 160 0.2 38 8.0 c, Ic°1' 2.5 37 5.5 os-1/41 1.9 1.4 9.2 pH 7.0 239 241 38 3.0 OC> 4.," 130 145 160 TEMPERATURE, F continue... FIGURE E-13 (Runs 236-247a) 2.5 ppm PA, 2.5 ppm AMP,2.5 ppm PP, 5 ppm OP 164

pH 7.5

8.0 tc. lc° 5.5 <1/41 3.0 CP pH 5.5 130 145 160 TEMPERATURE? F

FIGURE E-14 (Runs 245b &c- 247b&c) 2.5 ppm PP, 5-7 ppm OP

At*, or* 3.3/17:7 'Ad 5.5 v 2 24.6 3.0 7.8 253N 130 145 1.0 48b 8.0 pH * * 49b 5.5 ** 3.0 7.5 SOb 130 145 160 02 48a 0.3 .e49a

0.1 6.5 50a 130 145 160 TEMPERATURE, F

continue...

FIGURE E-15 (Runs 2411a-253) 2-3 ppm PP, 2-3 ppm OP 165

.te* 3.0 10.1 es Air60 8.0 APIIIVAli5.5 7.0ASTAIA73.0 130 145 160 1.0 3.2/1.8.** 42.4 57 54 289272 8.0 zc' co 0.5 9.5/**/10. / Ad 258 55 70 /273 / 4 4.4 sy**:28.1 6.5 259 258/271/2fZN 130 145 "1"--16011 TEMPERATURE) F

FIGURE E-16 (Runs 254-274) 4-5 ppm PP, 5-6ppm OP

6.5 130 145'--.160 TEMPERATURE) F

FIGURE E-17 (Runs 275-277) 4-5 ppm PP, 5-6ppm OP

continue... 166

145 / 4.0/15.1 /0/Ad 3. 3 94 91 9 JP 2*.3 10.8 a 65 88 5.5 41..1 4, aft / arit Arie / 0 4.84.9a.18. 7. a. 7.0 84 /2 8-95 /292 287/289 3.0 130 1 5 or 0.3 /1.4 /CS 8.0 pH 0.5 d 5.5 / xrArga* 1 1.4 2.5 8.5 3/ 3- 14.* N d Ad -N 6.5 2812 3 95 78, 279/280 3.0 130 145"f"----160.1

4* ale 5.85.1A. 6.0 99 3001301"d 130 145 1604

TEMPERATURE 1 F

FIGURE E-18 (Runs278-301) 4-5 ppm PP, 5-6ppm OP, 2.4 ppm HEDP 167

APPENDIX F

FOULING RESISTANCE (Rf) VS TIME - PLOTS

Beginning with run 173, these symbols are used on pH, conductivity, and corrosion rate vs time plots, unless otherwise specified. 0: pH

+ :conductivity (mmhos/cm)

6 :corrosion rate (mpy) FOULING RESISTANCE If R 104 WTI NI OF/STU) FOULING RESISTANCE hi 104 WTI NA OFISTU) rotten RESISTANCE RIK 104 (FI. MR OF/STU) FOULING RESISTANCE Rix 104 Ma NO IF/UTU) 8 III. a ; 4-1 $ 4),Nt If 11111 $ 4101111 I i! 31 gii ! 32 Si&a i 31 ;aa !!! ;VE FOULING RESISTANCE Rh I 06 MT MR OF/IITtO r 2 . 2 ; ; 1241 FOUUNS NESISTANOIE RIR I co I ; CFTO 10 OF/STU) FOULRIS RESISTAIICE 108104 IFTI MR 6F/STIA FOULING RESISTANCE Rts106 (FT. HP 6F/STUI ; St 1.I1 ; ;I 4. Ia h% 111"1 31 piI 1))if141. !! 0)OD 4 I F.E1 ; Na! ; hI Jib . 5 2 II 3 3 .3 3 3 3 5 . 3 3 3 ti3 3 1 / 101 OW v0120/ 30N11IIIIIR1Y5 talf10,1 5 01.11.0/4 w eLJ) .0110 30011/111110111110111110i 01/111,14 Illi via 4111 0000111103111011-11104 ! -; 01/11/4 al mai) to I nv norraosui amino. ! ! IF i;

01110/11. al ILA .0111111 3011111111111311001110/ 3 01(11/410 MI 1A) 0111/10 301111111111130 Oorricca 5"::!! S 011.11/4 MI 81.0 .01 RN 3011111(1183111 gM1110. 5 3 3 3 slip .0 I xim 30N11ae1e30 ONI-Iffed3 5 FOULING RESISTANCE FM 106 0*Te NS SF /STU) FOULING RESISTANCE Ilia 104 (FT* NM ///// 1) ;' ,x - .-. FOULING RESISTANCE Rfa I 04 CFI* 1111 F /STY) ; ; a FOULING RESISTANCE Ras 106 (FT* NR F/STU) ; ; * .., t ; ; ; °PEgi I I a E '.3 t FOULING RESISTANCE Rag 104 UT* NR F/STU/ FOULING RESISTANCEY. Ws 104 (FT* NO III,STU) FOULING RESISTANCE Ma 104 (FT* NM 0F/IITU) ;

a 1 r.- ISSN a a O 1!! 1

5 ''TIIIEVlr75Prniiii.4 Ord 3 5 4 I 5 3mmiraw:in. ine.: I 1 aid ;I 11! UD F I 5 a 04111/o/a0A41/1/1 111y rammay euiveraraain sar maramst Name 011411~011111 OWN Of Ted mayammum sum OINASIIIM 011111114 ti IF 1\ 1 I11111.3 313inallii~eu01111 Icas .7CMOanr111 SKIMP/ ; 1110111.010L110111 ; ; .101N1111111311! 333 NI1O/ 4 I11S/41011091 24111 WIN.11111131I urns. Inaill/JWociJIMI) Desi '1OM1111111311 0111110,1 IFOULINS 111111111TANOE, re.(4 t1111710011TI r111.11.11111 1111.111STANCII. MK. IMMOOMMAITUI IMOLAI@ ICIIIITANCE. M,K4 CIIIIFT011111,01111,11 FOULING NCIIIITANCI. nrea INITemoiscrillne i s I 1 ' I i ..N .1 .offl ii;;;;Iiiiii ;I;;;;Ilitti-...... s% ati I .111 fp"I f41 ;NEI ! EliI IT P.Ai ;Ez 31 F i i F.r F- taskip 1111111181huMg, Tr.14 11111W7011111WATIO POuLami 11111111111Ma11. IiN44 4111114411MitIP1 ovule fignavai/S. 1..14 INITOGOICAMIll rem.INS kPISIUSTOMIS. RI414 s b t ky ;k;;;;;Thil ;11;;;;Ititt! k 111 ill I %. 3.1 hi. , ..,.I -Ii t E in ,. I-i r A ! ;ii 4 !pi hi1 .e.4 %to 1i

Vt

...0:I0141411.414*. $411"StebOtt ow° RUN: 177 RUN: 178 1 4 4 14 4 1 RUN: 176 1S 'to s 04 s rr 2

I V -r I I I e V -2 es o o 0 (HOURS) se TIME res Nes m TIME (HOURS) TINE (HOURS) 11 7 N is0 6 s 7 w o 5 o 5 6 04 o 4 z 3 cp 0 0 4 r 3 * O wl`ar0410411 3 t.) 2 uraizazamnaleww:7.61101w 042 O z , 0. (.1 2 macm:amome4716,1rp a. es 0 so S 111. 5 T INE (HOURS) S 0 0 0 TIME (HOURS) TIME(HO URS)

1 1 (HOUND TAR 1101X1111 MAI

11141 CORIUM

s:

1014, MAO TON TINE (1OURSI TIM CROUPS) 1S

91*. RUN: 179 RUN S. 151

. -

2 - . . -2 e N ft TIME (HOURS) TIME (HOURS) 4111= W -S S o 44 e N 7 7 N n w , TIME (HOURS) o 5 -...... o 3 7 O4 4 z 3 O S SI z 3 0 o 3 u 2 o 2 z :011=41.41=:Z 4 a. 3 S S 2 N : Mill=1=Z:M TIME (HOURS) TIME (HO URS) M 4 01 4 01 S $ el .. N M s-S *owe...%0~0.0 TIME (HOURS) bee 0 -16 W

. N n f . a n TIME (HOURS) TIME (HOURS) . N n TIME (HOURS> z Wilts . .% wile . W - c140 u U. w14S- U. = o - 0120 12S-

1SS 1, 4111 't ISO , 1 1 1 e ISO. II444 O 0 0 o si o e e . al m TIME(HOURS) ea- m w TIME (HOURS) -.TIME(HOURS) SURFACE TEM:WM (.14 WATER VELOCITY (FT/SEC) 1146 111111111111TIVIITOININIMIlle. CIONNINIMON 01111111/13 COMM ainialnrain INVI teerloaWollins

SUI1FACE TENIESATUIE RF) YATES VELOCITY tITAMICa Pol. 1/0011111,41114100., ealeleaNN dale/! roam ORSISMICE MK, asortwIle MUIMS

SURFACE TEROMMATISIE tF) MATER VELOCITY IFT/SECT earausTparrawastar. 01110111111 mime 41111510011 areg 11011MWVOINIM 9L1 I S. I RUN: 185 I RUN: 186 RUN: 187 71 4.- 7 1 4 - " 1 5- "IO N - * +6 K Ni VP 6 .. w000ff. 2 - es, 2 2

0 2. O 14 0 TINE (HOURS)----- N 0 ft TIME (HOURS) TIME (HOURS) PoWP of...800,..owswOWNsoft ..m .11....1160....11118W.OWWO W0 W 5- c 7 7

0 at 0 o 5 o 5 - 4 0 4 z 3 04 z 3 z 3 u 2 u 2 a23211SLCZMIII c.) 2 1 z Man =lib =12II=0; z a aamb sz:usirft; w

:4 TIME (HOURS) .. * m ro TIME (HOURS) TIME (HOURS)

we

3-,. , P- es W." 0 ...I4 0 J4

2 2 N TIME (HOURS) T IME (HOURS) . ea m .IS .1+ TIME (HOURS) 14

141 - w111-14 0 c m10142S-

lee 0 0 ISS. & 0I 0 100 0 * 0 s TIME (HOURS) TIME (HOURS) w N 0. 3-4 TIME (HOURS) -.1 QD .. SURFACE TEMP (F) R f i 111.4 0 o m a. /.st .o* N VELOCITY ( (Ps ) a a a PM. COMO,". CORR-RATE T I # 14 4 . 4,4 I 1; 1 mono. C 1 0f11 I II iI 1 , 4 t I ..190 3..10 le ...-t ....-.I , az200o.x =.m 20 z zPI 210. .. a .atoc 390 .aCo 30 a02 31 v 400 400 4001 311.400_

SURFACE TEMP (F) s 4 4 4 VELOCITY ( f Ps) 0 4. p14. COND. CORR-RATE Rf i 10.4 emaaa mama f 1*. m Ie.. sow. .e IS aCm299_ aC020 aC a02 211 a 3410.,401_ 49930 49391 4013 SURFACE TEMP (F) 11 . m VELOCITY ( f as) a 0 PM, COMO. CORR-RATE 4 a 4 I RI S 10.40 4 I 41, _4100_ Is 8 100_ r S I t Com400m3 C129 200 2 v300a - a 30 a411C 301 aC2O 390_ 0 081 490 40 490., ILA 2 RUN: 193 RUN: 192 I RUN: 191

Y V . v a

1 1211.0 tam raw :via TIM MOM) mai sm. saa 20 212R 1.122111263 1111.211 LfSali (142212M

ILO .14.122.2...... Pe I

ameserturr _sat_2411 L. 22 1MS221122 :::22::::8:te:1 2200111412Ian

ISLIO MAI 11121E 0201.11252 TIP* %MOPS,

SAS 242 a a V

8 f

2D2C (NOUNS) 'FDIC (MUM S.

IN MAI 11121 (HOURS) mwas 1141 MAO 215.211 212.55 TIK 1221222.2) RUN: 195

I

OOOOO 06.6 0..6060..0

2411

aO11.1.LNI MO MAO INOUR0) O SUREAC.E TEMP (F) N 01 N VELOCITY (fps) 0. 01 PM.CQMO.CORR-RATE N Rf S 18^4 Ot - a .11 . 160 14 11, 41114 1 ISO N Cox200amz Co220 x2no le I ^2052 o2... 390 ) .02 2 ofonO 409_ t 49930 43 3 41 14SURFACE TEMP (F) N a 01 as N VELOCITY (fns) a * e PM.COAO.CORR-RATE N N I 411111?4?G RI t 01 10^01 . 199 - m. 10 el- 1 2 1_ Ti 0z20. - 0z20 - 2x296 I ,..:C0z^260 - i 2 4,3. 406_360_ 43 1.. 450_3 1 i roman 00111111101. 10 SURFACE -4 0 TEMP t1 (F) N VELOCITY 0 0 (fps) PA.CAMO.CORR-RATE 40 ellOIT 1100 . 19- i . 19 mz . mz. mz.4 l 4 1 21111 za 26 a a c ...noo t opao cx 29 i I o- 300_ : it r 2 1 :0 1 ti 409_ 49386 498309 II ) Ci RUN: 201 RUN: 200 RUN: 202 14- 14

rd. - ft 6 - 6 at C 2 -

..21-- N s to TIME (MOUES) TIME (HOURS) - TIME (HOURS) a 7 1. C r-. W... assft 1 6 6' a o 5' u 4 o4', z 3 o3- 21.. z aIMICS ::::40::::12I Cals 1 G. 1"

s 9'-'-+-to4-4-74ao-4-70-4--T a: . ft n N n v T IME (MOUES) TIME (MOUES/ TIME (HOURS) 1 A A O "ftvo ofte..%

- 6 0 J4 .J 4 J4 .4m100 .~.0.4%.44mmiw ft.. 2 e T IME (HOURS) ft ,.1111, T IME(HOURS) ^ISO T IME (HO WL)

46 146.ft."". . t1S ...... pmI. - m14. m114 - C li12- o 120 -

ISE. 0- 01 l o TIME (MOUES) T IME (HOURS)" TIME (MOUES) 0.11 RUN, 205 RUN, 204 .t

6 . o a . N n * o TIME (HOURS) . N n * TIME (HOURS) ... N * mailM wwwwwwove*Asin.0 TINE (HOURS) 1614 c

1 4 4 0 5 0 04 x 3 0 0 2

N S TIME (HOURS) . N n TINE (HOURS) TIME (HOURS) Afteess.9.0

1-6 I6 O 0 a4 0 a -'4 W4 2 011140=111.1111

. 2 2 T IME (HOURS) . N n . ft n ,k186- TIME (HOURS) ^1884 TIME (HOURS) . a * W W 4111".... $040- 0 wI411- 0 1211- c - 0 - 05125- 0 _ 10. l IRS oe toe TIME (HOURS)os N N rA T IME (HOURS) . a N . OD TIME (HOURS) CM RUN: 206 RUN( 207 RUN:208 0..." *14 *14 714 ( .'.. -.111- .1 1 et , N * .. ...S . ...."...... s et ...... "" .....". CIC , 2 - ...... 40...."...... e*"." ...... -2. 0 O O 0 0 .. N re r 0 0 0 TINE (HOURS) V W e TINE (HOURS) TINE (HOURS) W c L1 ..* 1 , ' cc , at at co 5 3- oa 5 - 4 0 4 3 O 0 3- 03 0 2 .) 2 001g:::::46000, 114401°"ZWIEW0Man0 .16:6.4winik. .0.143gagsbounat S L 0 0 0 0 . N M O 0 ras TIME(HOURS) ... N m TIME(HOURS) TIME(HOURS)

:"%.40,..s. Le )-, o-r 6 O O U J4 -14 0 W W 3 3 2 el el O I el 2 j 2 .. N pi, * V TIME(HOURS) TIME(HOURS) T IME(HOURS) ^100 IL u.

...... ,...... - lli 1. .. wt411- w1441- ta as) -

atso.120 3 3 - ISO Le ISO 1 1 o 0 as to 0 0 0 co 0 GB 0 ... r* * ... N r* oso N TIME

m a ...... n.ro 2- 2 ...... 0...... -* $ I -* ( 1 1 00000 se 0 o s e 0 N .. N N * * N It v. . N m TIME (HOURS) TIME (HOURS) TINE (HOURS) W or 7 7 N 6 N 6 o 3

- 4 4 0 4 z 3 3 0 3 u 2 2 .ssdamoss.-.zsurisialualignuaiia..... ex. I o S 0 0 0 0 o m m m . N n ... N :4 .. N m TIME (HOURS) TIME (HOURS) TIME (HOURS) e

.6 I-6 u - O 0 e J4 2 2 l 1 $ t l . so 1 NI 2 01a N O m 0---4-70 * N 14 11. TIME (HOURS) TIME (HOURS) . N N I. TIME (HOURS) a-111111- r a^IRS-. ... ' &ice-s W H w m.14- u W145= a129- a120- m _ 199 100 -1 m 1 N 1 m 1 0 m m TIME (HOURS) V TIME (HOURS) r TIME (HOURS) RUN: 212 7

6 1 I 6 6 4 4 0 0 0 e e e e O e o TIME (HOURS) . ea m S O 0 W O. TIME (HOURS) . N. m S TIME (HOURS) C N,....100.006... 00/09.0.080 0

0 6- , o S- of u 6 4- o 5 o 5 z 3- 4 0 4 u 2- z 3 =II 3 se 1 u 2 SI" a. z . mmialaWTAI:aaaMMOMUMO: 2 *Zia m sl a. e 0 .. N M e e TIME (HOURS) . N m TIME (HOURS) 1 TIME (HOURS)

6-6 it 6 3.t 4J 0 4 0 .64 4 3 2 2 m 2 0 is o e e o m m . N m * - N m a 0 m m al . N m * TIME (HOURS) TINE (HOURS) TIME (HOURS) ^100 - ^I59- sa -1OO U.

z(Li=169 &zISO w W I. - w140....--...... ------...... - w140 u u c - 66. 66. 0120- 0120. 0120- m m m . - 100 100 OD 616 616 0 m o 100 0 m (16 m m m e OD O ... m y m * ~TIME (HOURS) 6.6 TIME (HOURS) TIME (HOURS) 400 217

tEl 213 6011 116 3 ft/sec 20 pp. Cr 04 4 ppm 24 Cr 04 160r 6 ft/sec 20 PP. 20 pp Cr 04 4.0 PM 2.3 pp. 41111 is 5.5 ft/see 160 611 4 r 160 P 4 Pp 2m 2.$ pp. PA 6.0 PM 2.3 pAMP 1.3 pp 411 2.3 Pp. PP PA 6.0 PO 1.3 pm 2.3 pp. PA 7 pe OP 2.3 ppPP 2.5 pp PP OP 7 PP. 7 pp OP

19 pp & CP increased 19 L rr.r PP & CP increased. PP& CP increased

-6

2 2 o es 2 e e 0 e o o e -ap N m O . N ft .. N n TIME HOURS) TIME (HOURS) TIME (HOURS) 0 g w s ow C st 1 , . 1 , 4.WOW.WOMOVAMmft4AMO*,,, . 6 .f. m a co 5 O o S U 4 4 0 O O it 3 z z 3 0 O u 2 u 2 L. 2 laizacparis woe z s . 0 o o o o . N m .. m pi ... ft .4 TIME :HOURS) TIME :HOURS) TIME :HOURS)

19 A ;I: ...... 1*." at 6 6 0 0 _14 +avo. ..~.404...m..4.0.4. 2 0

0 ... N M 4 TINE (MOURS) TIME (HOURS) ^1 ",11116, ^100

169 .149 .140- u .149, u c U C a a O 129 C O 121- = e - 0121 0 0 III o IGO -- .---.o o o 10 . NPJ M TIME (HOURS, TIME'HOURS, 220 41121$ 11 215 5.5 (1/6.4 3 tt/4.4 20 pe Cr04 20 Cr 04 20 pm Cr 04 Wass 145 145 02 4 ppm ia 143 4 Ea 4 fa 4.0 0 s 4.0 PU 2.5 AMP 2.3 pm AMP 6.0PU 2.2pp.ARP 2.2 pp. PA 2.2 PA 2.5 m PA 2.5 PP 2.3 m PP 2.5 PP 7 OP 7 OP 7 OP

IS 14 *1 +l4 < < 0..1 -1 *1 0 * 1 N N KYR 12111/1111 4

2 o 0 o 0 o e 0 0 0 O 0 03 o 0 0 0 0 . N N * 0 - N M * . N m TIME (HOURS) TIME(HOURS) TIME (HOURS)

1240,1510ME micepum %,»*.p 6 *or Oft 3 0- 4 z 3 0 u oI 0 0so 0 o 0 » N N . m m N TIME (HOURS) TIME (NOUNS> TINE (HOURS)

a 1- ..6 ...... 0.0...... u u e 0 o -a4 J4 ..14 w W 3 2 00.8»... 2 0 2 N 0 2 0 0 0 0 0 e e es 0 0 . N Nm * 0 . N m I ... N M . TINE (HOURS) TIME !HOURS) TINE (HOURS m1, U. r1.

e.166 L ISO Ids Faun w .1 .14 .14. U w120LL o 12. N o 100 . . : ISO I061 0 0 41 Ai o so o o o 0 0 0 0 0 0 o - .4 m m 0 m TINE 'HOURS) 0 ft TIM[ (mH OURS) N TINE (HOURS) KU223 EVE 221 EVE 212 3 Woes 20 ppm CFO* I It/u. 20 pp. Cr 06 5.3 ft /... 20 ppm Cr 06 I43 of 4 6 Zs 163 01, m im 162 81 4 S. 6.0 PU 1.3 pp. AMP 6.0 PS 2.5 pp. AMP 6.0 PU 2.3 PP. ARP 2.3 pp. PA 3.3 pp. PA 2.3 e z 3.3 m PP 1.3 PP 2.3 m PP 7 pp. OP 7 ppm OP 7 pp. OF

IS 18 I Is 14 -o so 6 r 6

2 wwMomm.**

so

... N to r 6 TINE (HOURS) TIME (HOURS, TIME(HOURS)

c W0 et o C ft 6 o ft el o 3 O 3 At U soo 2 4 U z 3 2 4 0 0 u 2 z 3 .4 2 woo.. 0 2 0 2 *W. 1 S I 4,1 , s .--0 , S S Wm a. ... es n 0 ft 1--ir TIME (HOURS) TIME (HOURS) TIME (HOURS)

S N n TIME (HOURS) TIME (HOURS) ... N n TIME (HOURS) ^ISO rIES 616 616 2

M. .14 .140 U U =12 128. 0128 = UI

1. ISO as' go* *O 0 0 S 9 0 9 0 S TIME ,HOURS, TIME (HOURS) TIME 'HOURS. RSV 224 ROO 114 10 ppm Cr 04 4 Et/see 30 Pp Cr04 3 Wise 4 pp is 143 el 4 PP41 8. 142 7 6.0 2.3 pp. AMP .0 PO 2.3 ppm AMP 2.3 pp PA 1.5 pp. PA 1.3 pp. PP 2.3 ppm PP 7 ppm OP 7 pp. OP

r. 14 1.1

; O m m m m to SO 6 m .. ori IS C G A TIME (HOURS) 2 S

-2 o e 0 o 0 0 N M TIME 'HOURS) 7 6 C 4 a at 0S 3 4 0 2 z 02 timussrolnateassousis 2 I 2 0 o airasualtheneZianizs 0 0 0 a m TIME (HOURS) TIME (HOURS) O m TIME (HOURS) IR-

a

a- 1- 6 0 W0 4

2 0 1 .1 0 0 2 I RUN 226 N m eti 8 , ,,,,,I iii TIME (HOURS) m ID 9 "s c .. N PI .. T I mE !HOURS) 10- ^100 - 180 - IL tags _ W .140 a. 1 6 - 0 U w JA o120 4.4 474.4...... **.mrrwm ui 2 o o o o 0 0 100 0 0 0 O N m 1r 0 0 TIME (HOURS) O V TIME ,HOUS,

-A : 1 I 1 Ie. m a 9 0 9 a Co 9 a -. N rm ., T I ME (HOUPS: 2641 227 MI 121 2 22/21.24 20pp Cr 04 411226 145 4 pp to 10 Cr 04 3 22/..r 6.5PS 2.5pp 4111, 4 p Zs 3.5 Et /..e 20 pp Cr 04 245IV 2.5pm PA 2.5pm AMP 145 m 4 pm ts .3PS 2.5 re 1.5pm PA 1.5pmASP 7 m OP 6.5 PO p PP 2.5 PA 2.5m OP 2.5 PP 7 is 7.0 OP IS 1214 1117 sr 14 :T14 1 0- lr N - 6 N 2 *6 N 2 . 2 , 2 o .6 2 .. C N N 2 TIME (NOUNS) .. N IN TIME (NOUNS) ... N m 21144' NOUNS>

6 3 .44.40 047 .2.****** O4 Z

2

ts. o 0 ms T IME

!a *t 0 4 4 ...... °22.. IN INMA., 2 2 z N z TIME THOUPSN N N .r 7 74 TIME 'HOURS. ^10 TIME thou's) Itco

.160

N120

100 o a 1407 o . 4. s 0 mo o 42 . . o . * 'TIME 'C0.OUPS,' TIME 'HOOPS TIME 140U0S, 010 112 ROO 120 BOO 332 1 et/4 10 pope CM1 3.0 It 30 ppm Cr 04 pips 2 130 pp. 2. 130 op .3 PO 1.2 pp ASP 3 trim 20 ppm Cr0 .2 re 3.2 pp AMP 1.2 per PA 142 OF pm im 3.2 ppm 4 2.) pp PP .2 76 2.3 ppa ANP 1.2 pp PP 7 pp OP 2.2 pp. PA 7 ppm OP 2.2 ppm PP 7 ppm or

le- 1M I 44 :144 e.

+4 II .0

2 2 V 2 2.T.-1.T--- . - ft n . ft n tint (Howes) TIM[ ..OURS) TINE ONOURS)

OD we

6 6 9 a.4 O Z3 4,2 02 I .

ft T IME (MOUND) TINE TIME (MOUE)

r 0 0 .1 ./4 .44 111 2 .5 ...... 00,0,06.0., ...... 2 2 2 40 o a - m n . TIN[ (NOUNS) TINE (NOUNS) TINE .11011112)

;.11111 +10 m1 ft a Ilse, 1160 0 N 1 .140

4.120 4.12 MI20 2 3 3 N 10 100 I II

ft

TINE ..00PS) TIME (MOORS) TIME (NOUNS) . 111111 234 III233 III 235 2.2ft/mom 20 pp.Cr04 S tt/mem Cr04 20 pp. 130 4 pp.Zs 3 ft/see 20 pp. Cr 04 13007 4 pp.Zs 2.5pp.AMP 130 of 4 pp. Z 7.0PM 7.00 2.5pp.AMP 2.2pp.PA 7.0 PO 2.3 pp. AMP PA 2.5pp. 2.2pp.PP 2.3 pp. PA 2.3ppPP 7 pp.OP 2.3 pp. PP 7 pp.OP 7 pp. OP

14 I *14

0 6 . at .. 6 oM 2 0 ...... -" 0 *-"' 0 0 .0 .. n 0 0 N ... .. N M 0 TIME (HOURS) MIK 010.81 TIME NOUNS)

me 14 0 4 ....,..ftWomMOWO 6 6 4 oft

- 4 0- 4 3 u 2 u 2 : 214:11gatMa= : I aelaa214411 2 I : i611:101244.4101 a.

111

ft ft TIME (HOURS) T IME (NOUNS) T IME (HOURS)

.

J40 3 0 2 0 m N M N TIME

616 6 fM. W

.1441...... r.,...,... M. ...,....mon."....,.. 412 0 m. 100 0 -a lamo Si. MAO 4. m M gm MUM r Mr 1.1.1 TIMEHOUPSN 1111 236

$ ft/e 1.3 pp AMP ROM137 IOU130 160 *IP 2.3 pp PA 7.0 PM 1.3 pp. PP 3.3 ft/e 1.3pp.AMP 3.0ft/e 2.5ppAMP S pp. OF 140 P 2.3ppPA 120or 2.3pp.PA 7.0 PM 1.3ppPP 7.0PM 2.3pp.PP 7 ppOP 7 ppOP

1 O- .. a ...... " .6 ..*. 4.4 2 ...... 4444444.04.4.0.444 ***

I , 4 I O 2' a - .811 MISS 04.40 154.84 210.91 254114 344.44 TINE (HOURS) a N . TIME1 HOURS) TINE (HOURS) w 6

444 W 7 F a 6 444.44.044 a O 5 U a 4 O 5 U z 3 4 0 0 0 2 Z 3 u 2 a z a. . al n TINE (HOURS) PS N ft T IME (HOUR[) T IME (HOUSE)

aM fp.tamtlaaaadtoftorloariPotimadvaala a 8 l 8 514041441044141 0 2.40

MN MIN I54.04 704.40 258.04 340.05 sim MN 154.88 MN 258.40 MIA TIME (HOURS) 2 TIME (HOURS) N N w TIME (HOURS) MIN1'.Nekene44...14,41 ...404444% S. :"..+..%%. ".".....:". ^1,

1148.41

W

NILO

1 "." SIN OLIN MAW 211.14 254 04 304.04 . 511.04 MIN 50.84 714. 250.08 300.40 TIMEI HOURS) TIME (HO .RS) so TIME (HOURS) ROM 241 CM 240 RV' 131 3 ft/see 2.3 m AMP 3.3 ft/see 1.3 pp. AMP 143 OP 2.3 p* FA 3 ft/see 1.3 pp. AMP 143 . 2.3 PA 7.0 PR 2.5 p FP 130 0 2.3 p PA 7.0 PR 2.3 pp. FP 5 OP 7.0 2.3 PP 3 OP 3 pm OP

14 Tt4 1 1 1 N N N oo

-2 es 2 e es 0 s mop 0 0 O om - N es . N n o - N m TIME (HOURS) TIME (HOURS) TIME (HOURS)

m 0 p ? - U ' $ $ 4 4 0 0 t to i mmosoll=k AlmoodEMOM 1 N T IME (HOURS) * T IME (HOURS) T IME (HOURS)

1S- Je

a ,3 6 U 0 W 4 A4 a a a. 2 om 2 t ijo o O TIME (HO URS) N TIME (HOURS) TIME (HO URS) ^It o11011 N 1160,

U

e'. 1211.

- CID o t I sis tee o * 4 . . s s o" 100 t oI, o o e * n TIME (HOURS) TIME (HOURS) TIME (HOURS) RO 244

3 ft/.se 2.3 pp. AMP ROO 241 IMO 143 141 2.3 PA AMP 7.3 PU 2.3 Pp. PP 3 It/see 2.3 3.3 It/.es 1.3 m ASP 3 pp OP 2.3 pp. PA 2.3 pp. PA 130 oF 143 7.3 PU 2.3 m PP 2.5 pp VP 5 pp. 01 7.3 PM 3 ppm OP

2 2

.. op n es TIME (HOURS) o . N M TIME (HOURS) TIME (HOURS) W

a 9 02 04 0 u 2

e . - N n N N TIME (HOURS) N M. TIME (MOURN) TIME (HOURS)

6

0 0 0 .0

7. o' I 2 o 1 2 0 0 N TIME (HOURS) T IME (HO URS) TIME (HOURS)

ti.

.... s. 44111 W,tI6r .14 .14, u u a , 5120- 512-120 O o o o . 1 o IBS o o I-+ o o o o CO - N M , . m m r TIME (HOURS) TIME (HOURS) CO N TIME (HOURS) In140 SIM 107 5.) 24/844 1.2 pp. kr 1.1 pp. PA SU343 16Or 14/844 1.2 pp. AMP 7.5 2.5 p ft as p FA 6 14/.44 pp.AMP 160 2.5 S q01 7.2 PE 1.1 pp. ft 160 1.1 PA p 7 pp OF 7.2PO 2.1pp.PP 5 pOf Is. NUN 11 247 N ! nor 1-4immeirm al 1104 .:-4 WM. 14. r-lm COIFr ' ..j 4 ! ...... 14 .... . Assirff.,e-* 0 ' *14 . o si, :---.114MENUM ...... Is i : # 0 44 ,...e ".10- e .. 4. '...... ".....,...... 6 ..,.... 6 .0.- a ....,' .6 .4,..0.0 ... 2 a ...-.. 2 .". 2 _2 2 a 2, a - a ... 1 0 0 0 sis 41 0 0 , N 4. TIME sin:01105s 1 TIRE 'HOURS) TINE MOUN, w F a 44. W 0 , 1 S..11111. asix.111 a o 9 ...... 444P 1 I a 04 U 04 ti 3 Z u 2 a 0 411110Caimssamallaomma mrasease Z u 2 a u 2 816111111MOIMmonmaila1 onmosce 100010011:2 I a. I TIME (MOUE/ T IME (COM M. T IME (1400116> ^IM i a

'&160 ii

II .140

O 12 -J 2

2 i 0 A es TIME 0101.111S) TIME HOURS,

10. .160

II" SI .140 .140 U U U 0 120 4 1202 0 I Or 100 -e-- 0 0 I ... V N N n TIME 'MOORS' TIME ,Noults TIME ..OURS. RUN 248 RUN 249 RUN 250 18

IP 14

Tharazauplas kcan-atz

.... 6 - ... 6 ac a (---1-1,10 Ik -6 at }..- -...... ---0-....-.-----.

$ a a a I I I I 0 0 0 0 m m 0 0 0 0 s co m we N MP ..I so 0 0 N 14 so TIME(HOURS) TIME'HOURS) -r DIa - .La 94 ""o0 TIME(HOURS) .c - ...... 1-. 8. DC . 1.11000...140.41/4 4, I...... 0).... I ..11...04, .....IL...... 1 1 1.0 at 6.. GC 6" 4k. 6 oic 5- a t-1--.b o5 a E-- I--s la e ....., U a (L" b 4- 04' zC 3 z 3- 4 , o tj 2 -) 2 odisariZiuzuhar. 7,V4, .74.* :00aztazatino x 231 a.14". a. 1 . 0 - co I -----sro co' co e 0 0 1 di to a. 0 c. 0' 0 0 O _. N M e -. tv r, 1 a) TIME (HOURS) TIME(HOURS) -r -TIME',HOURS ^180- u. sap a' 160- ...... ,...... ---. re 1C ...- -.2-...... --..-_-...-_%.'.....-..- -I" W zILI 60*- 0 - us I.. 4,"-',I L. 141.1.14a 110.1.411/44101A4 1.11 40 IAD . ai... 1 ..-311, U ka 140- U .11. IL z - 04 120 U. I M ft120 - I 1 a .1 to _ D 1.2.. 100 N- 10 m m m so lee, 0 m 0 0 a) o ... N m m M 1, ... 1 a) TIME(HOURS) 0 N F) I' MO ... .. TIME(HOURS) MO MO ....0....1 g ...o...... *coo ...00,...... "...o. ^ot .o. ... o. to >..6 - .. U- - a <-1>i, o .... - I 4 - oa.) u - au -i4 0 O - 41 J4 .7? IL 2 A.) "...... 0 G.*...... s...... * op 0 9 --. , CD 0 2 eD 0 0 0 I of I N IV V 0 0 0 42 ., 0 0 TIME HOURS,. o .. N 1.1 V 0 0 0 9 TIME (HOURS) St .... N M V TIME HOURS ) Run :252 11 /e

19 RUH , 253 Run : 251

714

6

MI NMsal.. rumNem ma ram MarA*. TIME 44^.0 a so *0 m m m ... m 0 .2 7 N M * ...... %* a;7 6- 1 6' 5 a O 5 4 cs 0oc 4 - 3- x 3 2 z 4..wesonstawiss1ts7all 0 2 :Zraxiassuo..auS4111 1 I 0 a. co ea 0 0 1744.11011Hazdarani or I 64 d co 0 0 0 a. ea ... CD Cl M 7 TIME 'HOURS) 0' 0-

TIME (HOURS) CD ^180- ,alw TIME(HOURS) w _ W w140- o wI40 - n t, w a a120- a - =120- m on.= Iona Mal Ma CW.maMAI .114.0 ISO 11. ...RS 1 1 1 1 1 f 1 100 111.40 m. aaos TIME(HOURS) TIME !HOURS' 0.61 to a - peeea",grft, 1. 6 4.0 0 u - o .1 4 J 4 2

" too ;44.10 KIAN 744.2 MAC W as 0 o o o cla N o o o taCksMS st TIME .MOURSr RUN , 254 RUN , 19- 255

1 Rua I : 236 TI4- o a * -6 a

2 m e m m 2 1 I I 0 m m 0 to O 0 0 0 0 O 0 0 0 - N m * - m m a N to) * TIME (HOURS) TIME (HOURS) TIME (HOURS) 8 8 7 a 6 6 a 6 o 5 5 U 5 4 4 0 4 z 3 3 3 u 2 2 2 Z a.I 0 o o o o o o o de o o o e m o N m a N M m 0 o TIME (HOURS) TIME tHOURS) N M T ^I8- TINE (HOURS) .. ^189 v. t16111..m-

112 U 140. w140 - tl a a(129.. U. _ 189. m m m : 0 o m m 0 $111tAIIm m m 0 I . N M r m 0 TIME (HOURS) . N M * TIME (HOURS) TIME (HOURS) m . s Ms ...... ,...... "...... ,, ILa v

)- 0...... m...... 600.00... 0 - 0O -I4 4 u w ...... N.....w.. , 2 m a- o m 2 0 0 a o o m 0 o o a 0 m - N M m a .. N m * O w M o TIME (HOURS) N3 -TIME (HOURS) T TIME (HOIMPql N VELOCITY (fox) A so SURFACE TEMP (F)N + 4 A 4 0 PHoCONO.CORR-RATE- 10 *.t -o 190- -4 199 ..... N In 2 S 0x290 300 0x209. 390. '200 399 , 406 490. . 49 N VELOCITY (fox: Gahm PA e PM,CONO.CORR-RATE NA,ftwAm4441A*AVAN 4:afiggir46 :200 199 190 1 S= 4 300 C'200 300 400 I 40 4414.14/W4.4 4. SURFACE TEMP (F) N.4 A es, PM,COND,CORR-RATE N 44 1.1 471 N 0 It) N Rf i A 19^4 A 00000 m-4 190 ns 100 x280 C UIC0 390 1 0x zee N 200 N3 190 490306 490300 0 0 -1,. 9 m m 0 0 M 0 0 (HOURS) w. 0 N (HOURS) 0 0 (HOURS) N (HOURS) TIME TIME .. 4 0 . TIME 4.0 TIME soluizInass 1 i 0 0 - o W 6 at 5 o U 4 O z3 0 U2 0 "180 w140 U o120 = 0 100 V 0 0 0 0 * 0 r 211 Nl m m 0 0 m 0 o m O. (HOURS) OURS) N 0 N (HOURS) 0 0 N (HOURS) RUN .... 0 0 (Hm ... immrIbbms TIME .. " TIME TIME ...... TIME .. . . ". 0 o « ..... 0 I 7 Z1011111Man - . 0 ? - -...... N. - . 0 r1 1 -6 at 6 5 - 0 1SS tee. ... 6 ..... 2 W 4 ^lee- 0120- J4 ft o U 0 z3 o & =16 W M wi49- (4 a w m 0 ; « « w 0 W 0 0 0 0 0 o 26 0 m 0 m 0 0 0 m Orfore. 0 0 N (HOURS) 0 N (HOURS) 0 SOURS) 0 0 N (HOURS) .RUH.11. Pow y. . TIME TIME TIME TIME 0 . o ... m 0 . sousioCialm 110 14- 6 - 2 -2. 0 Welly10 7 6 a 4 3 2 1 0 dt W II I.. U 4 2 RUN , 263 RUN . 265

- o o o es et o e . m ' o m m N N m TIME (HOURS) TIME (HOURS) TIME (HOURS) I.We W c R lisl.e...... weiroms, ca ' 7 . . a0 6 o 5 0 3 u o S . 4 O o4 4 z 3 g 3 o 3 C.)2 a., 2 2 net ma 4 o'01Nril a. a Corrosi n rate !waist.: a i 4. I " --4 ea o 6 so o ea o aa ... N m 11. N M .. N VI TIME (HOURS) TIME (HOURS) T I ME (HOURS) ^160- ^160* w U. "1e

1.166- &Ise- 1 : (04 w140 a120LL =o12- o - Ise. 30 a aro o 0 o ft TIME (HOURS) TIME (HOURS) TIME (NOURS)m a

.::09

I- 1.. 0 0 u -.I4 .J4 j4

2 2 2 o

IS TIME (HO URS) T IME (HOURS) SURFACE TEMP (11 ) VELOCITY f 44, PM. COMO, CORR-RATE N A N a R f t 1.4 0 N 14 ?t. I

811 x 260 z2 0 206 0

360 30 306. 0 4011. 400 A

VELOCITY ( 042 ) SURFACE TEMP (F) M.COMD,CORR-RATE f 10.4 N ft N N o -4 $ .0..0 $ ? t

100 1 I t i 0 0 I. I 2 4' re III a ow 20 z2 020 I 0 z" 2 c o N I e a a ... .. 300 I 3 3 306 0 0_ 1 0

VELOCITY CI 46 SURFACE TEMP (F) o N M.COMO.CORR-RATE R f 1.4 MISS I N ft 0 - 6 " Ts s di

-.106 100 111 1 SO

row a ;20 N x2 0 C C 2 260 C 0 3 1 3 3. a

400 40 400.

90Z SURFACE TEND ( F ) N VELOCITY ( vs) a T .N .16 is..411 ao...ftw^avo - PN.CONO.CORR-RATE I L " Rf * 1 ..4" . . ... In( .11 C :' . 114 IN....4 1. ) P I .4 1 .. m3.4 IGO. .. .1 i or 100 zt0.....Co a....S2co 1 la:241C I tite0z^; 20 , :z 3 11, .0 IV 430 4 411351 4,3 411 N VELOCITY 41. w f s) 6.6.44,(4) PN.CONO.CORR-RATE 64.46.666.44061116.161114 CIR 25 C2 25 C 4 43 11, N VELOCITY (f11) A DON. 4 ('A S AN.CONOCORR-RATE Rf * 10.'4 .1! I 41 ...NM& 6 ft 20ICI )1 I.- ISO. 4 2 3 1200 310 toco; 200. 311, 1 .-atz LOZ 4 I 400 4 , RUH 8 272 RUH 10, 273 RUH II, 274 pESalanaidIababedeln.

7

6 6 er

2 ym

m so m m o m m o m o m m m S m m m m m 0 S m . m m m .. N M o . N M * m TIME (HOURS) TIME (HOURS) TIME (HOURS) 8 8 7 7 "MMIMMWe 6 6 6 5 a 5 4 4 4 3 3 3 2 ...... 2 2 4=47. Ai AI 4 Yx=711 M/ilaaratairmr not Mit 0408f Cat peCpt -..-,aN24=ANIMIOC : ..) =aliraPerli a , 9 0 0 I) 9 a' .V 0 0 0 0 0 0 0 0 V m N M f TIME ,HOURS, TIME (HOURS) ~TIME (HOURS) ^188 - .I89 ^ISO- IL U. ti

110169-,0-. 2'1604.. m W w w140 wl49. wI49- u m- IL ta m120- 0(120 C129- 3 3 3 - m -

6 1 I88- .6 .4 I88 p ISO m S 0 N M ,* o * TIME (HOURS) TIME (HOURS) TIME (HOURS)

3. sft

0 -14 J4 9 2 O 0 m 0 2 2 O m m S S S m . ft m * TIME (HOURS" o TIME (HO URS) TIME (HOURS) N VELOCITY ( f ps) A 0 SURFRCE TEMP (F) N A PM,COMO.CORR-RATE.4 1Ik , ones 199 4180 1 4 _4100... x x.melee 260 n... 1280^m ^ 296 C , c0x269_ co o .... om .. C0 N 36649k 406_390 38 399498 II SURFACE TEMP ( F ) K. R I t 18'.4 O N VELOCITY (des) A « . . PA.00140,CORR-RATE.ftw.un vos s 4' s .$ o ; ?. c, ) 9 seems@ 1. , i ) -.... i ISO - ? 160- .198 e . : .10k , !...i . 14 .cx206 _ cx280_.^ Cx206,.3 - C0x^. 266 _ .. yoA o .... om ..... yom Nft 488398 388_400_ 306 486_390_ a N VELOCITY ( f os ) A . SURFACE TEMP (F) . . PM. COMO. CORR-RATE a ONAA0 t a ..... N O. 0 108 Goosoo100 - 4 108 Il I 199 .410 . I I x208Am x289mI x2083rn 3Irn CA 30 C0 399 3961 ; 2" 350 N 60Z 498 400 4601 469 RUH . 278 RUN 0. 279 RUN 0. 280 18

14 ..r *14 v 1 . .0 m ..'".. .1 .. ". 1 44. .0 N N

rc .4*

2 0 0 o s 0 m 0 0 s 0 m N m . N m v TIME(HOURS) TINE (HOURS) TIME (HOURS) e-...... 4 w g 6" 6' S' o8"8" 4- 4' O 1- z 1' 2-IM. 0M4:40174M07II .Pinek."1."1"41"446M" 6 0 . lir-----lr e m m m C. ml 0 - m m v 0 .. m e N TIME (HOUPS) TIME (HOURS) TIME(HOUPS) ^180- ^186. ^lee- 4 14.

W'_ w Y.

w 1 46- w146. 0146- u R - 4 m126- m120- m120- = 7 m - m -

l 4 106, 0 166 P e 0 0 100. 0 co 11. TIME (HOURS) ~TIME(HOURS) P.' TIME (HOURS) m N N 4.8

r, m. 0 r. -8 U 04 04 0(.1 -14

2 m o 2 0 2 m m m m m 0 S m m . N m . m m TIME (HOUR!) TIME(HOURS) TIME (HOURS) RUN St 281 RUN S. 282 RUN 8, 293

0 1

6

0 0 0 0 0 0 0 0 0 0 a * TIME eNOURS) TIME (HOURS) TIME (HOURS) w

o 5 U 4 4- z 3 = 3 - u 2 2. z 22=== z 1qgraia2= a a o m a 8 0 m m 0 tot i. m 1,1 O m m 0 O 0 0 M m . m m .. N M V 0 .. N M * TIME (HOURS) TIME (HOURS) TIME (HOURS) -188. 180- ',MI- a a L,. ... . a-168- =168- %168- w_ 1 048- w14S- 048 u stsraz a a a a128. a128- 4(128- = 0 . r -

0- I 1118. m 0 0 1411. I 1 e es a o m 4 m * ,* 0 . TIME (HOURS) TIME (HOURS)OURS) '"TIME (HOURS) ;34 .. N 411 8

0- 6 5 0 -14 0 4

2 I et el m m 0 2 0 0 m .... N M w m TIME(HOURS) TIME (HOURS) vIme ,Ll110S, RUN . 286 RUN , 284

X14 0 I w +6 oc

2

2 e m m o o 0 0 o 0 0 m 0 m 0 m m m m m 0 m e . N M . N . m .1. N M V TIME (HOURS) TIME (HOURS) TIME (HOURS) a W 7 Of* .. 11.44 OC 7 V.%0v...ft goom. 6 ft 6 6 ooc 5 U 4 4 4 3 2 3 3 0 2 4.. 2 2 1

, .21 m 0 O m m e m V N M TIME (HOURS) TIME (HOURS) TIME (HOURS) "188- w

t160 zawv

1. 1. w140 w148- u C U. 90(128- &120- o lee 188 lee m m m I 04 m m 0 (1 V 0 m ± TIME (HOURS) 11TIME TIME (HOURS) IOURS).r1I a.e e

3- I.- - U u - U O O 0 4 -14 -1 -14- W 3 W

2 2 2 m S 0 0 0 I os o m m 0 0 0 0 0 o N m .4. N M N TIME (HOURS) TTMCrunwip*,, Tfmge4m110el RUM ' " RUN 299 ow* RUN , 289 0 7 0 mr 1 4

-1

at at6

e) (* co as co O O co (HOURS) co a) co TIME rn m O m N * co co TIME(HOURS) o m so 01 M 1- F 8 TIME (HOURS) 7 -.""r". p.. 0 7 ...... - 6 of c7 ....,. 6 a: ...... 3 GI I 4. cs 6 4 o5 4. c., Us5 -4 U 3 o 4 z3 0 2 0 z 3 C.) 2 . o 1 z s C.) 2 o...... O z 1 co 0 M 0 4. 0 m o m TIMt H. 011 RS) 0 o co 0 N r-, o o o -TIME m ... 0 co ^189 .1.011113. N M u. HOURS) ...

-tu wiaa cu (040- ft120Is. c (A o "" (n 100 I 6: m 10 / I iso 0 a of O 0 m 0 ' ms co -- o TIME(TOURS) M Al s O to o in ..- O -TIME (HOURS) so 0 0 0 .., . m ... * ^ -TIME (HOURS)aS) . y. , e - 2 ...... - * ow ' _14 U w 0 ...I 4 CY n...... 0 2 t --. . s a) i 40, O "4-1: 2 0 O co s N r) ,.. co 4/o 4/ TIME ("u") TIME(HOURS) o o al o . cv M ." TIM'twilit." RUM , 291 Nal 17 n. .. 1.. I . .

7 11414 I f a o 0 0 0 .. N n o 0 0 fib .. m n TIME (HOURS) Ilme(145 TIME (HOURS) e W c 1.41.6 7 C %me 6 6 a 6 a o 5 o U 4 4 0 04 Z3T 3 z 3 u 2 0 =Q 2 U 2 a. 1 1 a.za 0 et el 4' 0 ' 0 0 O 0 0 O ...4 N m TIME (HOURS) TIME (HOURS) TIME (HOURS)

11. 1. 6,1aaane .45NW% 'a. y1146 M. CU lib 120 0

511 0 IMO 01 *0 1 0 .. N M y TIME (HOURS) lbws (1011 TIME (HOURS) 49 0,5.01

1. U 0 0 4 J4

2 2 1 1 1 1 41 5 el 1 41 2 O 0 0 0 0 -. N m 0 4. ... N m N M TIME (HOURS) CO TIME (HOURS) TIME (HOURS) 1-4 st. RUO , 295

RUH S 293 RUN 0' 294

O./ _eel*

m m m m 61 m e 0 -. 46 . N m 2 m TIME (HOURS) O 0 0 O - TIME (HOURS) Vs 9 TIME (HOURS)

6- U _6 ...a 4 J4 04 2 ea a m o m O - N m 2 4 TIME (HOURS) o 0 2 O 0 m "ISO- m .. m m y w m o 0 TIME., (HO , ... TMURS)__. 0 N m 41111. TIME (HOURS) LL L160-

=160 - a-

- W 140-, w U 6120- a120- 6 - = 100 o - 0 100 0 TIME (HOURS) O .0 0 TIME (HOURS) _ m 0 7 6 6 3 4 4 3 3 2 2 F CT 0 0 6 TIME (HOURS) TIME (HOURS) TIME (HOURS) RUN , 236 RUN O. 237 IM RUN 0- 230

S 14-

N ' a , ... 2 r,,woroworowwwwwww -2

N n N .. N n TIME(HOURS) TIME (HOURS) N n TIME (HOURS)

I-6 U 3:6 A .44 N 3 2 2

^14u TIME (HOURS) ft ro TIME (HOURS) TIME (HOURS) w^166 - ^IVY. =IRS 6160- . 6 140, N w14 4r U wise w140 U U ft 12 2 a120 4[120.. 2

, 1I I I 100 0 0 1 TIME (HOURS) 0 0 0 S TIME(HOURS) TINE (HOURS) Wgo w g 7 0 a, ft ..1101, a .M.1400....010e+.ftftm 6 4 S ft a o3 O 4 4 U U 4 4 1 03- z z 3 2 U2 LIa z I

o. ft TIMEINCURS) ft ft TINE(HOURS) TIME (HOURS) RUN # 300 RUN 0 301

RUN # 299

18 010805)

7

I yearL01.4.1.5110.002 3

1 3 100 7. 700 3044 N313 MOWS, lit (N010110

as 140 Mt 04000) 101 1SO :261 saeM IN as 1 70 M. M. 70 a go so r. a 1.0 300 30 N. 1M 10 040111111) ma mamma 10 310 230 3811811104.01.010001055400% 108 001 11011.410003000001110. 4111811810.004/440011014.01. I I I I I 11\ 3 I

1. 00._ 101 4.. 310 301 11111 NO 3111 0 -1"e 0400110 01 C0110811.1 1141.8 NI1110313/7 0 11011001.1 111r C0011CON1 10110.0010117 218

APPENDIX 6

COMPOSITE PLOTS OF SELECTED RUNS SMOMME Nom.. 41. Ide P Crier* 219 O. pi zaru.t. Cr , 4 u. 1411 P gala 5.5pm N 1 los 154 NO HIED/ . I N.

SAS

a

a Sops IMP .10

I AS ais 1101./11 1135.511 2415 Ear .15 Ass 1sw MAO asr TD 0101M TINE ONNOID Fig. 6- 2 11111 1aa. 1113. Irst 4 terra ea roma al1 sr errs arrears. 11. Fig. 6- 1 alarri N Calls.

a

I

I TD (H .m$ Fig. 6- 3adrartars. « Narr Copi. rarer. N.IN at arr. 311 mit tram Fig. 6- 4

1441 N. 3 MOP. IN HO .1pl

tile" -..,1.30.-4xi...Ls tu..6 woos .

ULM tam TINE Fig. 6- 5 Wien el pm r orourt riser as1 mars 1111114..se. (HOURS) rarer N Co. N. I PA altar af radar r arr. 011 ar _I_ rarer. Fig. 6- 6MOW. MI 545.N. ) WIC 3 IS NIMES 220 SI SW, IL LS SP ND rin, 4 is. LS I 6.0 4.4 t tam Itiese 111/11 . I tJIS ...'....

12.111 ...... ALSO Is. al t So ISlee O T .' ..

1J/ ..t.:f

1111/11 ISM man TIME imOuRS/ 120S OONAIND

Fig.6-7 is".". 717 M.... se1=44. P enISMO Fig. 6- 8 4444 USW, es 1 a al 4Sgns msossows.

TOG TINE MOMS Fig. 6- 116.1 a . I 1464 .111 r. 460. Mr WI P a amass .4/4//as r 84. nposomra. Fig. 6-104144444 SI PI. SM. Ns Is. 1.1 so b. Ls w. LS so P.so a.

Tin 1110110

1/ asl 4.444. 44111444mos TINS (MAW Fig. 6-11 Mon 411InSou 44011. ISE 14. LS ma SI. LS ma Et 1.1 W. GS. Fig. 6-12 aim of 01 a ammo woo/ ad mins mons.. asersa. pm Mk .. LI as W. sp 1.1 .a t LS ape N. 'S i I IL I- guya. w 1141.41 blocfs UN MU* 0.4111 M.1111111 wars. el 441 Fa MIRO* la 1: g O et a«..sa. olosa mama. to .La Wail lirrylea LL UNI 111431N0. 41, 014 is 40111110 MUM ISIS14140L 44 016 NI MT mums sevr. rP O I. 4/411 4; th;%;;;Ititt. ;6;;;;1 litil ;11;;;; gill I! . 1% a. II I. N1' b \ - c. ..., tt ...cr \ r . ... ill %; i / 11 t 1\ i : : . % I. ill %.. I t C Ilia i I i 14 ill 1: I t c q.t it g IIa ii % if ii ! II I \ p; .` i: I° C; s \ iir . I\s II g- I ! Fr i :If \ il I ass Is _r \ C6 F i 1.: I I I I I. I 'A i III E I ill e Is i ; 1 CI I f t 1 1,1 1 II II r I

11- II

MIAs 41411111141101411. 11/4 01«. MI voi11 MUM 1.411.11111114. OW* 1411 mow POLON, 1114111T4N114, 111444 W44011411 /411 I I-AaL Willi IPS ID.L. 1,1111.710NOSSIIINV 111111111111111 aura es swum ior vonsuese annum 111111/4 se *oars oat vssrasnal suns. II WAWA w P.LJI 1./81 iONSILOWINI ow. el was was nwasals arm. aura w wan W/AI ./WWWWWII um NM. BM ra

Imo IN OlAw

../...... ".."...... In III s SA Wm ...... -- rXS It/ Tat 01011110 Tit 010.0 Fig. 6-32 TMB MI r=Moo Fig. 6-31 ow. mamas/ ommlint all =Mr ammomre.

roe.LS OM IL SIN MM. 1.11 SIM

eam Ma . Wow 4 ." /es' a Woo

WYIi.e Woo

0.:011 ILO

TITS CNOURIN TOE MOUND Fig. 6-3360... a ars., 0 ml mime Imemon. Fig. 6-34 mime mown...

COMPOSITE PLOT RUN# 251 & 252

Fig. 6-35 asil." ("°". )dt sat 225 COMPOSITE PLOT RUN# 252,253 COMPOSITE PLOT RUN# 275.276.277

sa 1$ 17 RUM271 im) 24 HI KM 275 tip 22 111 3.0 117/811C 1 140 F 3.0 FT /SIC 20 1-5.5 pH 150 r -7 pr 1.5 pit is 13 Si OP -5 pp is ti 5-4, OP 1 10 - I.1 TUN 277

COMPOSITE PLOT RUN# 254,269 COMPOSITE PLOT RUN# 255,258

17. 17 tO HI II 15 14- i4 13 13 - 12 12 t t ti 10 10 . 11 8 a. RUM (U) 7. 7. OW 234 (IS) a. I 8 8.0 FT/UT IGO r 8.0 rwoom IL 5 PH 150 r 4-5 p0 s.s pN 3- 9-11 OP 4-5 PP 2 2 - 4-5 OP 1 0 100 200 300 00 100 200 300 1551 (HOME TOK oox.P.No). # 21111 0 254 410 Fig. 6-38 Fig. 6-39

COMPOSITE PLOT RUN# 260,263 COMPOSITE PLOT RUN# 254,255,256 111 15 17 17 10 111

.14 iIa 13 13 12 12 11 it 10 10

7 7.

$ 5

3 3 2 2 t 0 100 200 300 75K(HOOK) Fig. 6-41 Fig. 6-40 o .200 41 203 8 us 4TUli taill" 254 226 COMPOSITE PLOT RUN#263,264,265 COMPOSITE PLOT RUN# 254,260 IS 17 1 IS 1 13 12 11 10

7

3 2

100 200 300 00 300 300 010 Fig. 6-43 as,2111"el% 200 Fig. 6-42 263 :11 u4" 2116

COMPOSITE PLOT RUN# 256,262 COMPOSITE PLOT RUN# 257,258 2 1 7 ill 11 17 i1 IS 14 3- i 13 2- 12 i; 11 10 S.. 1 IM 267 (SI) ISM 22 (/S) 6 7 1 7 rT , MON +43 PP .1 4.41 PP 3 4.41 OP 1 3 311 or 2 2 0 .P.11.101.1111W51111.9."17 10 300 300 000 100 200 00

Fig. 6-44 I My" ("nil% 262 U7any 0401001)2.11 Fig. 6-43

COMPOSITE PLOT RUN# 278,279,280 COMPOSITE PLOT RUN# 281,283

111 17 17 IS IS IS 10 '4 14. 14 13 13 12 12 11 II 10 OUN 262 (Can) 3.0 'Tam 130 r 7 ..5 04 RUM 261SW 4-5 PP 3.0 117/25C 3-6 IS or 130 F 2-4 463P 6.5 001 3 4-5 PP 5-6 or a. 2-4 HEW I 40.141 o tie 300 300 00 TINE 0/0(.101) 276 781 ( re) 200 Fig. 6-47 ni XU Fig. 6-44 COMPOSITE PLOT RUN# 284,286 COMPOSITE PLOT RUN# 287,289

IS 17 RUN 207 iii2 . IS 3.0 rTee 14 . 160r 7.0 pH 13 4-5 PP 12 5-G OP 11 RUN 2 (Cu/N1) 2-4 HOOP 10 IS 5 - 3.0 mac 141 RUN 289 tag= 5 . 130 r 12 7- 7.0 pH RUN 264 taw 3.0 mac 10 IGO I' !I 4-5 PP 5-G OP 3.0 MOM 7.0 pH 2-4 130 r 4.5 ro, 4- 7.0 pH 5.4 OP 3 4. PP 2-4 HOW 2 5-G OP 2-4 HUMP 2 00100: O O 100 300 300 400 100 110 400 jest (MUM) Fig. 6-41 aa see Fig. 6-49 NW Ma

COMPOSITE PLOT RUN# 293.294 COMPOSITE PLOT RUN# 296,297 IS VI 17 13. IS Vb. 1 IS. 14. 13 . 13- 12 12 11 - II 10 . RUN 257 ijap 5 RUN MK gup 7. 7 .0 mew 5 I!: rooM 5 4.1 PP 145 r

3 3 4-5 PP 5-6 OP 2 2 " 2-4 14500,

0 0 O 100 SSIO 300 100 300 300 400 ftic (mows) Fig. 6-50 Fig. 6-51 125a114 (111011. 211111 0WS 207

COMPOSITE PLOT RUN# 299,300,301 COMPOSITE PLOT RUN# 284,287

17 1 IS RUN 287 (IS) 15 3111 i 24- 3.0rristc 13 22 12 30 . 4.5 pp 5-6 OP 10 1 2-4 NSW 14 - 7 t RUN 254 (SS) S * 3.0 rriscc . 7.0pM 3 4-5 PP 2- 5-6 OP 1 2 2-4 HIM 0 0 100 200 XX/ 100 250 300 400 Fig. 6-52 7165(Mira% /ass *In WS) p 301 2S Fig. 6-53 228 COMPOSITE PLOT RUN# 286.289 COMPOSITE PLOT RUN# 295.298 30 30 311 2$ 10. 01.111 295 (AD) as 30. 3.0 rT/sac 24 145 r sa. 22 30 . 1440 ao IS. 541 OP 111 2-4 1.111))P IS 10 14 la -4 12 le 10 S 41. 4 2 0 0 100 0 100 300 300 400 >a 300 _1sTS5 (14 0U05) Fig. 8-55 mpg 00101115 Fig. 6-54 0 01 MI ISO

COMPOSITE PLOT RUN# 281,284 COMPOSITE PLOT RUN# 265,284 1 17 II NI 14 4 13 12 11 I41 11 II 7

11 5 4'- 3 2 1 0 100 200 300 40 Fig. 8-57 Sri1511 (1901100).100

COMPOSITE PLOT RUN# 275,278 COMPOSITE PLOT RUN# 283,285 IS IS 17 17 15 IS 15 15 14 . 141. 13 13 13 12 11 11 10 10 - SUN 251 CciattV 5- 9 5 5 SUN 2115 (ea) 7 7. II .1 141÷0 &Li:UM I S. 541 OP 130 r 4. 2-4 MEW 3 3 5.4 OP 2 2-4 MVP 1 0 0 0 100 200 300 *SO 0 100 300' 300 Fig.6-58 Tag (muss) Fig. 6-59 275 27 (""fill), ass 229

APPENDIX H

DEPOSIT COMPOSITION 230 TABLE: H-1 CHEMICAL ANALYSIS OF DEPOSIT COMPOSITIONS ( 1 et ) aaa SOMS8841228811.

1,1,11011 I lADIITIVES I) Na 11, Al Si S Cl K Ca Cr Fe Co Zs P Ni Ti 11 as as as as as as as as as as as as as as as 1: Na28 1110 A1203Si203 S03 Cl- K20 Ca0Cr203Fe203 Coo ZnO P205 Ni0TiO2 11 11 11 123 1,2 xx 5 65 4 1 25 .1 xx 3 70 1 xx 5 2 20 :I 124 1,2 11 5 60 3 2 30 11 i 125 1,2 11 .. 1. 129 4,5 46 1 5 49 11 41 1 1 9 47 11 IS 130 4,5 .. SI 57 1 1 3 27 .. 1. 139 1,2,3 .. ,1 149 1,2 5 1 43 9 3 28 1 .. 1 $5 4 1 32 1 11 s: 50 1,2 3 11 :I 151 1,2 7 2 47 1 9 9 3 17 152 1,2,6 x x 21 1 1 3 36 1111 I' 153 1,2,6 x x 20 1 1 3 35 21 1i SI x x 26 1 14 2 31 x 1I 11 154 1,2,6 .. 1: 161 1,2,6 x x x x x x .. 11 x x x x x x 11 162 1,2,6 .. x x x x x . . 163 1,2,6 .. 11 164 1,2,6,7 1 1 7 1 1 29 3 16 39 .. 27 4 10 31 1! 11 6 1,2,6,7 2 6 15 2 3 :1 166 1,2,6,7 1 5 12 1 2 27 2 12 38 11 11 161 1,2,7 3 9 23 8 3 29 16 5 1 2 II 01 177 1,2,7 1 6 28 xx xx xx 25 xx 4 17 xx 11 01 11 2 12 35 xx xx xx 30 7 14 xx 11 178 1,2,7 1/ 1,2 1 5 48 xx xx 6 2 38 xx 11 182 ., SO 3 4 54 xx xx xx 6 2 31 xx .. 0. 183 1,2 .. 12 4 60 xx xx xx 3 3 18 .. 184 1,2 .. 7 2 67 xx xx 6 xx 21 11 1: 1 1,2 .. 15 1 63 xx xx 2 1 18 .. 11 18607 1,2 .. 26 .. 11 225 1,2,7,8,9,10 6 23 17 19 6 3 f. 1,2,7,1,1,10 7 20 17 11 5 3 29 11 11 226 11 4 2 21 16 2 2 2 17 2 6 1 2 23 11 228 1,2,7,8,9,10 .. 229 1,2,7,8,9,10 5 2 18 15 3 1 1 18 2 6 3 26 .. 12 1 1 2 1 29 1 9 43 :: 11 231 1,2,7,8,9,10 11 5 1 1 27 1 1 1 8 40 0 1 232 1,2,7,8,9,10 12 3 .. .. 1 1 3 1 34 1 8 42 11 237 7,8,9,10 10 .. 11 11 238 7,8,9,10 7 2 1 3 1 37 1 4 44 11 II 244 7,8,9,10 3 3 3 8 2 41 1 1 37 11 11 245 7,8,9,10 4 3 1 2 1 41 1 2 45 It I: 246 7,1,9,10 4 4 1 3 1 41 2 45 1 1 1 2 2 1 54 1 1 36 I. II 247 7,8 9,10 .. 2 41 1 27 .. 251 9,1f 7 15 ,. 252 9,12 7 13 2 1 48 28 .. 24 1 1: II 253 9,12 1 9 1 19 2 1 40 1 1 2 6 3 5 3 38 1 1 1 39 11 II 260 10,12 11 4 3 5 5 42 2 1 1 34 11 261 10,12 2 11 1 3 3 4 5 49 2 1 1 31 11 :1 262 110,12 .. .. 11 263 10,12 3 5 4 6 4 34 2 1 1 40 1: 11 3 6 4 7 4 32 2 1 1 40 264 10,12 11 1 1 40 11 1 3 5 4 7 3 33 2 II 265 10,12 .. 5 5 4 6 3 32 2 1 3 40 .. 1: 270 10,12 .. .. ': 4 5 4 7 3 33 2 1 3 39 271 10,12 .. .. 11 6 4 1 7 3 25 5 1 3 38 272 10,12 11 5 4 14 1 3 19 5 1 2 38 11 273 1 10,12 11 11 274 10,12 5 4 9 1 5 25 4 3 3 34 If 39 :1 11 275 10,12 6 5 5 8 4 21 2 1 3 11 1: 276 1 10,12 7 5 7 3 29 2 1 4 I: 11 277 1 10,12 6 3 5 7 3 20 3 1 3 38 11 11 278 6,12,10 5 5 4 1 3 30 2 1 2 41 1 3 39 :1 :: 279 6,12,10 5 3 4 6 3 32 2 4 7 3 30 2 1 3 40 11 1: 290 6,12,10 5 5 11 39 11 1: 287 1 6,12,10 2 3 11 11 6 21 7 1 1 1 1 38 11 1: 288 1 6,12,10 2 3 12 8 6 24 6 43 2 1 1 34 II :1 290 6,12,10 2 3 3 5 .. 4 33 1: 291 6,12,10 6 3 4 7 3 33 2 3 11 293 6,12,10 4 6 4 6 3 33 1 1 1 1 1 37 11 11 294 : 61210 3 S 4 4 33 6 1 1 1 40 II :1 295 6:12:10 4 6 4 7 3 33 iSSIS8888288U 222222 WS* 222222222 2881112 222222222222 882282 2222222222 2/12SMESUOUS8811228811USURSIMISSUUSIXSUMS 1) 1:18-22 ppm chromate 6: 2-4 ppe HEIP 11: 2- 3 ppm orthopyphosphahosphate te 2: 3- 5 ppm zinc 7: 2-4 ppm polyacrylate 12: 4- 5 ppm pod 3: 200 ppm suspended solids 8: 2-4 ppm AMP Present detected, assent mot determined 4:36-44 ppm chromate 9: 2-4 ppm polyphosphate x: 5: 6-10 pps zinc 10: 5-7 ppm orthophosphate xx: Present im small mood l (.51 1 231

APPENDIX I

NONLINEAR REGRESSION 232

The regression equation given earlier was

Rf = R1*(1-exp(-(0-0d)/61c (5-11) and the sum of squares of the difference between Rfi and Rf* is:

SS = E (Rfi-Rf*(1-exp(-0i-8d)/0c))) (5-12)

In the analysis of the data, a fixed value for Od was used to find the values forRf* and 8c which minimize SS, the partial derivatives SSS/SRf* and SSS/Sec were set equal to zero.

SSS =0= -2 E [Rfi-Rf*(1-exp(8i-Od)/8c))][1-exp(-(0i-8d)/fic)] SRf*

or

E Rfi(1-exp(-8i-8d)/8c))-Rf* E (1-exp(-(8i-8d)/0c))== = 0

and

SSS=2 E [Rfi-Rf*(1-exp(-(0i-Od)/8c)))(Rf* (0-0d) exp Sec oac2

(-(8i-Od)/Oc)]

or

E Rfi (8i-8d)exp (-(81-09d)/8c)-Rf* E(Oi-8d) 1.1 (exp(-(0i-8d)/8c))

(1-exp(-(9i-8d)/03c)) = 0 ( 1-2) 233

Using an initial guess for 8c, equation (I-1) was solved for Rf*. Then the values of ec and Rf* were substituted into equation (I-2), and thesign of the left side of equation (I-2) was noted. The above procedure was repeated fornew guesses for ec until one guess value of ec was found, that madeequation (I-2) negative and another guess of ec was found, and that made equation (I-2) positive.

Regula Falsi method was used to converge the value of ec within .01 hours. This calculation procedure was carried out by FORTRAN computer program run on IBM PC written by the author.

The correlation coefficient, r=, was calculated using equation:

rs E (Rfi Rf = - SS 1-1 r= f l - L1E (Rfi - Rf )= where:

Rf = ( E Rfi) /n a a a - I (raa/a a gas) le " 3 3 Z 2 " 3 3 2 ° 0,11!.,*:tRil^ rue/. .4 cal ',..o6.(//) 3 3 3 3 3 ; 235

RUN 125

124 20 111- 1.- 17- 1 4 0 10 - 13- 12 11 10

11 7

11

3 2

100 200 300 Two (11

RUN ON RUN 127

2.4

4

a-

1 CI 13 0 OD oo 0 0

1110 40 110 11111 1E1 1441 100 100 Sr O 40 110 l 1110 SOO 240 1311D (D01. 11111 DODOS

RUN 128 ALIN 'a

O 000 0 0 0o Cia 0 0 S, YYYYYY 1...1111, TY a 11. NO iM 1611 1110 /SS On LDS (18011110) SD 40 10 100 120 140 100 1110 100 now Dew* 0 0 a a 0 a a0 I 0 a 0 0 :a -8- 8 .8 3 " 3 " 3 I. F I T w l 1":3'd-:371;3;°y t. 11 5 v-ot4ruo/a ns e..w su 0 1,0'4nm/a r-u) (ruala e.u) 'at ry

VI 3 gasia a (al V-esUU) g-gu.(fue/a w g-u) nu)/a .(r) 238

ext 147 sa10

O ,doodA- alb I. lab 3 lab 1 SO 111 11111 MO a= no lam an= n Ow*

1 la MI la

7 s:

3

2 I 1/*°1"WibdWIr:1 lab 1 1 11 at alms am= lbw awe

a at 151 1 le 10 14 17 1 13

13 11 11 II 1111

11 rI 7 7

3 I- .

111 a 1 Ilma posy Tao (kw* I

-I

- II

T1 il 0 4 11II A N A 3 0 I 0

2

3 I .1 r.T i.- 0o 3 3 ;3 3 ;;3 ;°

(num/ a um e....u) 13XPII111311 corona' 1....otArusia.1 11-44'am nu / a Ai ru v...ot.(a0 iS I b -a i ! -s a I1 ir Ii ese/4 el C. 1,444,11) nae/a e..Jr 1,41Ale) ...ocAnaiehl B.A. le O O -a a

O O O 0 a eesAnae/a w z..es) *.et . (nue/a " c.-r) es 14I 0 Outo/a w 10.10 V71.420.11113e winner O -s 2 Ip -I 0 -I I 8 -1 r a a N $ p 8 -9 I I I -8 0 a 1 w I 0 0 0 01/0/40 101 g.0.0 Ne7o300101830 1011100d o (floo/O w mooLa) Nak.020011100 09010011 0 eu0 /4 or woo sooto(m) eD

vvl P 1

T itI - 3 33 3 3 ;

a

^

a a 2 iA

a

-A L

O A' O

(ALIVA '141.1:1110.18111311Dunned (nembe w tv.aa) wevaeuevessasses asennot nue/a ae was ....andana I v _l I F 1 I T I 0 ....e..(nae/ A.. ic.-11 'am .....et.(rual &Ad 'RI s...ot.(nas/4 MI r..4 "ma Cs 1 _s_a

Ir At

iF S

1Its A 0 O ....rst(ru la t..44 tr...orts(tus/A As ddddddddei.eat) 'IN A.torts(tua/4 N 11.40 'me awrse-4. Ira .IV M. an-2 ger r/Onir up-4. Founo goasnoscavos. ASIU) .C:CC-;:;;.C:C It CC::: a C :--6 I C V I a 0 1M I O - I I 1I e 88- VC 0 0 _I I 1 It a a a a 8 I la. P la, .1,11etg,41,1!--aliv.q, "el diodoe 8328;8 T i0 I 0 -1 I I a -8 aan Wu .1,01404 . 0 (rv*fa VIkaratfristorini ilunnao 0 ...04 (N1/4 e40 1411"4 yr. (Ira At. (fr21 Ur,* O 0 !CC:::1:::-.L 1111AS (fril kr PAM) L I se M /Tr) 10 O O a IV O O O 8 I -I 8 A 0

e ...et.(flo/a w r.-40 aas s.....ot.(rue/a w r..4s) " 'sr (14010^4. W.2 kr PAW (1111).111".4. Ir.2 11r IIVIVRO (w"3 t. //)141. V C

V .ecettstre--. 1 ILL IP is .4 0 o 0 I C II I C 251 RUN 255 70 10 -4 111. 17- I0 - 1- _12- 11 10 0- 5 7 - - 4

2

1 0 0 120 100 2011 240 f. 40 110 120 100 200 240 71554010m0 1 (IOC

LIN 157 ROI !NI

ID 40 00 SO 100 120 140 140 II* fag DIE (10015

NUN 210 O 2 22- 20- ,1 - - It -

10 a- a- - a-

0 . . I . 20 40 40 40 lb.. Ourr40

" 3 3 3 a 0 Nil/ 4 141 of . (nW " e..u) 'so ous/A r Rao 1p.t.011) 254 NM 274

a

0 aa

10 10 30 40 O 0 40 SO 40 100 120 140 MIK (MM. Thse Omni

SUN 770 MUM 277 20 IS . IS If IS .

0 14 0 0 13 12 - a II - 10 - .

7

3 -

1

0 O 10 40 30 40 SO 10 100 120 140 0 110 100 120 140 Tim Sewn. 711Is Ossol.

IOM 270 20 RUN 279 111 IS I 17 IS . 17 111 14 IS 13 1 12 - 13 11 12 10 11 10

7 7

3 2 3 a 0 r If IF .W TIP O 40 II 10 120 1110 200 240 WO 100 (1411171 120 100 240 71111 010110 RUN 280 255 GAM 71

a ie Ile lel SID 11111 Pent 151 01

RUN 283

111 a 11. lie (110 110 MOM

t

12:

lo to IUD 1 141 IS 1 enwa Tim (1 RUN 288 256

11

I- .S. . a

Sll WS lIlS 1411 INin SOD COI 01111111111

NMIla a 111111 Sill a i ID

SD is 7 II * . a a a a a la 'a la 1a a a SD 7'a.01... Maal

! i

I

a ID 11111)1111110

258

I.

X

3

1

Ile IS IS (11110111 mit Imo 259

APPENDIX J

COOLING TOWER WATER QUALITY

Total hardness : ppm CaCO3

Calcium hardness : ppm CaCO

Sulfate : ppm SO4

Chromium : ppm Cr04

Zinc : ppm Zn

HEDP : ppm PO4

Silica : ppm Si02 1113 JULY

0

20

40 $O

120

180

1113 JULY 26 4.0 1.0

0 111 .=mill 0z 7.0 1.5 0

1.1 0.

IIII 1111111111111111111111 2.0 2 r11.11111 0

10011111rill...... o11.41111111111111111 .o 2.5

1111111111111 11111111111111111111 011111111111111111111

I 11111111111111i

10 111 I

260 261

100 -4- "111"111 11.11.91107

GOO .111111111"thiql I- < 1/11P11"1 LL WATER QUALITY -1 E3 Ca HARDNESSAUGUST19611 600 60 3 CHROMATE Ii O Mg HARDNESS 0 0 SULFATE CC A ZINC " 400 40 X I II a 0 PUN I If

20

1111[1111A °111111111i k 25 AUGUST 1983

111111111111111d11111111111111 2.5 9.

III I 1111111111111111111111111111111111111H

2.0 4. 11111111111111111111111111111111111111111 .2

1.5 7. 1,11111111 I I kiliiiititt11041110111 .0 8. 0 II"11111M2=11111111111051111.1.1111.15 AUGUST 1983 262

100

80I I. 111111

w I- < 80 NAN .0011Ndillion LL

CO CO a 2 CO w 0 z .. . 0 400 i ' 1 I 40 . -4

0

20 omm.... . Iryi0011.0 usiiiiiiimi.° all111111. Immiliqh4r1WIWINOMMWWWWW 0 iiiiimaginnwidAggigaimigigiwfilwawwitAA 1 5 1 16 2 300 SEPTEMBER 198320

111

111

-2.5 9.0

2.0 8.0 0.2

1.5 7.0 0.1

.0 6.0 30 SEPTEMBER 1983 1989 OCTOBER 30 1.0 26 20 16 10 1.0 I

0 z O 2.0 7.0 1.5

S. >- 2 2 8.0 2.0 0 p 2

11.0

1863 OCTOBER 0

200

40 400 ". 0 aa. tu O CO

CO

_a

SO

100

263 . .11111100000, x . : : , :..: 411., . .

us oluimmilimmillilloilibli .1000011101101,110.,,,i I'

II 11 .0...... ,,,...._-111.11,11ii

11 III 11111111111 Iollomilimillimiliimmil11111ii "" 1110011111illiiiiiii iiiimilli

1111111111111111111111111111111111111111111111111111

1011111 1111111111

111111111111111111111111 .,.010i011 iliiiiligil 265

111111111111111111111 WATER QUALITY JANUARY 1984 a Ca HARDNESS 0 SULFATE CHROMATE 0 TOTAL HARDNESS O Mg HARDNESS 0 TOTAL SUSPENDED SOLIDS 0 SILICA A ZINC 11 I

RUN 134 ! 1 RUN

1000

800 1 eoo VON 30 400 'IubliowlamoillinkulAwnOwi6wwww:001111 20 a WINIENNNOMMENINNUM wormy 10 200 wanilibmemmummummINNOINI 0 I- ".12-V0t110===utlttuilinim10 16 20 26 30 JANUARY 1984

0 CONDUCTIVITY A CORROSION RATE 0 PH

2.5 41.0 lumull Rua o, f gUa 14 um14 PUI 14

2.0

a 1.6 7. 2.0

1.0 41.0 1.0 6 10 16 20 26 30 JANUARY 1984 1400.111 266 OTrial Hardness 1218.00 Calcium Hardness O Sulfate 3Total Suspended Solids 1010.00

900.00

600.00 4-- RUN 140,141.142 1 RUN 143,144,145 RUN 146.147.148--a

4011.00

2110.01

.00 1 13 21

0 Silica 0 Magnesium Hardness 0 Chromium A Zinc

70.00 d---Run140.141.142 1--Run143.144,145---a0- Run 146,147,148*

1LN

7.11 Ore 4 cowman 1770011o/00. cceeosiali UTE (lEY) 6.11

5.00 RUN 140 NUN 143 ROB 146 4---- RUN 141 RUN 144 ION 147 --It 1111 142 RUN 145 NOM 146 4.011

3.11

2.1111 -

d 21 FEBRUARY 1984 100.00 267

90.00 0 Silica Magnesium Hardness 80.11 0 Chromium Zioc

78.80

60.00

50.00

40.00

30.00

28.88

111.01

.110

14N.110

CITotal Hardee.. n Calcium Maass* 1214.00 0 Sulfate a Racal Smspeaged Solid.

1000.00

800.00

600.00 Rum 146 an 147-4 Rua 148 400.00

200.00

31 .00 11 21

9.00

8.08 Q PH cortavcrivinposo(01) 7.80 CORROSION RATE (MPY)

RUN 146 RUN 147-4 RUN 148

5.00

4.00

3.00

2.00

31 21 26 1.00 11 16 MARCH 1984 268 1400.00 0 Total Hardness et Calcium Hardness 1200.00 gHmaaealue Hardness Sulfate

1000.00

800.00

600.00

400.00 Run 149,150,151 152,153,154 rRun 155,156,1574

200.00

.00

50.00

0 Chromium 40.00 Alzinc tT HOP

30.00 Run 149,150,151 a1--Run 152,153,154 lean 155,156,157.4.

20.00

10.011

5.00

8.00

7.00

CIFR CONDUCTIVITY (WINO/CN) 6.00 CORROSIONRATE(*T)

5.00 RUN 149 RUN 152 RUN 155 1RINI 150 RUN 153 0018 156.0 4.00 RUN 151 RUN 154 RUN 157

3.00

2.00

1.00 APRIL 1984 269

O Total Hardness 1400.00 A Calcium Hardness 0 Magnesium Hardness *Sulfate 1200.00

1000.00

800.00

600.00

400.00

200.00 Rua 155.11-Run 158,159,160-11Run 161,162,163-1 Rum 164,165166 1,..Run 167,168,1694 155 157 - .00 21 31 1 11 16 50.00 -

12 Chromium Zinc 40.00 - 0 HEDP

Run Nun 55op-Rua 158,159,160.0.-Rua 161,162,1634 Run 164,165,166 p167-1 30.00 -0156 168 157 169

20.00

10.00 -

9.00 -

0 PH 8.00 conucrum oisiogio 0 CORROSION RATE (MPY)

5.00 - RUN 164 RUN 155 RUN 158 RUN 161 RUN 1561 RUM 159-11---RUN 162 RUN 165 RUN 157 RUN 160 RUN 163 RUN 166

3.00 -

2.00 -

1.00 1 11 16 21 26 31 MAY 1984 14011.011 - 270

0Total Heroism 1200.00 Calcium Hardness 0Magnesium Hardness <> Sulfate

1000.00

800.00

600.00

400.00

200.00 Rue167,168,169 0----Run 170,171,172 9-Run 173,174,175-9

.00 4 11 21

56.00

Chromiu 40.00 ei Zinc

30.00 Rua 167,168,169 Run 1 Run 170,171,172 1-173-9 174 175

20.011

10.00

.00 11 16 21 26

9.00 -

8.00 - GPM A CONDUCTIVITY (MMNO/CM) <>CORROSION RATE (MPT) 7.00

6.00

5.00

RUN 167 RUN 170 RUN 173 RUN 168 RUN 171 RUN 174-* RUN 169 4.00 RUN 172 RUN 175

3.00 -

2.00 -

1.00 6 11 16 21 26 JUNE 1984 Average CoolingTower Water Quality

197-199200-202203-205206-208209-211*212-214 I Rum #: 173-175176-178179-181182-184185-187188-190191-193194-196

745 848.7 815 889.5 735.9 881.9 850.8 1107 1122 I !Total Hardness I 792 746.7 777.2 741.2 755.6 (81.3) (35) (53.6) (59.7) (114.4)(58.8) (109.8) (128.3)(54.2) (104.2) 1 I(as Ca003, ppm) I (60.4) (57.9) (90.1) (67.9) 610 585 580.5 485.9 625 627.7 715.4 744.4 I !Ca Hardness I 494 498.9 531.5 482.5 497.5 500 (100.0) (35.1) (73.3) ! !(as Ca003, ppm) ! (51.9) (41.6) (75.8) (38.8) (44.4) (5) (54.3) (41) (71.9) (44.1) (84.0) 230 308.5 250 256.9 223.1 391.4 377.9 I Ut Hardness I 289 247.8 246 258.7 258.1 245 238.7 (48.8) (94.1) (88.7) (36.3) (47.5) ! !(as CAC03, ppm) I (24.4) (19.9) (39.2) (98.1) (73.3) (36.05) (31.2) (29) (73) 899.1 907.5 959.2 1030 1064 ! !Sulfate 868 922.9 928 803.3 855 866.7 982.5 910 963 (127.9) (89.5) (119.0)(168.3) (107.0)(161.9) I I(as 904, ppm) I (121.9) (94.3) (118.2) (70.9) (114.4) (32.1) (83.4) (89.9) 18.95 18.5 18.79 19.12 18.62 I !Chromate 18.96 20.69 17.99 18.17 19.36 19.18 18.35 19.1 19.13 (2.32) (1.55) (1.63) (1.65) (2.68) (2.21) ! !(as Cx04, ppm) ! (2.98) (5.12) (3.65) (2.91) (2.24) (.36) (1.13) (3.13) 3.79 3.70 3.76 3.83 3.69 ! !Zinc 3.79 4.14 3.61 3.63 3.89 3.84 3.67 3.81 3.83 (.23) (.62) (.46) (.30) (.32) (.33) (.535) (.44) 1 !(as 2n, ppm) I (.59) (1.02) (.74) (.58) (.43) (.07) THEM 3.62 5.35 2.38 3.81 4.06 (1.55) (.48) (1.46) !(as PO4,ppm) ! (1.07) (.48) 2.64 2.96 2.11 I !Poly-PO4,unfltr ! (1.77) (.79) (.64) !(as PO4, ppm) I 2.41 2.94 2.18 I !Po1y-PO4, fltr I (.72) (.77) (.86) ! I(as PO4, ppm) I 1.75 6.24 7.43 6.21 1Ortho-PO4,unfltrl .79 .55 1.61 (.23) (.30) (1.86) (1.30) (1.36) ! I(as PO4, ppm) I (.20) 6.87 7.85 5.38 ! !Ortho-PO4, fltr I .91 .64 1.73 (.12) (.35) (1.22) (.85) (.27) 1 !(as PO4, ppm) 1 2.1 9.37 10.38 8.52 ! 1Inorg-PO4,unfltr! 1.12 .87 (.27) (1.82) (2.12) (1.90) I I(as 1104, ppm) I (.21) 9.13 10.7 7.27 lInotg-PO4, fltr ! .88 2.02 (.18) (.30) (1.82) (1.84) (1.09) I I(as PO4, ppm) 1 2.36 9.20 10.57 !Total-PO4,unfltr! 1.43 1.22 (.11) (.075) (2.98) (1.15) I(as PO4, ppm) ! 9.28 10.7 !Total-PO4, fltr I 1.27 2.29 (.10) (.18) (1.64) (1.84) I(as PO4, ppm) I

NOTE : * START USIIC MICRO BURET FOR HAREMS ANALYSIS NUNBEILS IN PAREHRIESIS AREammoELNIATIONS Average Cooling Tower WaterQuality

I Run 1: 1 215-217 218-220221-223224-226227-229 230-232233-235236-238 I I 239-241242-244 245-247245-247245-247 1 (a) (b) I I I (c) ! Mud liminess I 1019 1012 1066 1122 1165 1187 1213 1315 1287 1328 1438 1296 1125 I 1(as 08003, pp,) ! (61.6) (52.3) (42.3) (73.5) (44.5) (104) (89.3) (120) (156) (99.2) (59.0) I I (46.9) (48.5) I I !Ca !larders I 667 633 705 755 785 791 830 903 902 971 1066 940 845 I 1(as W03, ppm) I (41.9) (62.5) (31.1) (52.3) (49.3) (38.1) (60.0) (94.8) (171) (54.7) (45.7) (57.9) (46.4) 1 1 I t It liminess I 352 380 361 367 380 396 393 412 386 357 374 356 280.3 I 1(as Ca003, ppm) 1 (27.6) (18.8) (38.2) (38.1) (41.4)(80.1) (44.6) (48.5) (56.0) (78.4) (46.9) t I (13.0) (15.2) 1 !Sulfate I I 947 910 1019 1065 1096 1238 1167 1189 1142 1220 1364 1267 980 1(as SD4, ppm) 1 (85.6) (66.8) I (38.3) (110) (84.3) (178) (135) (143) (181) (51.0) (102) (47.1) (66.8) I I 1 I ICIzamsta I 18.7 19.0 17.7 18.8 18.5 18.5 18.8 -. I 1(as (06,04, ppm) I (2.04) - ______(2.08) (2.62) (3.15) (2.29) (1.99) (3.71) I I 1 t In= 1 3.75 3.79 3.55 3.76 3.71 3.69 3.75 1(as 2n, pps) 1 (0.41) _ - - - - - I (0.42) (0.32) (0.63) (0.46) (0.40) (0.74) I I 1 t IPbly-Nmehste I 2.56 2.71 2.29 2.72 2.90 1.99 2.43 2.31 2.60 2.31 2.30 2.30 2.30 I 1(as PO4, ppm) 1 (0.52) (0.42) (0.37) (0.50) (0.65) (0.47) (0.81) (0.25) (0.35) (0.20) (0.07) I I 1 I 10e12m-Phospbsts 1 7.14 6.67 7.57 .7.44 7.50 7.16 6.49 4.92 4.88 4.25 5.03 3.90 9.50 I 1(as PO4, pp) 1 (1.10) (1.47) (0.54) (0.72) (0.68) (0.54) (0.88) (0.25) (0.27) I I (0.16) (0.39) I IAN P I ! 2.57 2.44 2.95 3.12 2.68 2.01 2.94 3.49 3.61 3.71 4.09 I 1(as PO4, ppa) I (0.44) (0.54) (0.81) (1.18) (1.25) (1.23) (1.68) (1.18) (1.15) (1.09) (0.10) I I 1 I 1831.1.0 I 28.8 28.0 28.5 30.6 34.4 30.0 33.0 36.0 38.0 33.0 36.0 30.0 34.0 I 1(as $102, ppm) I (2.76) (1.25) (2.12) (0.5) 1 I I I 'PH I 6.00 6.00 6.03 6.05 6.47 6.46 7.02 7.00 7.03 7.50 7.42 7.48 6.48 I 1 I (0.05) (0.00) (0.04) (0.13) (0.07) (0.05) (0.08) (0.02) (0.02) (0.10) I I (0.10) (0.02) (0.08) I I

tint : NUMBS DI PARMIHISIS ABE SMEARD !SWIM= 273

Average Cooling Tower Water Quality

1 : RunIll Total 1 Ca I Mg 1 Sulfate! Poly I Ortho Silica

: 1 : as I P H I Hard. I Hard. I Hard. I as Phospt Phospt

Average as CaCO3 as CaCO3 as CaCO3 1 SO4 1 as PO4 1 as PO4 1 Si02

Std. Div 1 pp.- : PPR : ppm : ppm 1 ppm : 12130 1 pp. :

1 ! : 1 1 : I I

. . . 1 . 248-249-250A: .' . 1 1 .

1 1 1 3.45 1 38.00 1 6.46 Average 1 946.40 1 645.10 1 301.60 865.70 1.97

1 I 1 0.00 1 0.52 Std. Dev. 1 131.20 1 104.80 I 39.90 1 120.70 0.00 0.00

1 : 1 1 t 1 :

...... : 248-249-25081 . .

1 1 7.43 Average 11,003.50 I 720.00 I 283.50 1 858.00 1 2.28 r 2.88 36.00

I 1 1 1 0.00 1 0.0: Std. Dev. 1 120.20 I 135.40 I 53.10 108.50 0.58 0.28

1 1 I 1 1 I : 1

. i I I I 1 i 8 1 251-252-253 1 I I

1 I 7.85 Average 11,006:00 : 685.70 1 320.70 1 800.00 1 1.69 1.51 I 30.80

1 1 1 : '0.37 I 0.00 1 0.12 Std. Div. 1 47.00 : 42.20 38.40 91.10 0.95

: : I : 1 1 1 1

. . . . a . . . . 254-255-256 1 . . :

1 1 1 650.60 30.60 1 6.60 Average :1,039.70 1 1 389.10 1 856.60 4.29 3.13

1 1 1 1 0.23 Std. Dev. 1 48.90 1 34.70 1 22.10 1 69.20 1.28 0.41 0.00

: : 1 1 I 1 1 1

. . . . 1 . . . 257-258-259 : . .

1 6.49 \Average 11,123.75 : 74.1.25 1 382.5011,076.60 r 4.66 1 5.39 1 33.50

1 1 0.04 td. Dev. 1 87.50 : 56.00 1 48.24 1 185.50 1 0.59 1 0.71 0.00

I ; I 1 1 : : 1

. . . 260-261-262 1 . : . . .

1 1 1 1 6.98 Average 11,150.40 : 747.00 1 403.5011,070.00 3.88 3.88 26.20

1 1 1 0.06 Std. Dev. : 70.40 1 47.00 1 32.90 1 0.00 1 0.58 0.98 0.00

: 1 1 1 : 1 1 :

. . . 263-264-265 1 . : 1 1 .

1 I 1 6.86 Average 11,297.40 1 850.50 1 447.0011,136.70 1 4.62 4.48 28.75

1 I 0.26 Std. Dev. 1 146.30 1 89.50 1 39.40 1 0.00 1 1.13 1 0.77 0.65

1 1 : 1 1 1 1 ...... 266-267-268 1 8 . 1 ::

1 1 1 19.70 1 6.40 Average 1 781.50 : 511.50 1 270.00 1 N/A 3.58 6.08

1 1 0.05 Std. Dev. 1 453.30 1 295.00 1 158.70 1 N/A 1 0.00 1 0.00 0.00

: 1 - 1 1 : 1 1 1

. . . . 269-270-271 1 1 . . .

1 1 1 6.60 Average 11,115.00 1 747.50 1 367.5011,005.00 1 3.18 5.57 27.80

1 1 3.01 1 0.15 Std. Div. 1 106.70 1 48.20 1 58.60 1 0.00 1 1.00 1.60

1 1 - --1 : 1 1 1 :

. . . . . 272-273-274 1 . . :

1 I 6.20 0,,_rage :1,198.50 I 745.50 I 453.0011,090.00 1 3.82 1 8.23 36.00

1 1 3.50 : 0.9G Std. Dev. 1 140.30 1 50.50 1 102.50 1 115.30 1 1.30 3.10 274 OSU Water Analysis Worksheet

RUN $ DATE 1 TOTAL CA Mg SULFATE POLY ORTHO 11018 PH HEDPSILICA CHLORIDE 11 HARI HARI HARD SO4 PO4 PO4 PO4

11 9-17 1 910.50 747.00 223.30 4.75 6.50 11.25 6.53 4.34 11 " .. 11 9-18 1 1,147.50 750.00 397.50 1,150.00 5.50 6.00 11.50 6.50 2.71 31.00 .. :: 1 9-19 1 1,192.50 795.00 397.50 1,200.00 4.80 6.20 11.00 6.40 2.44 .,

.. 9-20 1 1,177.50 772.50 405.00 5.60 6.40 12.00 6.50 3.80 32.50 30.00 11 ., 11 278 1 9-23 1 1,207.50 780.00 427.50 1,200.00 7.25 5.70 13.00 6.60 3.25 29.50 " ,. 11 279 9-24 1 1,215.00 780.00 435.00 5.70 6.80 12.50 6.50 2.17 .. 11 If 280 1 9-23 1 1,200.00 172.50 427.50 1,250.00 5.75 6.75 12.50 6.35 3.25 29.50 11

11 1 If

11AVERAM 1 1,158.64 771.00 387.64 1,200.00 5.62 6.34 11.96 6.51 3.14 30.63 30.00 11

11STD DEV 1 79.55 15.85 68.51 35.36 0.77 0.37 0.69 0.06 0.71 1.24 0.00 11 szszurssmassn sseasleauszazzszza3zaszzass-...... szsassmossirsassessaineassszszetasszazzumssim-zz--2---== I

11 281 : 9-26 1 1,215.00 802.50 412.30 6.50 7.00 13.50 6.45 2.71 35.00 1:

11 282 19-27 1 1,215.00 780.00 435.00 1,200.00 4.50 6.75 11.25 6.48 2.17 30.00

:1 283 19-30 1 1,215.00 795.00 420.00 1,350.00 5.50 6.25 11.75 6.44 3.80 31.50

11 11 ..AVERAGE 1,215.00 792.50 422.50 1,275.00 5.50 6.67 12.17 6.46 2.89 30.75 35.00 :1

11STD DEV 1 0.00 9.35 9.35 75.00 0.82 0.31 0.96 0.02 0.68 0.75 0.00 11 1;szassasassassz sitawassasssassuussmassaszszzanssuaszsmasawasszsasszsassasszassmassassessusszazzasasssall

11 1 10-1 1 1,192.50 802.50 390.00 1,100.00 4.90 5.60 10.50 6.95 3.26 35.00 45.00 11

11 1 10-2 1 1,185.00 787.50 397.50 5.25 5.25 10.50 7.00 2.44 11

11 1 10-3 1 1,207.50 817.50 390.00 1,250.00 5.10 6.40 11.50 7.00 1.90 31.00 11 11 1 10-4 1 1,177.54 787.50 390.00 3.90 4.60 8.50 7.00 1.36 11 11 ' 284 : 10-5 1 4.50 2.11

. 285 1 10-7 1 1,230.00 795.00 435.00 1,230.00 4.75 4.75 9.50 7.00 2.44 32.50

11 286 1 10-8 1,245.00 802.50 442.50 442.50 5.50 5.00 10.50 7.00 2.70 28.00 11

11 11AVERA6E 1,206.25 798.75 407.50 1,010.63 4.90 5.16 10.17 6.99 2.32 31.63 45.00 11

11STD DEV 1 24.27 10.38 22.36 333.67 0.51 0.62 0.94 0.02 0.56 2.53 0.00 11 1;sszszazzszazas szat=sasassass-srassausszsawaszazzsmassasssassesassmesszasszaciessamsmazzazza=wszassl

11 1 10-9 1 1,072.50 697.50 375.00 6.75 5.00 11.75 7.00 2.70 31.00

11 1 10-10 1 1,162.50 757.50 405.00 1,150.00 5.65 4.85 10.50 7.00 4.90 50.00 11

11 287 110-11 1 1,237.50 832.50 405.00 7.00 6.00 13.00 2.40 33.00

:1 288 : 10-14 1 1,275.00 847.50 427.50 4.50 4.00 8.50 6.97 2.70 34.50 11 11 289 1 10-15 1,320.00 885.00 435.00 1,200.00 8.50 5.50 14.00 7.00 8.10 11

;;AVERAGE 1 1,213.50 804.00 409.50 1,175.00 6.48 5.07 11.55 6.99 4.16 32.83 50.00 1:

11STD DEV 1 87.39 67.48 21.00 25.00 1.34 0.67 1.93 0.01 2.16 1.43 0.00 11 11=zsz==pes szassx=xxaszsmszzaszatssassrassigassimsszmzszsza 10-17 1 997.50 652.50 345.00 2.50 3.25 5.75 7.25 1.17 32.50 55.00 11

11 1 10-18 1 1,200.00 810.00 390.00 1,150.00 5.95 4.55 10.50 7.00 3.25 11 11 11 11 1 10-21 1 1,337.00 930.00 457.00 1,250.00 4.45 5.05 9.50 7.05 4.34 36.00 10-22 1 1,402.50 931.50 40.00 6.50 6.00 12.50 7.00 2.71 33.00 1:

1: 290 110-23 1 1,492.50 960.00 532.50 1,300.00 4.60 6.40 11.00 7.00 3.00 29.00

11 291 1 10-24 1 997.50 675.00 322.50 5.50 5.50 11.00 7.00 2.71 55.00 11

11 292 1 10-25 1 1,200.00 817.50 382.50 1,400.00 4.65 4.10 8.75 7.00 2.71 28.00 11

11AVERA6E 1 1,232.43 826.07 413.50 1,275.00 4.88 4.98 9.86 7.04 2.84 31.38 48.33 11

STD DEV 1 177.27 116.15 68.86 90.14 1.20 1.02 2.01 0.09 0.87 3.15 9.43 11 zzassrassassassassuszszazz-zzazzazaseasszatasszsm-mmazszsmszszzast-2==--sass-...uss1 275 1 OSU Water AnalysisWorksheet

CHLORIDE 1: :UN 8 IDATE 1 TOTAL CA Ng SULFATE POLY ORTHO IRONS PH HEDPSILICA 1: 1 1 HARD HARD HARD SO4 PO4 PO4 PO4

11 : 1 - - - :- II 4.75 4.75 9.50 7.00 9.20 35.00 35.00 II II 1 10-28 1t335.00 847.50 487.50 4.00 11.75 7.00 10.85 11 11II 1 10-29 1,260.00 810.00 450.00 1,400.00 7.75 II 3.25 3.25 6.50 7.00 4.07 32.50 11 II 1 10-30 1 1,350.00 862.50 457.50 3.75 3.75 7.50 7.00 3.80 1: 11 II 1 10-31 1 1,297.50 862.50 433.00 1,250.00 11 3.25 30.00 40.00 11 II 1 11-1 1,320.00 915.00 405.00 4.75 4.10 8.85 6.90 .. ., 11 293 1II -4 1 1,380.00 967.9 412.50 4.85 3.75 8.60 7.00 4.10 35.00

I: II 294 111-5 1 1,447.00 982.50 465.00 1,450.00 4.60 4.50 9.10 7.00 2.71

11 II 295 111-6 1 1,470.00 990.00 450.00 6.50 4.75 11.25 7.00 4.10 32.50

1: 11 5.26 33.00 37.50 11 1:AVERAGE 1 1,357.44 904.69 445.31 1,366.67 5.03 4.11 9.13 6.99 2.82 1.87 2.50 11 1:STD DEV 1 67.31 64.40 25.42 84.98 1.36 0.50 1.64 0.03

: ; zszszszszasszz 1 szzszszsaszszszzasszz=zasszsasszasszszzassasszszszszszszsasszszszszszszszszsz==as..--zsza 1 ; 11 II 11-7 1,230.00 810.00 420.00 1,200.00 5.50 7.00 12.50 6.50 3.80 11 II II 11-8 1,222.50 832.50 390.00 6.00 5.75 11.75 6.50 2.71 38.00 40.00 II .. 1: .. 1 11-9 5.25 II II II 11-10 4.40 ...... 11-11 1,320.00 915.00 405.00 1,350.00 4.00 4.50 8.50 6.60 1.63 1:

5.43 40.00 11 11 1 11-12 1 1,350.00'960.00 390.00 4.70 4.80 9.50 6.50

Ii 11 296 1 11-13 1 1,432.00 945.00 487.00 1,400.00 5.95 5.05 11.00 6.50 5.43 2.17 38.00 40.00 11 11 297 , 11-14 1 1,500.00 1,035.00 465.00 4.85 5.10 9.95 6.50 .. ,. II 298 111-15 1 1,470.00 1,035.00 435.00 1,450.00 3.90 5.30 9.20 6.50 2.17

11 11 40.00 :1 AVERAGE 1 1,360.64 933.21 427.43 1,350.00 4.99 5.24 10.34 6.51 3.33 38.67 0.00 If STD DEV 1 103.09 82.14 34.60 93.54 0.80 0.74 1.34 0.03 1.46 .0.94 rizz-azzzszszsz1 zszaszszszliss-raszszszszszszsmszszszass .... zzszszsu-szszals -1,-;;

11 1 11-18 1 1,035.00 711.00 324.00 900.00 1.60 7.20 8.80 6.00 2.70 26.00 44.00 :I 35.00 11 11 1 11-19 1 1,037.50 726.50 311.00 930.00 1.20 9.20 10.40 6.00 1.00 27.00 9.25 2.70 11 299 1 11.20 1 1,140.00 802.50 337.50 2.25 7.00 6.00

11 300 : 11-21 1 1,147.50 787.50 360.00 1,000.00 1.80 6.25 8.05 6.00 0.54 31.00

11 301 11-22 1 1,042.50 712.50 330.00 8.00 16.00 6.00 0.54 37.00 :1

11 1: 38.67 11 1:AVERABE 1 1,080.50 748.00 332.50 950.00 1.71 7.53 10.50 6.00 1.50 28.00 3.86 11 1:STD DEV 1 51.75 39.04 16.26 40.82 0.38 1.00 2.85 0.00 1.00 2.16 zzzszzazzszszszs ; sans - assess ssiZZZSZIMS12121311.31111ZSMIZZ zusszszzass===zzzs=s sz 11 276

APPENDIX K

SYSTEM FLOWRATES 277

500

400

300 0 co

200

100

10 JULY 1963 20 26 30

500 SYSTEM FLOW RATES- A I

400 Ip 300 I 20 i1111111 20 11 :J:JVA?1

1111iL3 0., eibk.10Plillt

10 16 20 25 0 AUGUST 1963 278

500 SYSTEMFLOW RATES SEPTEMBER1983

0SLOWDOWN AFORTIFYSOLUTION ' 0CITYWATER INHIBITOR OEVAPORATION 400 I1 11 i I III I i1 l' it

I 1 1

Pitlagif . 300 jviillo1

04 1. i. 'Fill1 .q111r.Iiioi hi

CC 4 200 20

1-. 11. iL.,il, 11111111RUNIt 4 VII 3 100 ... 'PPM*11Pu 10 IIII t.41...m.nrwhow 1111 RUN120 RUN122twilitUN 12 AiRUN 125 IIIIII1111111111lMllIlll 111111111111111111111111111110111M 0 1 10 15 20 26 SEPTEMBER 1983

50 'SYSTEM FLOW RATES-OCTOBER 1983 ; 1 I 0 SLOWDOWN A FORTIFY SOLUTION RUN132-3I 0 CITYWATER INHIBITO II RUN133.----I

I I 0EVAPORATION I 400 I I 1 POWERDOWNIlt I III 0 II Iil 0 300 lir I- \ CC 0 I 4 11 I 1,1 1 ii 111Iel g 20 1JP 20 I. ., '. .1'.41111i Apo

10 10 lialRUN-1131 I . . IIMIP11116*I ' 9iO4I ie. IIll 111RUN125N RUN 129 i RUN124.s RUNIN UIIRUN 130 I. 1 5 10 15 20 25 OCTOBER 1983 279

Iii,.111111iffilf1111111111111111111111111111111111111 SYSTEM FLOW RATES NOVEMBER 1983, DECEMBER1983 0 SLOWDOWN A FORTIFY SOLUTION 0 CITY WATER INHIBITOR 0 EVAPORATION 0 SUSPENDED SOLIDS

4 22 27 . NOVEMBER 1983 310 DECEMBER 1983

OSLOWDOWN INHIBITOR °CITYWATER A FORTIFYSOLUTION 40- RUN134 0EVAPORATION 0 SUSPENDEDSOLIDS IRUN135 I 1 RUN136 RUN137 I UN1.50 RUN AlIt? RUN142

30

2 1.

.

. ." , :'":'I I?

100 0 1. ki, .i.d;,ii.. .:,. oito

1 5 10 15 20 30 JANUARY 1984 ISLOI - O Rwsperstioe Fortify Solstice u..+... for oCityVow e s Sump food MOM 1---11ye 140.141.142-----ss los 143,144.145 46 RIM146.147.141.1

4---- Rue 140.141.142 .--Sos 143.144.143--1

rteaumeT 1994 IFESSUARY 1904

['Fortify Solution O Sveyorstico 2s-Or04lehibiter Q fat, liter O Sloriew 0 Isti Solids 0 Sump hod

31 31 COO SYSTEM FLOW RATES SYSTEM FLOW RATES prettify Solstice 7A-Cr04 Inhibitor 81031

ass 149,130.151 Roe 152,153,154 --1r155-0 156 157

1 APRIL 1304

1211.66 - SUM aveporstioe City *Aar Blew....osolous irectify Soletioe sump Food 2e-Ct04 lektitot 11612 11112 Pelyecrylete rellecrylets

UM

21.11 MA am 155 156 ass 161,1112.16.3--. Ise 136 "x'159 67 157 160 Aso 161,162.163 164.1401,11111 IM 9 169 11 MI I a 11 21 MAY 13114 MAY 13114 SYSTEM FLOW RATES SYSTEM FLOW RATES 121488 COLN

gFortify Solotioa Evaporation 160.68 Ea.404 Inhibitor 506.88 City Water Folyscrylate Sloodoun 1Sump Food

08.811 486.96

68.68 300.00 7-/ 48.08 200.00 Roo 173 tos 167.168.169 Rum 170.171,172 /--174" MU 173 100.96

.98 .00 11 1 21 JUNE 1904 JUNE 1904 SYSTEM FLOW RATES SYSTEM FLOW RATES 283

TABLE : Average Flow-Rates /liters /day)

_= 2...... ======I RUN I :AVG I EVAPORA- 1 CITY BLOW I FORTIFY 1 INHIBI

11 :STD DEV 1 TION 1 WATER DOWN 1 SOLUTION TOR

11 1

1: 248-249-250 AV8 1 195.8 1 319.8 170.1 1 45.0 3.1

1 STD DEV 1 63.3 1 65.0 32.1 1 15.0 1 0.2

11 251-252-253 AVG 188.3 1 309.5 179.8 I 55.8 3.6 1 1 1 1 STD DEV 42.5 1 45.3 7.6 1 5.4 1 0.7

11 254-255-256 AVG 181.9 1 288.8 174.9 1 65.1 1 2.8 1I 1 1 STD DEV 30.1 1 36.7 4.6 1 6.7 1 0.6

11 257 -258 -259 AVG 180.8 1 286.0 184.4 1 76.1 1 3.1

1 1 1 1 STD DEV 4.6 1 27.0 21.4 1 10.4 1 0.3

1: 260-261-262 AVG 165.1 1 249.2 176.9 1 89.4 1 3.3

STD DEV 1 22.0 : 35.1 3.2 1 12.2 1 0.1

11 263-264-265 AV6 171.8 1 256.8 174.9 1 76.2 1 3.9

1: STD DEV : 32.3 52.2 13.5 I 25.3 I 1.0

11 266-267-268 AVG 158.0 : 283.0 180.1 1 91.1 1 3.2

1: STD DEV 1 22.1 : 17.1 .0 I .0 .0

1: 269-270-271 AVG 158.4 1 269.2 181.4 1 68.3 1 2.0

O 1 1 1 STD DEV 1 55.7 1 54.7 0.7 1 1.3 1 0.2

1: 272-273-274 AVG 220.5 1 328.9 179.4 1 68.4 I 2.5

1: STD DEV 1 31.5 1 33.8 3.1 1 0.7 1 0.4

11 275-276-277 AVG 152.9 1 252.5 178.7 1 75.5 1 2.9

STD DEV 1 10.7 1 16.9 5.7 : 9.3 1 0.6

11 278-279-280 AVG 161.6 260.0 183.8 1 82.0 1 3.3

STD DEV 1 4.2 : 4.1 1.4 1 0.9 1 0.3

11 281-282-283 AV8 169.6 269.0 183.6 1 81.5 1 2.7

STD DEV 5.6 1 5.5 1.2 1 0.7 1 0.2

If 284-285-286 AVG 163.9 1 261.4 182.3 1 81.8 1 3.0

STD DEV 1 9.0 : 9.6 2.8 1 1.2 I 0.4

1: 287-288-289 AVG 1 182.5 1 280.8 173.9 1 83.2 1 3.3

STD DEV 1 6.4 1 40.2 13.4 1 4.2 1 0.3

290-291-292 AVG 1 176.5 1 243.2 171.8 I 99.0 1 2.3

STD DEV 5.2 1 23.0 19.9 1 11.5 I 0.8

11 293-294-295 AV6 193.8 1 281.2 180.4 1 91.2 1 2.4

STD DEV 1 21.5 1 20.4 3.5 1 4.6 0.6

11 296-297-A8 AVG 245.9 1 327.0 178.3 1 95.6 1 2.2

STD DEV 1 48.8 1 53.2 3.4 1 12.1 1 0.6

:: 299-300-301 AV8 1 192.0 1 290.8 173.9 1 73.9 1 2.3

STD DEV 1 46.7 1 41.3 7.3 1 8.0 1 1.7 =-Maznamsms======sum= =a 5=2 TABLE : Average Flow-Rates (liters/day)

1 RUN # : 1 215-217218-220221-223 224-226227-229230-232233-235236-238239-241242-244245-247245-247245-247 1 1 1 (a) (b) (c) i 1 1 (*) (*) (*) (*) (*) (*) 1 1 1 -1

1 Evaporation 1 120 115 118 170 191 204 201 198 187 193 199 195 201 1 1 1 (41) (5.8) (28) (67) (13) (29) (14) -(11) (21) (5.8) (7.2) (8.9) (2.9) 1

1 1 1

1 1 City *ter 201 198 218 274 292 296 298 293 269 273 284 288 299 1 1 1 (63) (46) (35) (70) (54) (43) (29) (21) (30) (5.5) (21) (38) (9.8) I I I i

1 Blow Down 1 179 167 182 173 179 180 176 171 173 171 171 174 171 1 1 1 (19) (13) (10) (9.4) (6.1) (4.3) (7.3) (18) (2.6) (3.5) (14) (13) (.7) 1 1 1 1

1 Fortify Solution 190.0 76.6 74.5 67.3 70.1 80.4 70.6 72.4 88 88 82.5 77.5 70.5 1

1 1 (36) (21) (7.7) (24) (26) (17) (15) (25) (12) (3.2) (7.4) (12) (7.9) 1 1 1 1

1 Inhibitor 1 4.4 3.8 3.6 4.8 4.5 4.7 5.3 1

1 Solution I 1 (.8) (.9) (.7) (1.5) (1.2) (1.4) (1.3) 1

I 1 I

1 Inhibitor 1 3.2 3.3 3.6 2.9 3.1 3.1 3.0 3.0 3.1 3.2 3.3 :

t Solution II 1 (1.0) (.5) (.8) (.4) (.6) (.3) (.6) (.3) (.3) (.2) (.3) 1

1 1 1

1 Inhibitor 1 3.3 2.9 1

1 Solution III 1 (.3) (.05) 1

1 1 1 awe:NUMBERS DI PARINI:HMS ARE STAMM Eig/IATIMIS (*) CRI/114112SPHA3E =ED 111 I SYSTEM

manta scurriau : ZJIC - CHROMATE DUMB*sowrum II: me,KLYAMIATE, BIYEIDSPHATE MTh= SOLUITCH III : POLYPHOSPHATE TABLE : Average Flow-Rates(liters/day)

1 RUN # : 1173-175176-178179-181 182-184185-187188-190191-193 194-196197-199200-202203-205206-208209-211212-214 1

1 -1 1

1 Evaporation 1 218.1 229.3 189.7 219.8 214.6 219.4 166.8 188.3 166.1 172.8 157.5 136.5 166.7 93.29 1

1 1(45.9) (25.6) (49.3) (27.6) (13.0) (23.9) (107.0) (40.4) (37.9) (25.7) (43.7) (55.5) (66.5) (49.9) 1

1 City Water 1 328.3 311.2 294.5 337.9 312.8 292.2 255.6 285.9 253.0 274.5 245.0 240.2 272.9 168.9 1

1 1(47.6) (38.8) (57.5) (42.1) (18.6) (27.4) (61.9) (44.6) (53.3) (29.7) (56.5) (38.1) (72.2) (62.1) 1

1 Blow Down 1 160.7 156.7 168.5 187.7 169.5 180.7 174.3 177.6 167.8 172.6 165 174.0 176.4 170.8 1

1 1 (12.6) (25.7) (25.6) (6.5) (6.5) (3.0) (2.7) (4.02) (6.3) (10.6) (40.5) (6.0) (7.0) (14.1) 1

1 Fortyfy Solution 143.0 59.4 59.4 64.7 66.1 102.2 79.4 75.1 74.5 63.8 72.5 62.6 62.3 87.1 1

1 1(21.6) (14.5) (24.5) (30.8) (17.9) (5.3) (54.2) (9.8) (30.6) (33.7) (28.0) (41.9) (29.8) (53.3) 1

1 Zinc-Chromate 1 5.5 5.8 4.3 4.9 5.3 5.5 4.7 5.2 5.03 5.2 5.0 4.9 5.1 5.2 1

1 1 (1.3) (3.6) (1.4) (.90) (.61) (.56) (.17) (.60) (.94) (.83) (.98) (.88) (1.0) (2.3) 1

HIEP 1.8 1.4 1.23 1.95 1

1 1 (.32) (.36) (.35) (1.0) 1

1 Polyacrylate 1 1.99 2.56

I (.81) (.36) 1 HEDE4Polyacrylatel 1.92 1 (.86)

1 Foly-phosphate 1 2.8 2.8 2.9 1

1 1 (2.6) (.42) (.46) 1

NNE: RISERS IN Beirmans ARE SWORD EIVIATIGIS 286

APPENDIX L

SUMMARY OF RUN STATISTICS NNE 117 SON 114 287 TOT SUCTION 2 TUT SIMI= 2 RATR 800 OMR 214 RATON NOD NOONAN 179 STUTINS DAR 7/ 5/43 11211I/0 OATS 7/14/43

ION TIN, 01118) 10 NON TINS (DAIS) 13

NIT VITRUSIC8 MAN 810.0,f. ON STATISTICS MOAN ST0.011.

MARI TOLOCITT(PPS) 2.416 .134 RIR TILOCITT(R8) 2.557 ./11

ISAT ULM (810/0/10 rT) 44447. 103.7 RAT ROI (810/11/10 /T) 37004. 141.0

MAST SOLE TINIPOATIIII (V) 114.1 .43 TAM PULL roussiumas MI 117.8 .63 813111140mnamoin(T) 00111910 TRIPUILARINS

LOCATION A 142.4 2.68 LOCATION 8 158.4 2.34

LOCATION 8 143.0 1.61

LOCATION 0 147.4 2.87

Nil 120 114 MST SOCRON 1 TINT RCM= 2 181210 SOD NORIO 214 1811111 DOD MOM= 179 STASI= OATS $111/83 STARING OATS 4/ 5/43 ION TINS (DAIS) u' SOU TINS (DAIS) 7 80011124111171C11 MAN STILOW. SOO STATISTICS NOIN surarrr. TAM VOLOCI11(111) 5.542 .131 WARM TULOCITT(111) 2.444 .261 RAT ROI (010/111/103 IT) 44543. 117.1 11841 rum 011U/W4/40391 27447. 114.2 WARS 80L1 ISMORATONS (PI 117.4 .34 NATO SOLE 111112410111 (T) 111.1 OMAR IIMPINASONS (t) 802140 IMPERATUNS (r) LOCATION A 133.4 .11 LOCATIONS 141.3 4.44 LOCATION 0 134.4 .88

NON 122

1241 ACTIONS Mt' 41^.10 1 usAvirm sq. .mwar. Aga NIASOR NOD MOM 211 nue= OATS 9/ 5/43 ot.eg 4'31'71 MAY TIOILswim's ON TINS (OATS) 4

ON STATUTICS NUN 419.240. TAP STATISTIZI 0040 Mont. NAIR vuocierom) 5.445 .223 rATIR 911.0CZTY419111 3.811 .016 RAT RAI (810/118/80 IV) 44474. 92.2 RUT PLUS IIITV/14/10 F71 4481T. 934 MASS POLL INNONDATOOS (In 117.1 .24 0061 TINOTRATIOR 114.2 .41 =M 1111111111A7011 (V) 1101ACI TINPRATUR DTI LOCATION A 153.4 1.11 LOCATION 5 08.8 1.71 LOCATION 0 154.4 1.22

it& 123 BUM 110? 2222TOM MT IMMO 1 its MAU WO NORM 214 MITATTE AGO MU0122 2/116/112 RAM= DM 0/18/83 AAAAA TMS OAT, MIN TIM 22 ON TINE (DAIS) 17 'tarsi

NIAN ION !CIRRI= NRAN 810.0111. Rum 92ATIITIG1 3.19? NAM vsLocrrrtr,6) 3.417 .137 uOTtA 9110CI77(11111) 41444. RAT 11,02 (PTO /WO RI 44344. 107.6 MOAT FLUX (liTU/NM10 Fr) oaten lull TENRCRATORC 138.1 NATO SOLIE TIONNATOR4 (1) 117.7 .37 suovAog 7(401447u411 (F) RATA= TINTININITIR (r) LOCATION 9 114.1 7.24 LOCATION A 113.7 .75 LOCATION 0 136.1 .82 288

RUN 125 Rum 126L

TEST SECTION 1 TEST SECTION 1 BEATER ROD NUMBER 215 HEATER 300 NUMBER 215 STARTING DATE 9/26/83 STARTING DATE 10/ 9/83 RUN TIME (DAYS) 12 RUN TINE (OATS)

RUN STATISTICS MEAN STD.DEV. Rum STATISTICS MEAN 5ToOEll WATER VELOCITY(FPS) 8.109 .129 ------WArERWETOCITY(Fry) 5.487 .arr----- BEAT FLUX (BTU/RR/so FT) 118357. 488.7 MEAT-FIWIRTUTHR/sfa FT) 54449. 142.3 WATER BULK TEMPERATURE (F) 118.2 .43 WAY . R SULK ItRPARATuRA (F) 115. SURFACE TEMPERATURE (r) suRFACE-TERFERATuRE (71 LOCATION A 150.6 .65 LOCATION A 1555 .7S LOCATION D 159.4 .66

RUN 128 RUN 127 TEST SECTION 3 TEST SECTION 2 HEATER ROD NUMBER 216 NEATER ROD NURSER' 2111 STARTING DATE 10/ 9/83 STARTING GATE 10/ 9/83 RUN TIRE (DAYS) 8 RUN TIME (OATS) RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN ..TIOOEV WATER VELOCITY(PPS) 3.007 .081 itfr6-5E1-0CrITUFM3) 5-.5111 .152 BEAT FLUX (320/83/93 FT) 14806. 27.7 HEAT FLUX (eTu/NR/Scl FT) 49545. 117.1 WATER BULK TEMPERATURE (F) 117.4 .53 WATER BULK TEN EmATU E 118.3 .5) SURFACE TEMPERATURE (F) SURFACE-THRPEAKTURE (F) LOCATION A 129.6 .61 LOCATION El 163.1 2.23

RUN 129 RUN 130 TEST SECTION 1 TEST SECTION 2 HEATER ROD NUMBER 215 BEATER ROD NUMBER 179 STARTING DATE 10/18/83 STARTING DATE 10/18/83 RUN TIME (DAYS) 7 RUN TINE (DAYS) 7

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MIAS STD.DEV. WATER VELOCITY(PPS) 5.790 .103 WATER VELOCITY(FPS) 2.990 .144 BEAT FLUX (BTU/RR/SO PT) 84001. 111.5 HEAT FLUX (BTU/ER/92 FT) 45079. 68.6 WATER BULK TEMPERATURE (F) 117.9 .44 WATER BOLE TEMPERATURE (F) 118.0 .45 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F) LOCATION A 154.1 .63 LOCATION B 158.9 1.89 LOCATIONS 161.8 .70

RON 131 RUN 132 TEST SECTION 3 TEST SECTION 1 HEATER ROD NUMBER 216 HEATER ROD NUMBER 215 STARTING DATE 10/19/83 STARTING DATE 10/25/83 RUN TINE (DAYS) 16 RUN TIME (DAYS) 10

RUN STATISTICS NEAR STD.DEV. RUN STATISTICS MEAN STD.DEV. WATER VELOCITY(PPS) 3.055 .080 WATER VELOCITY(PPS) 5.615 .106 HEAT FLUX (STU/SR/SG PT) 14837. 49.6 HEAT FLUX (BTU /HA/so PT) 48258. 96.6 WATER BULK TEMPERATURE (F) 117.0 .47 WATER BULK TEMPERATURE (F) 117.2 .44 SURFACE TEMPERATURE (P) SURFACE TEMPERATURE (F)

LOCATION A ' 129.1 .56 LOCATION D 143.2 .52 RUN 133 289 RUN 134 TEST SECTION 2 TEST SECTION HEATER ROD NUMBER 210 HEATER ROD NUMBER 215 STARTING DATE 10/26/83 STARTING DATE 12/22/83 RUN TIME (DAYS) 7 RUN TIME (DAYS) 14

RON STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STO.DEV. WATER VELOCITY(FPS) 2.963 .137 WATER VELOCITV(FPS) 8.009 .192 HEAT FLUX (BTU /HR /SQ PT) 28413. 74.2 HEAT FLUX (ETU/HO/SO FT) 109071. 333.6 WATER BULK TEMPERATURE (F) 117.2 .49 WATER BULK TEMPERATURE (F) 117.8 .80 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F) LOCATION A 143.9 1.23 LOCATION A 164.9 1.12 LOCATION 13 144.6 1.26

RUN 138 RUN 135 TEST SECTION 3 TEST SECTION 2 HEATER ROO HUNGER 216 HEATER ROD NUMBER 210 STARTING DATE 12/23/83 STARTING DATE 12/22/83 RUN TIME (DAYS) 13 RUN TIME (DAYS) 14 RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STD.DEV. WATER VELOCITY(FPS) 2.648 .080 WATER VELOCITY(FPS) 5.490 .228 HEAT FLUX (BTU/HR/S0 FT) 59388. 79.4 HEAT FLUX (BTU/HR/S0 FT) 66116. 153.0 WATER BULK TEMPERATURE (f) 118.3 .89 WATER BULK TEMPERATURE (F) 117.7 .80 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F) LOCATION A 163.3 1.55 LOCATION A 164.4 1.42

RUN 138 RUN 137 TEST SECTION 2 TEST SECTION 1 HEATER ROD NUMBER 210 HEATER ROO NUMBER 215 STARTING DATE I/ 5/84 STARTING DATE 1/ 5/84 RUN TIME (DAYS) 16 RUN TIME (DAYS) 18

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STD.DEV. WATER VELOCITY(FPS) 5.403 .138 MATER VELOCITV(FPS) 7.883 .456 HEAT FLUX (BTU/HR/S0 FT) 77389. 255.1 HEAT FLUX (BTU/HR/S0 FT) 96290. 182.8 WATER BULK TEMPERATURE (F) 118.1 .38 WATER BULK TEMPERATURE (F) 117.9 .88 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F) LOCATION A 160.5 .83 LOCATION A 180.3 1.90

RUN 139 RUN 140 TEST SECTION 3 TEST SECTION 1 HEATER ROD NUMBER 216 HEATER ROO NUMBER 215 STARTING DATE 1/ 5/84 STARTING DATE 1/23/84 RUN TIME (DAYS) 16 RUN TIME (DAYS) 19

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STD.DEV. WATER VELOCITV(FPS) 3.021 .048 WATER VELOCITV(PPS) 8.123 .138 HEAT FLUX (OTU/HR/SQ FT) 57492. 897.1 HEAT FLUX (BTU/HR/S0 FT) 100387. 171.4 WATER BULK TEMPERATURE (F) 118.5 .38 WATER BULK TEMPERATURE (F) 116.0 .40 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F) LOCATION A 189.8 .81 LOCATION A 159.4 .82 290

RUN 141 RUN 142 TEST SECTION 2 TEST SECTION 3 HEATER ROD NUMBER 210 HEATER ROD NUMBER 216 STARTING DATE 1/23/84 STARTING DATE 1/23/84 RUN TIME (DAYS) 19 RUN TIME (DAYS) 20 RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STD.DEV. WATER VELOCITY(FPS) 5.581 .128 WATER VELOCITV(FPS) 3.064 .030 HEAT FLUX (8TU/HR/SQ FT) 75707. 108.6 HEAT FLUX (BTU /HR /SO FT) 59636. 184.7 WATER BULK TEMPERATURE (F) 118.1 .43 WATER BULK TEMPERATURE (F) 118.6 .39 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F) LOCATION A 158.9 .79 LOCATION A 158.9 .411

RUN 143 RUN 144

TEST SECTION 1 TEST SECTION 2 HEATER ROO NUMBER 215 HEATER ROD NUMBER 210 STARTING DATE 2/12/84 STARTING DATE 2/11/64 RUN TIME (DAYS) 8 RUN TIME (DAYS) 10

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STD.DEV. WATER VELOCITV(FPS) 5.590 .088 WATER VELOCITV(FPS) 3.058 .086 HEAT FLUX (BTU/HR/S0 FT) 47225. 80.4 HEAT FLUX (11TU/HR/SQ FT) 28771. 82.3 WATER BULK TEMPERATURE (F) 117.7 .50 WATER BULK TEMPERATURE (F) 117.8 .40 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F) LOCATION A 145.3 .62 LOCATION A 144.7 .86

RUN 145 RUN 148

TEST SECTION 3 TEST SECTION 1

HEATER ROD NUMBER 218 HEATER ROD NUMBER 215 STARTING DATE 2/11/84 STARTING DATE 2/21/84

RUN TIME (DAYS) 10 RUN TIME (DAYS) 14

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STD.DEV.

WATER VELOCITV(FPS) 3.131 .028 WATER VELOCITY(FPS) 5.742 .171

HEAT FLUX (8TU/HR/SQ FT) 17999. 43.7 HEAT FLUX (8TU/HR/SQ FT) 47184. 101.2

WATER BULK TEMPERATURE (F) 117.5 .49 WATER BULK TEMPERATURE (F) 117.6 .48 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F)

LOCATION A 130.0 .48 LOCATION A 144.7 .81

RUN 147 RUN 148

TEST SECTION 2 TEST SECTION 3

HEATER ROD NUMBER 210 HEATER ROD NUMBER 218 STARTING DATE 2/21/84 STARTING DATE 2/21/84

RUN TIME (DAYS) 14 RUN TIME (DAYS) 14

RUN STATISTICS RUN STATISTICS MEAN STD.DEV. MEAN STO.DEV. WATER VELOCITY(PPS) WATER VELOCITV(FPS) 2.998 .046 3.189 .052 HEAT FLUX (6TU/HR/SQ FT) HEAT FLUX (BTU/MR/SG FT) 33143. 127.8 17961. 62.2 WATER BULK TEMPERATURE (F) WATER BULK TEMPERATURE (F) 117.8 .48 117.5 .48 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F) LOCATION A LOCATION A 143.8 .69 129.9 .48 291

RUN 150 RUN 149 TEST SECTION 2 TEST SECTION HEATER ROD NUMBER 222 HEATER ROD NUMBER 221 STARTING DATE 4/ 4/84 STARTING DATE 4/ 4/84 RUN TIME (DAYS) 16 RUN TIME (DAYS) lb

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STD.DEV. WATER VELOCITV(FPS) 5.522 .108 WATER vELOCITV(EPS) 7.993 .094 HEAT FLUX (BTU /HR /SO FT) 58665. 116.9 HEAT FLUX (BTU /HR /SO FT) 118818. 344.2 WATER BULK TEMPERATURE (F) 116.0 .45 WATER BULK TEMPERATURE (F) 116.4 .42 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F) LOCATION A 158.6 1.12 LOCATION A 157.1 1.50

151 RUN RUN 152 3 TEST SECTION TEST SECTION 1 216 HEATER ROD NUMBER HEATER ROD NUMBER 221 STARTING DATE 4/ 4/84 STARTING DATE 4/20/84 16 RUN TIME (DAYS) RUN TIME (DAYS) 11

MEAN STD.DEV. RUN STATISTICS RUN STATISTICS MEAN STD.DEV. 3.008 .079 WATER VELOCITV(FPS) WATER VELOCITY(FPS) 7.966 .124 261.3 HEAT FLUX (BTU/FIR/Sp FT) 59889. HEAT FLUX (87))/HR/SO FT) 125464. 377.4 116.8 .42 WATER BULK TEMPERATURE (F) WATER BULK TEMPERATURE (F) 116.6 .50 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F) 158.6 1.27 LOCATION A LOCATION A 158.8 .77

RUN 153 RUN 154 TEST SECTION 2 TEST SECTION 3 HEATER ROD NUMBER 222 HEATER ROD NUMBER 216 STARTING DATE 4/20/84 STARTING DATE 4/20/64 RUN TIME (DAYS) 11 RUN TIME (DAYS)

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STD.DEV. WATER VELOCITV(FPS) 5.425 .089 WATER VELOCITV(FPS) 2.966 .033 HEAT FLUX (BTU/MR/SO FT) 62893. 127.4 HEAT FLUx (8TU/HR/SO FT) 62068. 183.4 WATER BULK TEMPERATURE (F) 116.3 .49 WATER BULK TEMPERATURE (F) 117.0 .50 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F)

LOCATION A 159.4 .66 LOCATION A 159.4 .63

RUN 155 RUN 156

TEST SECTION TEST SECTION 2

HEATER ROD NUMBER 221 HEATER ROD NUMBER 222 STARTING DATE 4/30/84 STARTING DATE 4/30/84

RUN TIME (DAYS) 4 RUN TIME (DAYS) 4

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STO.DEv.

WATER VELOCITY(FPS) 7.976 .124 WATER VELOCITV(FPS) 5.461 .066

HEAT FLUX (BTU /HR /SO FT) 129592. 429.4 HEAT FLUX (BTU /HR /SO FT) 63010. 134.8

WATER BULK TEMPERATURE (F) 116.4 .43 WATER BULK TEMPERATURE (F) 116.2 .49 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F)

LOCATION A 159.9 .67 LOCATION A 159.2 .69 292

RUN 158 RUN 157 TEST SECTION TEST SECTION 3 HEATER ROD NUMBER 221 HEATER ROD NUMBER 216 STARTING DATE 5/ 4/84 STARTING DATE 4/30/84 RUN TIME (DAYS) 5 RUN TIME (DAYS) 4

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STD.DEV. WATER VELOCITY(FPS) 8.055 .110 WATER VELOCITV(FPS) 2.995 .036 HEAT FLUX (BTU/FIR/SO FT) 129113. 146.8 HEAT FLUX (BTU/HR/SCIFT) 53909. 217.9 WATER BULK TEMPERATURE (F) 116.6 WATER BULK TEMPERATURE (F) 116.6 .44 .41 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE(F) LOCATION A 159.6 .39 LOCATION A 158.7 .55

RUN 160 RUN 159 TEST SECTION 3 TEST SECTION 2 HEATER ROD MAIM& 216 HEATER ROD NUMBER 222 STARTING DATE 5/ 4/84 STARTING DATE 5/ 4/84 RUN TIME (DAYS) 5 RUN TIME (DAYS) 5

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STD.DEV. WATER VELOCITV(FPS) 2.971 .025 WATER vELOCITV(FPS) 5.481 .047 HEAT FLUX (BTU /HR/S0 FT) 53500. 218.8 HEAT FLUX (BTU/HR/SCI FT) 62982. 103.7 WATER BULK TEMPERATURE (F) 116.8 .40 WATER BULK TEMPERATURE (F) 116.4 .42 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE(F) LOCATION A 158.9 .39 LOCATION A 159.2 .48

RUN 16) RUN 162 TEST SECTION TEST SECTION 2 HEATER ROD NUMBER 22) HEATER ROD NUMBER 222 STARTING DATE 5/ 8/84 STARTING DATE 5/ 8/84

RUN TIME (DAYS) 9 RUN TIME (DAYS) 9

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STD.DEV. WATER VELOCITY(FPS) 7.982 .151 WATER VELOCITY(FPS) 5.487 .062 HEAT FLUX (BTU /HR /SQ FT) 128633. 302.2 HEAT FLUX (BTU/MR/SO FT) 62928. 81.0

MATER BULK TEMPERATURE (F) 118.4 9.12 WATER BULK TEMPERATURE (F) 116.4 .45 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F)

LOCATION A 159.8 ,. .79 LOCATION A 159.2 .80

RUN 163 RUN 164 TEST SECTION 3 TEST SECTION HEATER ROD NUMBER 216 HEATER ROD NUMBER 221 STARTING DATE 5/ 8/84 STARTING DATE 5/17/84 RUN TIME (DAYS) RUN TIME (DAYS) 14

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STD.DEV. WATER VELOCITV(FPS) 2.998 .031 WATER vELOCITV(FPS) 8.061 .113 HEAT FLUX (87u/HR/S0 FT) 53321. 181.4 HEAT FLUX (BTU/HR/SQ FT) 97967. 198.1 WATER BULK TEMPERATURE (F) 116.8 .43 WATER BULK TEMPERATURE (F) 115.9 .48 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F) LOCATION A 158.4 .65 LOCATION A 157.9 .69 293

RUN 165 RUN 166 TEST SECTION 2 TEST SECTION 3 HEATER ROD NUMBER 222 HEATER ROO NUMBER 216 STARTING DATE 5/17/84 STARTING DATE 5/17/84

RUN TIME (DAYS) 14 RUN TIME (DAYS) 14

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STO.DEv. WATER VELOCITY(FPS) 5.567 .100 WATER VELOCITY(FPS) 2.979 .035 HEAT FLUX (BTU/HR/SO FT) 73121. 140.0 HEAT FLUX (8TU /HR /SQ FT) 56738. 242.0

WATER BULK TEMPERATURE (F) 116.1 .48 WATER BULK TEMPERATURE (F) 116.5 .47 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F) LOCATION A 158.4 .73 LOCATION A 159.2 .64

RUN 167 RUN 168 TEST SECTION 2 TEST SECTION 1 HEATER ROD NUMBER 221 HEATER ROO NUMBER 222

STARTING DATE 6/ 4/84 STARTING DATE 6/ 4/84 RUN TIME (DAYS) 15 RUN TIME (DAYS) 15

RUN STATISTICS MEAN STD.DEV. RUN STATISTICS MEAN STO.DEV. WATER VELOCITY(FPS) 8.017 .072 WATER VELOCITY(FPS) 7.945 .098

HEAT FLux (8Tu/HR/S13 FT) 97793. 361.1 HEAT FLUX (BTU /HR/S0 FT) 99615. 200.5 WATER BULK TEMPERATURE (F) 113.1 3.84 WATER BULK TEMPERATURE (F) 113.1 3.84 SURFACE TEMPERATURE (F) SURFACE TEMPERATURE (F)

LOCATION A 155.3 3.71 LOCATION A 157.2 3.40

169 RUN 3 TEST SECTION HEATER ROD NUMBER 216 STARTING DATE 6/ 4/84 10 RUN TIME (DAYS)

MEAN STO.DEV. RUN STATISTICS .037 WATER VELOCITY(FPS) 2.939 175.1 HEAT FLUX (BTU /HR/S0 FT) 52145. 3.87 WATER BULK TEMPERATURE (F) 114.3 SURFACE TEMPERATURE (F) 3.79 LOCATION A 157.3 r:4.38 .:44,3 N 4 I ill! ; gi "MMIIII a ! a s r I g I 1111 1 :4, 1 a:P giaasass d a I d idaiIIgg 4 I a I ri IMa11" F" cg I F I I/ I if I :7. 1.2 I ° till4444 ! 1 I , :446!Ill i 4 14 4 '1111 Z444 4g 4 I t I I I 0 !a 14 I 0 288804i4O s 2 N a 11444Sala d 0 !loos 2 5:I [ L. 1::: 011'1 I r Irt 1 iiiw 0 51 I I li[ c1 is : 0 a g I I 1 ! 1 ; 1 ; 1 1111 1 1 ! t4 OJOS1111 A1 S n MI0000 1 A 4 I gaaa:ass ia is a sass d a Cd.441888 d2 V I4 .aR4!CPC I a crept! H a Et 1 44441111 el1 41 14 N lite1444 g g I 1 daaa8888 C8 ai A I 1 1111:1 t 4 ! Vd I I 1 JOSOMI 5 4 i 1 '1111 .Sec; 4I d 4 . 4444 4 !4 4 I 4A 044:888 i I e d I idiz8888 iI f8 I 8888 .8 8 errs 1,; 4 I, N5 ..:k0 : a a rag:: U I 5IA I [1"Ii I OH!! V : a i III! 4 4 iaaa4444 45 4/ I 0 MI0 444 4 4 ----- 4 I Z444 I s 8888 s I 4i I iaiiasss tI is 4 I zsss r g d d4 O N I a I 120 i i i w raw;; r MV [I .0 d I a irrerii N CV 1 !III.:444 Ij !4 !6 4E 44441111 4I 4i Ze 4 4444 4E 4I 4I re.=kik k g= I A .44443888 dr d3 E I !:e441888 d; x2 4I prey B t ! I ins R g 11. r as; f r S.t i MI4664 1 11 j 4 4 14 ;III6664 1j U 1 4 4 1 ' PIII4404 Em 4 I If 0444otos dt 1a I 1(!li $8 ra 4 I 04441888 d;: es i c. N loscs:r IfI d di I rus:L.... I N t 298

O WN 124 TIIROINATIES AT 04107$06100102 N UN 1113 TIONINATIS AT 00:07147.06147

TOTAL NUN TIME s162.70 Am/ TOTAL OWN T2NE s 102.74 More POO ROO WOW I 412 ON TEST SECTION POO NOS NURSER o 211, ON TEST UNCTION 1 011111100100.

O WN STATISTICS. N UN STATISTICS.

mINAWIEN MDR rrammasOBVIATION MINI grammeVIVIATTO

FAX(101/711 WINI 0.7113 116.13 BSI :111111rITIOU 116.34 0.7122

1 1411112.7rIPATUSI 2.419=11119411A11.1111 1

. SITE A 11.73 0.4673 SITS A 1 139.90 0.9131 SITS 0.00 0.0000 um 0.00 0.0000 SITS 0.00 0.0000 11111 0.00 *Ake f SIR 0.00 0.0000 4/711 I 0.0 0.0000

14.32 1.3304 4.1141111WIMAR111 I 01.31 1.3119

0.4262 99.34 41.1411501Mli11 72.72 0.1327

7.927 0.0402 941.114q, 0.6611 0.0656

I

SAN 197 MOINAN0110 AT 09.20.10,63,37 1001 146 Tommummalt.AT 09,07.07110.01

70714. Mum TAU 310.112 hours TOTAL OWN TINS s 192.44 homes /OA NOS NUMMI I 221 OM TEST S1CTION 1 1 P OO ROO MANOR s220, ON TEST SIMON 3

*51 STATISTICS. N MI STATISTICS.

142/112011171IN7 FRAN STI01/10ISVtATIO. MAIN STONIOND 011VUITION

1111/117609911,0111,11 116.69 i 0.66011 I!" tr114:nve 116.24 0.7124 111011.1411KPIPIATUIVI

SITS 139.60 0.4610 OM A 134.46 0.7124 SITS 0.00 0.0000 0.00 0.0040 SITS 0.00 0.0000 111111 0.00 0.4400 SITE 0.00 0. 0040 slit 0.00 0.0000 amercormanws 57.64 1.3209 01.11 1.3349 "1" 447;, 101.23 0.3177 "'",1;W (0, 4t 33.30 0.213 S.091 0.0093 1.13 0.0334

RUN 199 TIONINATES AT N UN 1911 TONNINATED AT 091 tOs les 49.19 008201110.1111.02

TOTAL NUN TINE I TOT/A. OWN TINS . 310.19 Mare 310.67 Mors

/ ON WOO MINNOW s ISE, ON TEST SUCTION I 2 POO ASS NUMMI s 210., ON MST SECTION 3

OWN STATISTICS...... NMISTATISTICS.

STMIDOND OEVUSTIOIS STAMAIND OBVIATION

'WC=rim,* 116.00 0.6627 1111LIC.Terrn" 117.20 0.6406 SUIPAlgeTZPSNATIMS 111.01MTRIMINOTIAIS

SITE A 1SS. 29 0.7041 SITS A 160.20 0.790) SITS 0.00 SITS 0.00 0.0600 0.0000 5171 0.00 SITE 0.00 0.0000 0.0000 0.00 0.0000 0:71 0.00 0.0000 .411111:41proSNATUNI 57.45 orezirr.orpuous 117.6. 1.3166 1.3192

"." cragf;iii» 76.97 0.1632 14671St./ 14Z;1/ / 10.63 0.2236

vajligt 2.700 0.1273 2.9116 0.0546 rn rn C3

r i illl s A MI 4464 4 4 4 .:4O4 4 4

A

8888 sags F 4SO t 4 gzza g

gi N II N

I cm 4 mo I I A I Lus r.0 t II f i Ili 4 8

I

A 2 fill ; A I 4 4444 o e 0 :lull0000 . 4 0 4 4444 4 4 r

A

ages s r I P 6888 g A i 1 4888 8 c P 0i44 d d g444 4 1404 d d r i

A A I [ A krtr I Nia I Imo 4 0. ! 0_111 1 8 : I r dI 8 iir iir 4 I 8 8 0 4 4444till oi o -000 .21 1 2 13.00'1.2.2 c 11 I P4 ill!4404 i 4 I k'lll rf Odic; k4 4 to s goo.1SSS gs = I 1 Eoeo g g! ft 8 r888,!4;44 e8 8 1 1 2 s iekke otc c= 1 I ! I [i viii EX - P J 4 313311 I 13 t n 0 33330 4 4 {r 7 I A. AgA 30 H t!'4 I I 1 1 1 ; 4 r F 0 P:i 8880 $ I4 d0 P??..i8 8 8 8 I U ease??? 4!.; S4 t. 5r 11i1PPP! I I 0 k ill HMI II 1 : E I Aghi..J4 k 033310 ! 4 0 .Poi gI 4 I ; aFrl I 8181 .11 I N 888:1 I a r"?i ; ICII111 ?PPP a 1 O ? P 1111 I 4 Pill4444 4i 4 4! i !III I ! ! a 8 1444VIVI 0V It i a i 8888 h 4 4 I 1 Ia 1,1 i 11 fug"Eg;, r dr a 1E! ! 6110 I t 41 44441111 41 41 4 4 11114444 41 41 14 4 4444 I i4 4 a A888 a ia a I i rags 0a ap g4 s sassdiid 0a da 46 2 E daaa aI i a 4644 I I rsimf [ri d I a a g 4444 4 4 0! -g- f1111JJJ P V J. Z444 ! ! 2 sal t s I I t888 0 a R 044alas t aM 48 tiii d 14ia a Ea. . 6 : PI 4 a i 1: ring II I 41 Mg4444 4 4g 4 4 w444 4i 4 0g ! tillziza J! 4 4 I f444alias 0a da a f444tags 0t ds s asssfiee a0 a 41 6 i .1,rrEle: a ti F. ssus II1 ird 0Ifs a -; AiAAill; A Rill 1 I a 1444sass 0 0v 4 a 1 5888A 444 38 t 4 2I 2I. . I 1 :1 1 I I t _rear f I P! a a _did .1 S a 4 " o MI WIlaai I I I I' I I dit vs:: 8 d8 4i a .2 sots s 4 pass 4 dt 4 I 044 8 d 0444 ------, 4 I ;« N N. . a a r , 1 f ic.asr _try f d I 1 i ; rretw I11 a f a - 0111-4Se 45 J1 14 - I ill' i AAA J i i 1 :die11111( 11 - e 4 p I !!1 F 0 aI I da sass s dI ai aI I R! le00vats ts Aa "i jI... ' .1! by a I 501111 11 d a WU. a t 2 ' 1111 11 ti g I pI I e nagsfdAd at I sass e i8 Ag I I I dp 1144aails as in f I -ss III1 :r I n r- iggt fi Co a $ a 1 /III e1 1 i I MI-444 1 A 4 g4 t Z4441111 A1 4g 4I a I 1 s 1444tate it 1 4 XSSS S i a1 ! 1 1 444aVIII s 04" a a ------le 5 I I I 4 Oil:: gt ILI a a; ------41 1111a" 1 1 I !didIIII IA 0i d 1 I gjaatoss ds ce "§ Eat 1 daaa;ass aa ;a ,:eee'less as Rn 4I I at: I I a C685i.tr r II I i ta I I I rue 4 1 1 1 I 30003 p iJi ft. Hi:-t'A 1" 1 tonal Pill 3'04 1 g 1 g iPPP I 11 I / iP P PPPli 2 toss SI II a P 11222 4 I 8221 i4 P P r P ------rrr i E 1 i 1111rPPP yV 111 r i;.I 1- I 8 I I iiI I 333311 II Y 8 m 8881PPP:i 11 4 w i2 ocooi8882 I .13 Ir ri P 8224PPP). 1 2 I 4 ? ? P PPP! : I % p 4 PPPP I V ? Illf 4 4aco 1.1 3333 p g to if I II IN t A IP.10g 1 i r 8y f PPP 8818 V 4 r Ii 3P 8818rrir 1 P 1 rrrii8881 N I g I 5 MI ! My iii p Itig 33330 h 1 E p 1_11g 031510 h CE I I Pi 1 1 I I I I MN N t 1 11 I 3 r9 1f 8 88:8opt? f tF 1f 888;PPPi r P 3P 8818PPiP I P ? P ?PPP P Yy i 8 i coCa 00) 1 aria ! 8 I 887:4 a, 6 6 I 0 0 N 0 11110,00 1 10 0 8868 I a a I 4 a I 7 R . 4: 1 ..] or1=:!1! esii I !11 ee. a a Fl!! ere s ss gl I ! V aa I 1 4 a a I11 I a 3 a Pi cut N a lir 41 ciiii4O4 i4 1 - 8! V lilt.0000 4 14 F. 844o 4k s 8 Ie I g64.4ass: : a elpo84.8 6 t o a I 11 IV N a 1 I OM: 0 51 d 4IA F. a I 0 51bt d lir a ii ill- a 1. 0:::: ovo,, 4 4 I A h c is MI ! A aF 1 s 6::44sIss d 4 Al A 4...144;8;88 n 4 Al i = I [4:1111;1 i 1 I I I i A A W444 4 41 41 MIo.00 4 4 4 I [111O.:44 ! 4 ;°:-1 ...... - - - _ ------1! 1 A 2 r. 3 Fi . AlVI 1 1..0sass 1 8188 d d ri 07008188 : .; I ii orm: ! VI 1- 4 ti 0:::S - t fri ttic otm g0 311

4464.011 1140000140110100.00000,000

Run 272 TMAINATED AT u....0.15.51.7. SUN :73 rum: AAAAA AT 0711081:122.27

TOTAL NUN TIM 142.22 RAN,Il TOTAL AuM TIME I. 142.22 homes PM OM NUMMI 221 ON TOOT SECTION ROAPSI aunts I 117 ON TROT SECTION 2 .00OamemOUOmmom..0.1wamme..DOMOIMMONONON mmolibmemamedlaaa.maa.m.O.DONNOOma. WOOmme

RUN STATISTICS. AUN STATISTICS.

STANDARD DIVIATIGN ACASURIMENT KAN MAN ! STANDARD prvrArr2N

0 MILK 7121170./.12 DULX21ATuRE 11..77 .1002 114.31

3uNFILIRWIRATMS 71.0022.17021.011221

SITS A 130.30 1.4242 WTI A 0.00 SITE 0.00 SITE 0.00 SITE 0.00 0.0000 SITE 0.00 NJo.) SITE 0.00 0.0000 SITS 117.11 2.0542

41611147WMATIMI ANO111:4110OIMI1AM 06.44 2.4081 07.40 2.51./11

MIATAlignii;j1/. 101.24 0.3500 WIATaVutit474). 110.1.0

( 3.26 0.50.0 4.49:7.) 2.452

mOmmisOmeme.00momownwmwom 44 RIM 071 TERN:/ATE) AT 04116104111,17 RUN :74 TiamrmATOO AT 0211111 :,54.21 707M.. RUMTIME I 127.34 AMA TOTAL RUN TIME 142.311 hours PORROO WJIMI I 221 ON TOYWICK , 1 VOA ROO1111/12112 124 ON TEST SECTION ....o melybersaallia0001 011101Masime

RUN STATISTIC,.

mIASIAIMOITT NOM i 270/0)012 2211111:11

U.1.;11:11.44A71. as. a.40.. SNAR11411,DIATLINI

121117401 71.1141.12 SITE A 177.77 1.1142 SITE 0.00 SITE 1$9.: 2.1.:: SITE 0.00 SITS 0.00 SITE 0.20 SITE 0.00 SITE O 0.00 0.0000 /MICA REAPMATURE 22.01 1.720.4 ARDISILTPORATURD 01.54 2.5027 KAT RUN (12' -31 (1141.01h,(11'21/ 41.14 1:02 MCAT (143.-3) aftsalhp1142.211 67.2, 2.2417 YEAC117. OW 3.1:3 0. :4110,2 VILOCITT '4010 2..4: 0.01141

realMaininimMIMIlaIDOIDOIDOIDIMIumANINND 04110010.11.0010 ONOMOMMim limplbea.mmeaOmmaamOOOMIUMMOmeina RUM 277 ramming AT 09,141,05.341.111 RINI 276 TOMAIIIATIO AT 09.14.0.1134.44

TOTAL RUN TIME 127.2. 600,11 TOTAL RUN TIME s 127.27 hours PonNM NUMMI 124 OWTESTSECTtOw 3 PM NOS AMOCO 117 ON TINT SECTION It 2 .11...... 0000111101.00000000m400.0a0 so....

SUM 17471 .211 STATIST22i,

1741111.011011747 Man 372,100111 00,10771,4: 712111.111211707 MEAfl 1'4,4.40 011WAT:7.

.11.011zerania 11T.0 0.4112 3:4X: 21112.12171211100it 0. 1: suRFACE TrEMATURS 21.110114.71r111117711112 SITS A /2.27 0.401 SITE 140.66 1.0607 SITE 0.00 0.0000 SITE 2.0000 SITE 0.00 0.0000 SITE 0.02 140. SITS 0.00 0.0000 3511 0.00 .1.0402

Ans:TrrTroaruir ...npzpoimuur 32.01 1..1237 112.20 /.0100

42.,11 O.:144 "1",:et4a44), 30.31 0.1007 141",M14:701)

yp Tr 3.074 3.144 0.1176 312

22222222222222222XX222222222222222222222222.2222222222222X2 22222:22222222222222222222222222222222=2222222222 22222 X22

RUN 1 278 TERMINATED AT 09.25.08.54.56 RUN 1 279 TERMINATED AT 09.25.08.56.27

TOTAL RUN TINE 212.38 hours TOTAL RUN TIME : 212.38 hours

FOR ROD NUMBER : 221 ON TEST SECTION : 1 FOR ROD NUMBER : 117 ON TEST SECTION : 2

822222224222222222222 22222 222222222242221112 2....22222 2.22222122222222822 22222222..2..22..2

RUN STATISTICS: RUN STATISTICS:

MEASUREMENT MEAN 1 STANDARD DEVIATION MEASUREMENT MEAN 1 STANDARD DEVIATION

BULK TEMPERATURE BULK TE MPER ATURE i 0.3704 (deg F) 116.98 0.3713 (deg F) 117.24

SURFACE TEMPERATURE SURFACE TEMPERATURE (deg F) (deg F)

SITE A 159.99 1.1018 SITE A 159.24 1 1.2333

SITE 0.00 0.0000 SITE 0.00 1 0.0000

SITE 0.00 0.0000 SITE 0.00 1 0.0000

SITE 0.00 0.0000 SITE 160.35 1 1.2627

AMBIENT TEMPERATURE AMBIENT TEMPERATURE (deg F) 82.20 1.8275 (deg F) 82.19 1 1.8242

HEAT FLUX (10A-3) HEAT FLUX (10A-3) (Btu/(hr1ftA2)) 42.39 0.1939 (litu/(hrlftA2)) 51.09 1 0.1129

VELOCITY VELOCITY (fps) 2.960 0.0723 (fps) 2.964 1 0.0909

2222.22222222222282222222.282222222222222222122222=12222222 22122222222222222222222222222112122222722222222222222.2222222

RUN 1 280 TERMINATED AT 09.25.08.57.58 RUN 0 281 TERMINATED AT 09.30.24.11

TOTAL RUN TIME : 212.38 hours TOTAL RUN TIME :118.04 hours

FOR ROD NUMBER : 124 ON TEST SECTION : 3 FOR ROD NUMBER : 221 ON TEST SECTION : 1

ZISSZlillr.:ZZSZSVIZZSIZSZZ31111ZZS2317311111111LIMIZZZZSZBILILIZZIMSS ZiSSASAIIZZIIIIIBUSSIMIZIMMISIORMSSZSZUSIMUSSZZIISMS

RUN STATISTICS: RUN STATISTICS:

MEASUREMENT 1 MEAN 1 STANDARD DEVIATION MEASUREMENT 1 MEAN 1 STANDARD DEVIATION

BULK TEMPERATURE BULK TEMPERATURE 1 (deg F) 116.46 1 0.4643 (deg F) 1 117.14 0.3699

SURFACE TEMPERATURE 1 SURFACE TEMPERATURE (deg F) (deg F)

130.48 0.8645 SITE A 1 159.03 0.5355 SITE A

SITE 0.00 0.0000 SITE i 0.00 0.0000

SITE 0.00 0.0000 SITE 1 0.00 0.0000

SITE 0.00 0.0000 SITE 1 0.00 0.0000

AMBIENT TEMPERATURE AMBIENT TEMPERATURE 1 85.81 1.4773 (deg F) 82.19 1.8262 (deg F)

HEAT FLUX (10" -3) HEAT FLUX (10 " -3) 1 0.1704 (Btu/(hrlft42)) 12.65 1 0.1335 (Dtu/(hrtftA2)) 1 47.16

VELOCITY VELOCITY 1 2.833 1 0.1391 (fps) 1 2.994 0.0275 (fps) 313

SSISIZZIMMISIM1.223:22SZZ2811222====22118======22222 :as iftx:=222 2222222 =2711.11zzitaX2i2Zia-ZICUS ZassiX=Ziaa

09.30.09.27.14 RUN 1 282 TERMINATED AT 09.30.09.25.43 RUN 1 283 TERMINATED AT

TOTAL RUN TIME : 118.06 hours TOTAL RUN TIME : 118.08 hours

3 FOR ROD NUMBER : 117 ON TEST SECTION : 2 FOR ROD NUMBER : 124 ON TEST SECTION s XXX9112XSUIMMIXVIZZXIMUU222SUUSIMUSIES:211ZUS ZZZZZZ SinaSSUass Szzi=7.222ZZSMUS SMUSX*2XXSZSU MaZ2Z31332

RUN STATISTICS: RUN STATISTICS:

MEASUREMENT BEAN I STANDARD DEVIATION MEASUREMENT 1 MEAN STANDARD DEVIATION

BULK TEMPERATURE BULKTEIURE 1 0.4594 (deg F) 116.51 0.4611 (degFMPIERN) 116.52

SURFACE TEMPERATURE SURFACE TEMPERATURE (deg F) (deg F)

SITE A 129.78 I 0.4018 SITE A 129.14 I 0.4789

0.0000 SITE 0.00 0.0000 SITE 0.00

I 0.0000 SITE 130.89 0.4905 SITE 0.00

0.00 0.0000 SITE 128.78 0.4767 SITE

AMBIENT TEMPERATURE AMBIENT TEMPERATURE 15.81 1.4762 (deg F) 85.80 I 1.4735 (deg F)

NEAT FLUX (10"-3) NEAT FLUX (10 " -3) (Btu/(hrIft"2)) 15.10 I 0.0554 (Btu/(hr1ft"2)) 27.72 1 0.1276

VELOCITY VELOCITY 3.059 I 0.0430 (fps) 5.581 0.1500 (fps)

ISMIIIISIM*1122ZSZSWASZSZIIIMMISWIZSMILTW a a ms aasmss sss ssmsszs saasssass:z:zssassmszssssss -sss

TERMINATED AT 10.08.12.09.39 RUN 0 284 TERMINATED AT 10.08.12.08.08 RUN 1 285

TOTAL RUN TIME : 193.65 hours TOTAL RUN TIME : 193.67 hours

ON TEST SECTION : 2 FOR ROD NUMBER : 221 ON TEST SECTION s 1 FOR ROD NUMBER : 117

;SISSZIRSZZSISSMSSMINIZIWZRIBMIliii22112Z1M11121.2233.11122 ..7.2221111111:111ZIMISMBILIMMI.1=ZSITSZIZSZICAISSXXIMILSZSIMISZ

RUN STATISTICS: RUN STATISTICS:

MEASUREMENT I MEAN I STANDARD DEVIATION IMMURENENT I MEAN I STANDARD DEVIATION

BULK TEMPERATURE BULK TEMPERATURE 116.14 I 0.6953 (deg F) 116.06 I 0.6986 (do, F)

SURFACE TEMPERATURE SURFACE TEMPERATURE (deg F) (deg F)

SITE A NA 0.6920 SITE A 130.81 1 0.6876

0.00 0.0000 SITE 0.00 I 0.0000 SITE

0.00 0.0000 SITE 0.00 0.0000 SITE I I SITE 130.24 0.6917 SITE 0.00 1 0.0000

AMBIENT TEMPERATURE AMBIENT TEMPERATURE 83.66 2.4610 (deg F) 83.68 2.4575 (deg F)

(10 " -3) HEAT FLUX (10" -3) NEAT FLUX 31.21 I 0.0623 (8tu/(hrlft"2)) 14.08 1 0.0601 (Itu/(hr1ft"2))

VELOCITY VELOCITY 5.570 I 0.0774 (fps) 3.016 0.0390 (fps) 314

IZMIZZIMUZ*S2222112X22U2STXX2SX28=2:2=271Z*ViTASSAMS222222 Zielit ZS

TERMINATED AT 10.15.23.31.05 RUN i 286 TERMINATED AT 10.08.12.11.10 RUN I 287

TOTAL RUN TINE : 193.69 hours TOTAL RUN TIME : 177.72 hours

ON TEST SECTION : 1 FOR ROD NUMBER : 124 ON TEST SECTION 3 FOR ROD NUMBER : 221

= 222222 8112X8SMZSMIMMMUKSBUSUSS8======.213228M iSiZZE,SZ8Sitir=2:282112USSIMISSWASsiZZ2SIMMOUSIMBURiaaRt

RUN STATISTICS: RUN STATISTICS:

I MEAN I STANDARD DEVIATION MEASUREMENT I MEAN I STANDARD DEVIATION MEASUREMENT

BULK TEMPERATURE BULK TEMPERATURE (deg F) 116.12 0.6989 (deg F) 116.31 i 0.7746

SURFACE TEMPERATURE SURFACE TEMPERATURE (deg F) (deg F)

SITE A 131.56 0.7168 SITE A 160.02 1.4637

SITE 0.00 0.0000 SITE 0.00 0.0000

SITE 0.00 0.0000 SITE 0.00 0.0000

SITE 0.00 0.0000 SITE 0.00 0.0000

AMBIENT TEMPERATURE AMBIENT TEMPERATURE (deg F) 83.67 2.4620 (deg F) 78.35 1.2532 1

HEAT FLUX (10" -3) HEAT FLUX (10" -3) (Btu/(hreftA2)) 15.14 0.0744 (Btu/(hrtftA2)) 42.85 I 0.0843

VELOCITY VELOCITY (fps) 2.983 0.0337 (fps) 2.983 R 0.0781

INISRS2=222822=8122221WMASSIMMWMCWZMWESSUMWASSZ822.1 SiZ7181131=====.222ZZUVZSZSBSSMOSSZSXSOUZZLIMMBIZZ2XXX

RUN 0 288 TERMINATED AT 10.15.23.32.37 RUN A 289 TERMINATED AT 10.15.23.34.08

TOTAL RUN TIME : 177.74 hours TOTAL RUN TIME : 177.76 hours

FOR ROD NUMBER : 117 ON TEST SECTION : 2 FOR ROD NUMBER : 124 ON TEST SECTION : 3

SIZZ3Z22111111ZaZZaIlitIZSZSZ582881111111WW1111-SZWISISSIWZZ aitZMALSZainiftaSZTAIIIIIISZEILZSWILMMIBItailtaliSSIIISZSZZIMBZ

RUN STATISTICS: RUN STATISTICS:

I I I I I STANDARD DEVIATION MEASUREMENT i MEAN I STANDARD DEVIATION MEASUREMENT MEAN _....------_------....-----_-_------_____----_____

BULK TEMPERATURE BULK TEMPERATURE (deg F) 116.6 0.7698 (deg F) 116.32 0.7620

I SURFACE TEMPERATURE SURFACE TEMPERATURE (dog F) (deg F)

0.6833 SITE A I 0.00 0.0000 SITE A 160.07

0.00 0.0000 SITE 0 0.00 0.0000 SITE

SITE 0.00 1.1969 SITE 0.00 0.0000

0.00 0.0000 SITE I 160.90 1.2575 SITE

AMBIENTTEMPERATURE AMBIENT TEMPERATURE (deg F) 78.34 0.3280 (deg F) 78.34 1.2532

(EAT FLUI HEAT 111u/((11;;112)) 99.01 0.1476 42.01 0.1300

VELOCITY VELOCITY (fps) 3.009 0.0352 (fps) I 5.562 0.0000 313

X22:=228Z211======i2ZIMUMV=SZ22**2.12i2g2==igiiiag ZSUSSZ2iii22222212SZEZZMigiSSUSMSZVISOSSLAISSIaiSSOiiiiiii

TERMINATED AT 10.25.13.15.59 RUN D 290 TERMINATED AT 10.25.13.14.28 RUN 1 291

TOTAL RUN TIME : 195.6 hours TOTAL RUN TINE 195.61 hours

ON TEST SECTION : 2 FOR ROD NUMBER : 221 ON TEST SECTION s 1 FOR ROD NUMBER s 117 azzszleszsmsmataszzmuespnmesszsitssancessamszzawszamumsmas: iSSZWZMIZIMMIIIMINSESSWAMM2SOSISSMSSIZSMIMISZSMISSIMUSS

RUN STATISTICS: RUN STATISTICS: I I I I

I MEAN I STANDARD DEVIATION I MEAN I STANDARD DEVIATION MEASUREMENT MEASUREMENT ____----___-_-____----______-_------______----__

BULK TEMPERATURE BULK TEMPERATURE 115.31 1.1193 (deg F) 115.15 1.1054 (deg Fl

SURFACE TEMPERATURE SURFACE TEMPERATURE (deg F) I (deg F) 0.0000 SITE A 159.07 1.2332 SITE A i 0.00

SITE I 0.00 0.0000 SITE 0.00 I 0.0000

SITE 0.00 0.0000 SITE 0.00 I 0.0000

3 144.49 1.6616 SITE 0.00 i 0.0000 SITE

AMBIENT TEMPERATURE AMBIENT TEMPERATURE I I 75.79 2.0136 (deg F) 75.79 2.0163 (deg F) 1 NEAT FLUX (10A-3) HEAT FLUX (10A-3) I I 94.88 2.4318 (Btu/(hrIftA2)1 76.69 I 2.0436 (Itu/(hrlftA2)1

VELOCITY I VELOCITY . 8.251 0.1387 (fps) 7.977 i 0.1070 (fps)

211====.22.81122211121192SZIMSZUZZ282 SOSSMitiltiii2222 Siii2SUUMS222222Z2SUSZZIMISISSWESSSESZZigniiii=111====

11.06.10.02.31 RUN 1 292 TERMINATED AT 10.25.13.17.30 RUN I 293 TERMINATED AT

TOTAL RUN TINE : 195.63 hours TOTAL RUN TINE : 276.06 hours

FOR ROD NUMBER : 124 ON TEST SECTION : 3 FOR ROD NUMBER 1 221 ON TEST SECTION : 1

SZZEMIIIIIIISSZIMBICSIMMUSSZUSISZMIMMLUSZRZSZSIMSS suss ssassasss:ss sssos sssassssass sssssasssssaa:nsasszsss

RUN STATISTICS: RUN STATISTICS:

MEASUREMENT MEAN I STANDARD DEVIATION MEASUREMENT I MEAN I STANDARD DEVIATION

BILK TEMPERATURE BULKTEMPERATURE 1.1913 (deg F) 115.13 1.1242 (deg F) 114.9

SURFACE TEMPERATURE SURFACE TEMPERATURE (deg F) (deg F)

1.7123 SITE A 145.01 3.0183 SITE A 144.58

0.00 0.0000 SITE 0.10 0.0000 SITE

0.00 0.0000 SITE 0.00 0.0000 SITE

0.00 0.0000 SITE 0.00 0.0000 SITE

AMBIENT TEMPERATURE AMBIENT TEMPERATURE 77.75 2.3123 (deg F) 75.79 2.0142 (del F)

(10A-3) HEAT FLUX (104-3) HEAT FLUX 61.52 1.9322 (8tu/(hrIftA21) 27.60 2.3984 (Ito/(hrIftA2))

VELOCITY VELOCITY 8.137 0.0849 (fps) 3.128 0.0593 (fps) 316

RUN I 294 TERMINATES AT 11.06.10.04.02 RUN I 295 TERNINATED AT 11.06.10.05.33

TOTAL RUN TINE t 276.07 Moors TOTAL RIM TINE t 276.08 bars

FOR 101 MIER o 96 ONTESTSECTION 2 FOR ROO PUNIER ; 124 ON TEST SECTION : 3

121112332111811=8,21181110/ZSBISIBIZilitfl, 82118112 UMW

RUN STATISTICS: RUN STATISTICS:

KASSIENBIT SEAN STANDARD IEVIATION NEASUREMBff NEAN I STANIAR. IEVIATION

MLII TEMPERATURE IRK TENPERATURE 115.1 I 1.1969 (ds, F) 1 115.03 1.1948 (ds, F)

SURFACE TEMPERATURE SURFACE TEMPERATURE 1

Wes F) 1 (IN F)

SITE A 0.00 0.0010 SITE A 144.09 : 1.9340

1

1 0.0000 SITE I 0.00 0.0000 SITE 0.00

SITE 0.00 0.0000 SITE 0.00 I 0.0000

0.00 t 0.0100 SITE 1 144.49 1.7591 SITE

ANSIENT TEMPERATURE AISIENT TEMPERATURE (deg F) 77.74 1.8121 TIN F) 77.75 I 1.1137

NEAT FLUX (10A-3) NEAT FLOM (10A-3) (lts/IhrtftA2)) 74.11 2.3116 ISts/(kriftA2)) 30.12 1 1.1560

VELOCITY VELOCITY 1 3.151 i 0.0439 Ups) 1 1.109 0.1076 If,A)

11311111111111111111122811112111,41IMUSIOCIPIMMIL

RIM t 296 TERMINATES AT 11.15.09.15.09 RUN I 297 TERMINATES AT 11.15.09.16.40

TOTAL RUN TINE : 227.48 hours TOTAL RUN TIME : 227.49 heirs

FOR ROS NUNIER s 221 ON TEST OECTION 1 1 FOR ROI NUNIER t 96 ON TEST SECTION t 2 ABS

RUN STATISTICS: RUN STATISTICS:

I SEAN 1 STANDARDIEVIATION NEASUPBEIIT I DEAN STANIAR, DEVIATION MEASUREMENT

i. IULKTESPERATURE I ILK TEMPERATURE (deg F) 114.61 1.6601 (des FI 114.71 1 1.6615 1 SURFACETEMPERATVIE I SURFACETEWERATIME

(degF) (degF)

SITE A I 146.44 1.5249 SITE A 0.00 I 0.0000

0.00 I 0.0000 SITE I 0.00 0.0000 SITE I I SITE 0.00 0.0000 SITE 0.00 1 0.0000

1

146.71 1 1.6396 SITE I 0.00 0.0000 SITE

AMBIENT TEMPERATURE AMBIENT TEMPERATURE (deg F) 72.28 3.6396 (del F) 72.27 3.6425

NEAT FLUX (10A-3) NEATFLUX (10A-3) 75.36 1 1.2611 (Itu/(hrtftA2)) 64.52 1.1954 (Its/(hrtftA2))

VELOCITY VELOCITY 8.065 I 0.1091 (fps) 1 7.961 0.1142 (fps) 317

IlaWISZUZIOSSIASISIWZMUSSIIMSZSCSIMICRIMISILIMIZOLIMISZS

RUN I 299 TERMINATED AT 11.23.09.45.33 RUN I 298 TERMINATED AT 11.15.09.10.11

TOTAL RUN TIME 1 180.67 hours TOTAL RUN TINE : 227.49 hours

FOR ROD NOSIER : 221 ON TEST SECTION : 1 FOR ROD MONIER : 124 ON TEST SECTION 3 samsasasasas satam SISSIIMMSWIttailIMMSZMISMISMIWAIRMICZWIll*S7111111

RIM STATISTICS: RIM STATISTICS:

NEASURENENT SEAN STANDARD DEVIATION MEASUREMENT I MEAN f STANDARD DEVIATION

SW TEMPERATURE MILK TEMPERATURE 116.02 I 1.0986 (dog F) 114.88 1.6693 (dog F)

SURFACE TEMPERATURE SURFACE TEMPERATURE (dog F) (do, F)

160.19 f 1.4070 SITE A 145.52 1.8462 SITE A

0.00 I 0.0000 SITE 0.00 0.0000 SITE

0.00 0.0000 SITE 0.00 0.0000 SITE

0.00 I 0.0000 SITE 0.00 0.0000 SITE

AMBIENT TEMPERATURE AMBIENT TEMPERATURE 70.64 2.3324 (deg F) n.2e 3.6455 (dog F)

(10 " -3) HEAT FLUX (10 " -3) NEAT FLUX 41.41 N 0.0771 (Itu/(hrIft42)) 31.58 0.6736 (Itu/(hrlft"2))

VELOCITY VELOCIT Y 2.914 I 0.0744 (fps) 3.033 0.0477 (fps)

maassss massaszesszisassassassamssassansassasssasaassassassas

TERMINATES AT 11.23.09.48.41 RUN I 300 TERMINATED AT 11.23.09.47.08 RUN I 301

TOTAL MM TINE : 180.67 hours TOTAL RUN TIME 1 180.67 hours

ON TEST SECTION : 3 FOR ROD DRIER s 96 ON TEST SECTION o 2 FOR ROD NURSER : 124 a MIMMR*OUSUMBOUSIMZUM ......

RUN STATISTICS: RUN STATISTICS:

I MEAN I STANDARD DEVIATION MEASUREMENT MEAN STANDARD DEVIATION MEASIIRENBIT

MLR TEMPERATURE SULK TEMPERATURE 116.1 1.0972 (dog F) 115.93 1.1258 (dog F)

SURFACE TEMPERATURE SURFACE TEMPERATURE (dog F) (deg F)

158.62 1.2600 SITE A 0.00 0.0000 SITE A

0.00 I 0.0000 SITE 0.00 0.0000 SITE

0.00 I 0.0000 SITE 0.00 0.0000 SITE

0.00 0.0000 SITE 161.37 5.1341 SITE

AMBIENT TEMPERATURE AMBIENT TEMPERATURE 70.65 2.3285 (deg F) 70.64 2.3352 (deg F)

FLUX (10"-31 HEAT FLUX (`10 " -3) 45.55 0.1326 (Itu/(hrtft"2)) 37.17 0.0600 MEAT

VELOCITY VELOCITY 3.065 I 0.0455 (fps) 2.914 0.3033 Ifos) 318

APPENDIX M

PLOTS OF CORRELATIONAL CURVES

Figs.M-1(a-h) Correlational of -1n0d vs Velocity at a

constant surface temperature for 8 sets of different

water qualities.

Figs.M-2(a-q) Correlation of ln(ed /Fv) vs [1/(Ts+460)][10]

for the 17 different water qualities observed in Table

VI-2.

Figs.M-3(a-q) Curvesof Constant Velocity on Grid of Time

Constant vsSurface Temperature for the 17 different

water qualities observed in Table VI-2.

Figs.M-4(a-q) Curves of ConstantVelocity on Grid of (Time

constant x Shear Stress) vs Surface Temperature for the

17 different water qualities observed in Table VI-2. 319

PLOTS OF CORRELATIONAL CURVES

Figs.M-1(a-h) Correlational of -InOd vs Velocity at a

constant surface temperature for B sets of different

water qualities. 320

16

C=10.673 6 15 Cr.394 R2 =.983 14-

13

12 -

11

10

9 I I I 1 2 4 6 6 10

Ili. 11- la Velocity (ft/sec)

16

C=11 268 6 16 - C= 390 7 2 R=.988 14 I 13 f 12 --,

11

10

9 i 1 1 i I I 2 4 6 8 10 lb continue... N. i Velocity (ft/eec) 321

16 C=10.346 6 15 C..308 7 2 R=.998 14 -

13

12 -4

10 -

9 2 4 6 8 10 continue... -I d Velocity (ftteec) 322

16 C.10.992 6 15 - C=.316 7 2 R..996 14

13 216 12-

11 -

10 -4

1 I I I 1 1 2 4 6 8 10 Velocity (ft /sec) fig. I - le

C=11.818 6 C= 370 7 2 R..982

0 228

9 r r 1 r 1 I I 2 4 6 8 10 continue... 11g. I- If Velocity (ft /see) 323

16

C=9.904 6 15 - C=.406 7 2 R=.993 14 -..

13 -

12 -

10 -

9 T 2 4 6 8 10 Fig.II-11 Velocity (ft/sec) 324

PLOTS OF CORRELATIONAL CURVES

Figs.M-2(a-q) Correlation of ln(ed /Fv) vs [1/(Ts+460)](10]

for the 17 different water qualities observed in Table

VI-2. 325

Water 40 : 1

14

13-.

12 -

11 - 2 10-

9 -

8 -

7-

8 1.71 1.61 1.83 1.65 1.67 (1/(79+410))S10^3 lig. I - 21

Water 41: 2

13 12.9 - C =1 1773 t2.8 - 3 E 12.7 ir =7 2223E3 12.8 - 12.5 R2=.863 12.4 - 12.3 12.2 - 12.1-4 12 -0 t 11.9 11.8 - 01 11.7 0 140 11.6 -0 11.5 0 142 11.4 0 141 11.3 - 11.2 - 11.1 --

11 I I 1.61 1.63 1.86 1.87 1.89 1.71 [1/(15+480)]010"3 fig. 1 - 2b continue... 326

Water 46 : 3

12.5 12.4 - C.1=3.68W3E3 12.3 - gE' .1.11898E4 12.2 - ng 2 12.1 - R=.981 12- 11.9 -

0146

11 1.64 1.86 1.88 1.7 lit. I - lc [1/(7S+480)]*10'"3

Water M : 4 14

C=11285E60 3 13- =9.2182E4 Rg

12 -4 R =.99995

11 --

150 10- 151 i 9

9

7

6 1.58 1.59 1.6 1.62 fit I - 2d [1/(TS+460)?1Cr3 continue... 327

Water a : 5

9 8.8 - C=1 1796E39 3 8.6 - u =6.0934E4 Ag 8.4 - R2 =.994 8. 2 - a- 7.8 7.6 - 7.4 - 7.2 - 7 - 6.8 6.6 - 6.4 -* 6.2 -* 6 1.58 1.59 1.8 1.81 1.62 fig. I - 2. [1/(1s+440].10'3

Water at 6 12

C=9.7787E68 11.5 - 3 E -1.05267E5 R 11 - 2 R-.998 10.5

1t1 l- c 9.5 -0

7.5 1.58 1.59 1.6 1 .62 HU. I - 2f continue... [1/(75+460]010-3 8Z

Ja4Wm # t L Irt

D OZUSWE= - £1 £37390ICE= 4 8 ZLI - Z LI H 98*--

It

- 6910

6 0 991

9 L

9 1 19'1 l gal Lat 69't t 1C - n r-oi4(cr9p+si.)/t]

J,941pm * = El

0 0E3EZCZ= sti a 739Z78'7= E 8 9L - 0 Z H £66"c ID 9L

9'11

z

TO

01

S'6 r-

6 *9' eat gal anuT4uo3

- r-oi.[(oet+si)/i] 329

Water a 9 12.6 12.4 - C=1 8486E10 12.2- 3 = 2.0903E4 12 R 8 0 210 11.8 - 2 R=.972 11.6 -I 11.4 - 11.2 - 11 - 10.8- a 207 10.6 - 10.4 - 10.2 - 10- 9.8 - 9.6 - 9.4 1.83 1.65 1.87 1.69 1.71 [1/(TS+4430)?10's3 fig. I - 21

Water a :10 12 11.9- C=7.467E6 11.8 3 11.7 - =1 6504E4 R 11.6 8 11.6 - 2 a 223 R=.952 11.4 a222 11.3 11.2 11.1 -6 11 104 _ 13217 10.8 - 10.7 13215,216 10.6 - 10.5 10.4 - 10.3 - 10.2 -* 10.1 -

10 1 1.81 1.63 1.66 fig. I - [1/(TS+460)?10-3 continue... 330 Water * :11 13 12.8 - C=4 0884E10 3 12.6 - =2.1838E4 8 12.4 - 2 12.2 - R=.753 0 230 0 227 12 0229 11.8 - 02 \ 11.6 - 43. 11.4 11.2 - 11 - 10.8 - 10.6 - 10.4 - 0 231 10.2 * 10 1.81 1.63 1.85 1.67 1.69 1.71

/11. 1 - 21 [1/(7S+460)].10-3

Water * :12 12.5 12.4 - 12.3 - C3 =77.4374 12.2 =9 5189E3 Ro 12.1 12 R2 =.995 11.9 - 11.8 -4 239 11.7 a). 11.6 4 11.5 c 11.4 * 0 241 11.3 - 11.2 11.1 11 37, 238 10.9 - 10.8- 10.7 10,6 -

10.5 1 r r r 1 1 1 .61 1.63 1.66 1.67 1 .69 1 .71

lit. d -21 [1/(75+480)]*10-3 continue... 331

Water * :13 13

C =4.708E11 12.6 - 0.2.2996E4

12 -4 2 242 R=.981

11.6 -

9.5 -

9 1.61 1.83 1.85 1.87 1.89 1.71 (1/(TS+460)14,10"1 fig. 1 - 22

Water * :14

12 11.a - =1.1793E15 11.6 - R =2.7841E4 g 11.4 - 2 R=.948 259 11.2 - 11-A 10.8 - 10.6-

10.4 - CI254 10.2 - 10- 9.8 - 9.6 -

9.4 1.81 1.83 1.65 continue... fig. 1 - 2i [1/(15+460)1010-3 332

Water it:15 14 C=3.3705E24 3 E 13 - R=3.9831E4 Q

2 12 - R=.932 , 11 -' it 4 10-t c 7 9 -. 0 282 8-r 261 0 260 7-t

I I I I I I I I 1.63 1 .65 1.67 1 .69 1.71 [1/(75+460]1'10"Z

Water # :16

1.61 1.83 1 .65 1 .87 1 .71

Iip. I - tp [1/(T5 +460)]10"3 continue... 333

Water 40:17

13

12.5 -

12 -

11.5 - 1 11 -*

10.5 -

10-

9.5 --

9 I I r r 1 1.81 1.63 1.e5 1.67 1.69 1.71

fig. I -2q [1/os+40:01o-.3 334

PLOTS OF CORRELATIONAL CURVES

Figs.M-3(a-q) Curvesof Constant Velocity on Grid of Time

Constant vsSurface Temperature for the 17 different water qualities observed in Table VI-2. Water I: 1 Water 1: 3 110 00

100 -

00 - 500 - e0- 400 - 70 I 0 300 - 50 -

40 - 5.5 Rise 30 -

20 - 100

10

0 0 110 130 150 170 120 140 1110 IMO lisefor.a Tompemilmrs () %Asp Temp-Mr. en rig. U - U rig. I - 3b

Mater I: 2 Water I: 4 250 240 - 230- 220 - 310 - e 200 - 190 - Won

1110 1 1110 - 150 - n 140 - 3 130 1 3 120 - 10- C 110- loo 110 no 170 130 150 170 lig. I - 34 Vie. - 3c Sur/.c. homponsture Unlace Forosnekore en 5 Mater 1: Mater 1:6 200 200 150-- 240 - ISO-ISO 110- 220 - ISO-ISO ISO- 200-200 140- ISO- 130- 120 ISO- 110 - 140 - 100 - 00- NO - 00 - I 100 - 70 - GO - 1 SO - 50 - 00 40 30 - 40 - 20 - 20- 10 - 0 110 130 150 170 In ISO 170 fig. -3 5hso44.4 14/144444404rn fig. I -3f Sreasse Tomoonobro CF)

Mater 1: 7 Water 1: 200 100 3.5 ISO - 170 - 100 - 7- ISO - 170 - 120 - 110- 100 n - O 70 - so - r 50- C 30 - 20- 10 3.3 11/444 0 11 West 0 110 130 150 170 110 130 150 Suttees Ionyedstore 170 Pig. I -3g lit. I - 31 suttee. Iimperobins eater I:9

I i I I

Sofia Tagroorolvto rn rig. I - 31 III. I - SJ Surface Impesoluto en

Water 1: 11 Water 1:12 300 11 Ruse WO - 0.11 - SOO - 240 - 0.11 220 - I 200 - 0.7 100 - 11.3 11/ssc i ISO - r 0.0 - 10 - 120 - 0 1 I 3 F 0.5, 100 , rp ba ; 3 C SO - A .40 - 20 -

'10 130 ISO 170 -,-- !aloes Tompowetwoo rn , tic. I St rig. r - 31 Susloca Tonipeolaws tfl Mater 1: 13 Water 1: 14 100

700

000

I 500 4

1 400

300

aaq

100 130 110 130 Swims rn tic h Sur4464 T0.0.00.en

Water 1: 15 later 1:11

120

110

100 -

110 -

SO -

70 -

SO -

00 -

40 -

130 130 150 &MIKA lemperuf (.1) 170 fit. I $o tic 1 w Water 1: 17 no

200 -

ISO -

NO -

140 -

ISO -

100 -

S O -

S O -

130 170 balms TompsrsIurs en 340

PLOTS OF CORRELATIONAL CURVES

Figs.M-4(a-q) Curvesof ConstantVelocity on Grid of (Time constant x Shear Stress) vs Surface Temperature for the

17 different water qualities observed in Table VI-2. 341 Water 01

Surface Temperature (0F) Fib. I - 44

Waterla 60

50 --.

40

30 -,

20

10-

o 110 170 Surface Temperature (OF) Fig. I - 4b continue... 342 Water #3 140 130 -, 120 - 110 - 8 ft /sec I00 - 90 -* l, so 70-, $ 60 - 50 - 5.5 ft /sec 40 - 30 - 20 - 3 ft /sec 10 '',

0 1 t I I 110 130 150 170 Surface Temperature (°F) fig. I 4c

Water 04 26 24 - 8 ft /sec 22 -, 20 -, 18 - n +I 16-

1 .&- II .1. 14 - 5.5 ft/sec .0 CPu '" 12 -* L .0 10 - 8- 6 -I 3 ft/sec 4 - 2-

0 r 110 130 150 170 fig.I - 4d Surface Temperature (°F) continue... 343 Water #6

4,

$

111. I-4, Surface Temperature (IF)

Water #8 30 28 28 24 -4 22 -

N 20 - 4J

I .4 i 0--. 6+ ,- * jj18 -4 ...4 S L1 4 * t12 10

8 8-, 4 2-

0 I 1 110 130 150 170 fig. I -4f Surface Temperature (F) continue... 344 Water 07 .80

8 ft/eec 70 -4

80-1

50

40

5.5 ft /Mc 30

20 -6

10 - 3 ft /see

0 110 130 150 170 Surface Temperature (oF) Iii. I -41

Water08

Surface Temperature F) Hu I - lb continue... 345

Water #9 180 150 - 8.0ft/sac 140 - 130 - 120 - 110 N 100 - 1" 90 5.5 ft/sec 80 70 80 60 40 - 30 - 3.0 ft/sec 20 - 10 0 110 130 160 170 Surface Temperature (°F) fig. I - 41

Water #10

N

Surface Temperature (0F) fig. I 4i continue... 346

Water #11 GOO

400 ' 8 ft/eec

200

5.6 ft /eac

100-"4

3 ft /oec

0 i 1 r t 110 130 150 170 Surface Temperature (°F) rig. Il6

Water #12 80

50

20

10

8.0 ft/esc 0- 3.0 110 ft ime130 150 170 Surface Temperature (F) rig. I - 41 continue... 347 Water #13 240 8 Vow 220

200

ISO

180

140 -4 5.5 ft /sec 120 - L .c 100 80 -

80 3 ft /Me 40

20 '4

0 1 1 I I 110 130 160 170 Surface Temperature (°F) fig. I 48

Water #14 320 300 - 8 ft/eec 280 - 280 -4 240 220 N .4 200 J 4- \ 180 -* "4" .0 180 $ ." L 140 .0 120 6.6 ft/sec 100 - 80 -4 60-' 40 -4 20 3 ft /ese

0 I 1 110 130 150 170 Surface Temperature ('F) fig. I - 4s continue. 348 Water #16 200 190 - 180 - 170 -4 160 - 160 1 140 -4 130 -4 a

I -4' 120- 110-i ,,,. XI 100 - 90 - L C 80 70 - 60 -4 50 -4 40 -4 30 -, 20 -4 10 - 0- 110 130 160 170 Surface Temperature (IF) Iii. I - 44

Water #16 20 19 - 18 - 17 - 16- 8 ft/sec 16- 14 - 13 - 12 -44 6.5 ft/eso 11 - 10 -1 0 -/ II -4 3 ft/sec 7 - 6 - 6 - 4 -4 3 - 2- 1 -4 0 r 110 130 160 170

Fig. 1 - 4p Surface Temperature (F) continue... 349

Water #17 18

17 -

US - lb - n 4J 4- 141 1. 4- .0 .-4 13 - $ S. t 12 It -

10 -

9 -4

8 1 1 1 1 110 130 160 170 Surface Temperature (OF) fig. I 49