Report on Molecular Systematics of Poorly-Known Freshwater Mollusks of Alabama

Total Page:16

File Type:pdf, Size:1020Kb

Report on Molecular Systematics of Poorly-Known Freshwater Mollusks of Alabama Report on Molecular Systematics of Poorly-Known Freshwater Mollusks of Alabama Dr. David Campbell, Dr. Phil Harris University of Alabama, Biodiversity and Systematics, Box 870345, Tuscaloosa AL 35487-0345 Project Summary This project used molecular sequence data to investigate several Priority 1 and 2 species of freshwater mollusks. Main questions Is there significant genetic variation in Elliptio arca across the Mobile basin? Is Elliptio purpurella present in Alabama and genetically distinct from other Elliptio species? How different is Elliptio mcmichaeli from E. crassidens? What are the relationships of Fusconaia escambia? Are there significant differences between Coosa and Tennessee populations assigned to Lasmigona holstonia? Are there significant differences between middle and upper Coosa populations of Strophitus connasaugaensis? Does the species occur in the Black Warrior or Tombigbee? Is Toxolasma corvunculus different from T. parvus? Is Toxolasma cylindrellus different from T. lividus? Are there additional species of Toxolasma in the Escambia, Yellow, and Choctawhatchee systems? How are they related to the ACF and Mobile species? Are the priority species of Elimia in the Cahaba system truly distinct species or merely ecomorphs? Are the priority species of Pleurocera in the Tennessee system truly distinct species or merely ecomorphs? Results In addition to the specific target species (indicated in bold), some related priority 1 and 2 species were analyzed for comparison. Results for priority 1 and 2 species are as follows: Elliptio arca: No significant genetic variation was detected between populations from different parts of the Mobile basin. Moderate genetic distance from other Elliptio species suggests its biological requirements might also be somewhat different, requiring corresponding design of conservation techniques. Elliptio arctata: Moderate genetic distance from other Elliptio species suggests its biological requirements might also be somewhat different, requiring corresponding design of conservation techniques. Elliptio dilatata: High genetic distance from other Elliptio species suggests its biological requirements are different, requiring corresponding design of conservation techniques. Elliptio mcmichaeli: Slight genetic distance from E. crassidens. Biological requirements are probably very similar to that species. Elliptio purpurella: Not clearly distinguished from the icterina/complanata group of species, due to both limited genetic divergence and the difficulty of confidently identifying reference specimens. This group is present in the Tallapoosa system, though previously it was not known in the Mobile basin. Fusconaia barnesiana: High genetic distance from other Fusconaia species suggests its biological requirements are different, requiring corresponding design of conservation techniques. Fusconaia cor: Closely related to F. cuneolus but distinct. They place within Fusconaia and probably have similar biological requirements to the more common F. cerina. Fusconaia cuneolus: Closely related to F. cor but distinct. They place within Fusconaia and probably have similar biological requirements to the more common F. cerina. Fusconaia escambia: Closely related to Quincuncina burkei but distinct. They place within Fusconaia and probably have similar biological requirements to the more common F. cerina. Fusconaia rotulata: Closely related to the more common F. ebena. However, these two species are very distantly related to other Fusconaia species and probably have rather different biological requirements. Fusconaia subrotunda: Places within Fusconaia and probably has similar biological requirements to the more common F. cerina. Lasmigona costata: Very different from some of the other species currently assigned to Lasmigona. Lasmigona holstonia: At least three different evolutionary units are currently placed under this name. In Alabama, the upper Coosa and upper Tennessee forms appear different; a third form only occurs in Tennessee. None are close relatives of L. costata. Strophitus connasaugaensis: Closely related to but distinct from S. subvexus. The upper Coosa form (not currently known to live in Alabama) and the mid-Coosa form show a moderate level of genetic difference and probably require separate conservation. These species are not closely related to S. undulatus and probably have very different biological requirements. Sampled specimens from the Tombigbee and Black Warrior were S. subvexus, not S. connasaugaensis. Strophitus undulatus: Not very closely related to any of the other sampled species. Toxolasma corvunculus: Is a valid species, but shells may be confused with the common T. parvus in the Black Warrior and Tombigbee systems. Toxolasma cylindrellus: Is a valid species, most closely related to T. lividus. Gulf drainage Toxolasma species: Three overlooked evolutionary units exist: the Escambia and Pea form, the Choctawhatchee form, and a second species (along with T. paulus) in the ACF system. Elimia ampla: Not clearly different from E. variata. The sampled Elimia species fell into several groups that were relatively distantly related to each other, suggesting that there may also be differences in their biological requirements. Elimia annettae: Identification may be a problem, as two specimens appeared closely related to E. bullula from the Coosa but the third was quite different. Elimia bellacrenata: Relatively close to two of the E. annettae and to E. bullula, but may be a distinct species. Similar specimens observed in Spring Creek upstream from Montevallo suggest that the species may be more widespread in the upper Little Cahaba system than currently thought. Elimia cochliaris: Genetically very distinctive. A second population from Buck Creek may be sufficiently genetically different to need separate conservation management. Elimia varians: Identification seems to be a problem, as three specimens all came out quite different from each other. Elimia variata: Not clearly different from E. ampla. Pleurocera alveare: Seems to fall genetically within the range of variation of P. canaliculata. Pleurocera pyrenella: Seems to fall genetically within the range of variation of P. canaliculata. Conservation implications Species with high levels of genetic difference between populations, especially from different drainages, should probably be treated as separate entities for conservation. This will probably raise the conservation priority for those species. Further study of genetically distinctive populations is needed to look for mrophological differences that can be used in the field in conservation work. Different species with low genetic difference between them may be simply ecomorphs, not requiring separate conservation. Current genus names are not always a reliable guide to the needs of rare species. Report on Molecular Systematics of Poorly-Known Freshwater Mollusks of Alabama Dr. David Campbell, Dr. Phil Harris University of Alabama, Biodiversity and Systematics, Box 870345, Tuscaloosa AL 35487-0345 Abstract: The conservation status of several species of freshwater mollusks in Alabama has been unclear due to uncertainties about their systematics and identification. This project investigated several problematic taxa using DNA sequencing to provide new evidence on their taxonomic status. In turn, these data provide information that suggests revisions in the conservation status of several taxa. In general, the unionids have more evolutionarily significant forms than currently recognized, whereas some of the pleurocerids may be oversplit. Many species reported to range across multiple river systems actually constitute multiple evolutionary units. Introduction Alabama has one of the most diverse freshwater mollusk faunas in the world, with over 350 species. Many species are highly sensitive to human-caused habitat modification such as impoundment and siltation. As a result, a large proportion of the priority 1 and 2 species in Alabama are freshwater mollusks. However, the classification and identification of species is problematic due to high individual variation, similarities between species, and lack of modern taxonomic review. Both unionids and pleurocerids are large and slow-moving, though the mussels have high dispersal potential as larvae parasitic on fish. Neither group can readily cross divides between river systems. This produces high potential for geographic isolation. As a result, similar forms in different river systems may actually be reproductively isolated species and deserve careful scrutiny. On the other hand, some freshwater mollusks show significant ecophenotypic variation within species. Because of this, some workers treat numerous named forms as merely variants of a single species. An extreme example is Hannibal (1912), who lumped almost the entire genus Elimia into a single species. The uncertainty regarding the pleurocerid snails is so high that no one has attempted to thoroughly revise them since Goodrich (1940, 1941a,b). Unfortunately, he did not explain most of his decisions, and some of his reasoning does not agree with modern practice or current understanding of systematics and evolution. Also, molecular data suggest that the current genus-level classification of freshwater mollusks requires extensive revision (Lydeard et al., 2000; Minton et al., 2003; Campbell et al., 2005). This affects conservation because the biological requirements of poorly-known rare species often must be inferred from better-known related species.
Recommended publications
  • Francis Marion National Forest Freshwater Mussel Surveys: Final Report
    Francis Marion National Forest Freshwater Mussel Surveys: Final Report Contract No. AG-4670-C-10-0077 Prepared For: Francis Marion and Sumter National Forests 4931 Broad River Road Columbia, SC 29212-3530 Prepared by: The Catena Group, Inc. 410-B Millstone Drive Hillsborough, NC 27278 November 2011 TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................... 1 1.1 Background and Objectives ................................................................................. 1 2.0 STUDY AREA ........................................................................................................ 2 3.0 METHODS .............................................................................................................. 2 4.0 RESULTS ................................................................................................................ 3 5.0 DISCUSSION ........................................................................................................ 19 5.1 Mussel Habitat Conditions in the FMNF (Objective 1) ..................................... 19 5.2 Mussel Fauna of the FMNF (Objective 2) ......................................................... 19 5.2.1 Mussel Species Found During the Surveys ................................................ 19 5.3 Highest Priority Mussel Fauna Streams of the FMNF (Objective 3) ................. 25 5.4 Identified Areas that Warrant Further Study in the FMNF (Objective 4) .......... 25 6.0 LITERATURE CITED .........................................................................................
    [Show full text]
  • Interior Columbia Basin Mollusk Species of Special Concern
    Deixis l-4 consultants INTERIOR COLUMl3lA BASIN MOLLUSK SPECIES OF SPECIAL CONCERN cryptomasfix magnidenfata (Pilsbly, 1940), x7.5 FINAL REPORT Contract #43-OEOO-4-9112 Prepared for: INTERIOR COLUMBIA BASIN ECOSYSTEM MANAGEMENT PROJECT 112 East Poplar Street Walla Walla, WA 99362 TERRENCE J. FREST EDWARD J. JOHANNES January 15, 1995 2517 NE 65th Street Seattle, WA 98115-7125 ‘(206) 527-6764 INTERIOR COLUMBIA BASIN MOLLUSK SPECIES OF SPECIAL CONCERN Terrence J. Frest & Edward J. Johannes Deixis Consultants 2517 NE 65th Street Seattle, WA 98115-7125 (206) 527-6764 January 15,1995 i Each shell, each crawling insect holds a rank important in the plan of Him who framed This scale of beings; holds a rank, which lost Would break the chain and leave behind a gap Which Nature’s self wcuid rue. -Stiiiingfieet, quoted in Tryon (1882) The fast word in ignorance is the man who says of an animal or plant: “what good is it?” If the land mechanism as a whole is good, then every part is good, whether we understand it or not. if the biota in the course of eons has built something we like but do not understand, then who but a fool would discard seemingly useless parts? To keep every cog and wheel is the first rule of intelligent tinkering. -Aido Leopold Put the information you have uncovered to beneficial use. -Anonymous: fortune cookie from China Garden restaurant, Seattle, WA in this “business first” society that we have developed (and that we maintain), the promulgators and pragmatic apologists who favor a “single crop” approach, to enable a continuous “harvest” from the natural system that we have decimated in the name of profits, jobs, etc., are fairfy easy to find.
    [Show full text]
  • Invasive Aquatic Species with the Potential to Affect the Great Sacandaga Lake Region
    Invasive Aquatic Species with the Potential to Affect the Great Sacandaga Lake Region Tiffini M. Burlingame, Research Associate Lawrence W. Eichler, Research Scientist Charles W. Boylen, Associate Director Darrin Fresh Water Institute 5060 Lakeshore Drive Bolton Landing, NY 12814 TABLE OF CONTENTS FISH Alewife (Alosa pseudoharengu)s 3 Goldfish (Carassius auratus) 5 Northern Snakehead (Channa argus) 7 Grass Carp (Ctenopharyngodon idella) 9 Eurasian Ruff (Gymnocephalus cernuus) 11 Brook Silverside (Labidesthes sicculus) 13 White Perch (Morone americana) 15 Round Goby (Neogobius melanostomus) 17 Rainbow Trout (Oncorhynchus mykiss) 19 Sea Lamprey (Petromyzon marinus) 21 White Crappie (Pomoxis annularis) 23 Tubenose Goby (Proterorhinus marmoratus) 25 Brown Trout (Salmo trutta) 27 European Rudd (Scardinius erythrophthalmus) 29 Tench (Tinca tinca) 31 PLANTS & ALGAE Ribbon Leaf Water Plantain (Alisma gramineum) 34 Flowering Rush (Butomus umbellatus) 36 Fanwort (Cabomba caroliniana) 38 Rock Snot (Didymosphenia geminata) 40 Brazilian Elodea (Egeria densa) 42 Water Hyacinth (Eichhornia crassipes) 44 Hydrilla (Hydrilla verticillata) 46 Frogbit (Hydrocharis morsus-ranae) 48 Yellow Flag Iris (Iris pseudacorus) 50 Purple Loosestrife (Lythrum salicaria) 52 Water Clover (Marsilea quadrifolia) 54 Parrot Feather (Myriophyllum aquaticum) 56 Variable Leaf Milfoil (Myriophyllum heterophyllum) 58 Eurasian Water Milfoil (Myriophyllum spicatum) 60 Southern Naiad (Najas guadalupensis) 62 Brittle Naiad (Najas minor) 64 Starry Stonewort (Nitellopsis obtusa) 66 Yellow
    [Show full text]
  • Status and Population Genetics of the Alabama Spike (Elliptio Arca) in the Mobile River Basin
    STATUS AND POPULATION GENETICS OF THE ALABAMA SPIKE (ELLIPTIO ARCA) IN THE MOBILE RIVER BASIN A Thesis by DANIEL HUNT MASON Submitted to the Graduate School at Appalachian State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August, 2017 Department of Biology STATUS AND POPULATION GENTICS OF THE ALABAMA SPIKE (ELLIPTIO ARCA) IN THE MOBILE RIVER BASIN A Thesis by DANIEL HUNT MASON August, 2017 APPROVED BY: Michael M. Gangloff, Ph.D. Chairperson, Thesis Committee Matthew C. Estep, Ph.D. Member, Thesis Committee Lynn M. Siefermann, Ph.D. Member, Thesis Committee Zack E. Murrell, Ph.D. Chairperson, Department of Biology Max C. Poole, Ph.D. Dean, Cratis D. Williams School of Graduate Studies Copyright by Daniel Hunt Mason 2017 All Rights Reserved Abstract STATUS AND POPULATION GENETICS OF THE ALABAMA SPIKE (ELLIPTIO ARCA) IN THE MOBILE RIVER BASIN Daniel H. Mason B.A., Appalachian State University M.A., Appalachian State University Chairperson: Dr. Michael M. Gangloff Declines in freshwater mussels (Bivalvia: Unionioda) are widely reported but rarely rigorously tested. Additionally, the population genetics of most species are virtually unknown, despite the importance of these data when assessing the conservation status of and recovery strategies for imperiled mussels. Freshwater mussel endemism is high in the Mobile River Basin (MRB) and many range- restricted taxa have been heavily impacted by riverine alterations, and many species are suspected to be declining in abundance, including the Alabama Spike (Elliptio arca). I compiled historical and current distributional data from all major MRB drainages to quantify the extent of declines in E.
    [Show full text]
  • Species Fact Sheet with Juga Hemphilli Hemphilli
    SPECIES FACT SHEET Scientific Name: Juga hemphilli hemphilli (Henderson 1935) Common Name: barren juga Phylum: Mollusca Class: Gastropoda Order: Neotaenioglossa Family: Semisulcospiridae Taxonomic Note: Past genetic analysis by Lee et al. (2006) based on incorrectly identified museum voucher specimens suggested reassignment of the related subspecies Juga hemphilli dallesensis (and therefore the Juga hemphilli conspecifics, including Juga hemphilli hemphilli) to the genus Elimia. However, Foighil et al. (2009) conducted an additional analysis and determined that Juga hemphilli is indeed most closely related to other western Juga and should not be reassigned to the genus Elimia. Turgeon et al. (1998) do not recognize any subspecies of Juga hemphilli. Conservation Status: Global Status: G2T1 (May 2009) National Status: United States (N1) (June 2000) State Statuses: Oregon (S1), Wahington (S1) (NatureServe 2015) IUCN Red List: NE – Not evaluated Technical Description: This subspecies was originally described as Goniobasis hemphilli hemphilli (Henderson 1935). Burch (1982; 1989) revised this subspecies to the genus Juga to reflect the distribution of taxa west of the Continental Divide. Adult: Juga is a genus of medium-sized, aquatic, gilled snails traditionally treated as part of the subfamily Semisulcospirinae within the Pleuroceridae family, although the Semisulcospirinae subfamily was recently elevated to family level based on morphological and molecular evidence (Strong and Köhler 2009). The Pleuroceridae and Semisulcospiridae families both differ from the Hydrobiidae family in that the males lack a verge (male copulatory organ). The genus Juga is distinct from related pleurocerid snails based on reproductive anatomy and egg mass characters (Taylor 1966), as well as features of the ovipositor pore, radula, midgut, kidney, and pallial gonoduct (Strong and Frest 2007).
    [Show full text]
  • Freshwater Mussels of the Pacific Northwest
    Freshwater Mussels of the Pacifi c Northwest Ethan Nedeau, Allan K. Smith, and Jen Stone Freshwater Mussels of the Pacifi c Northwest CONTENTS Part One: Introduction to Mussels..................1 What Are Freshwater Mussels?...................2 Life History..............................................3 Habitat..................................................5 Role in Ecosystems....................................6 Diversity and Distribution............................9 Conservation and Management................11 Searching for Mussels.............................13 Part Two: Field Guide................................15 Key Terms.............................................16 Identifi cation Key....................................17 Floaters: Genus Anodonta.......................19 California Floater...................................24 Winged Floater.....................................26 Oregon Floater......................................28 Western Floater.....................................30 Yukon Floater........................................32 Western Pearlshell.................................34 Western Ridged Mussel..........................38 Introduced Bivalves................................41 Selected Readings.................................43 www.watertenders.org AUTHORS Ethan Nedeau, biodrawversity, www.biodrawversity.com Allan K. Smith, Pacifi c Northwest Native Freshwater Mussel Workgroup Jen Stone, U.S. Fish and Wildlife Service, Columbia River Fisheries Program Offi ce, Vancouver, WA ACKNOWLEDGEMENTS Illustrations,
    [Show full text]
  • Gastropoda, Pleuroceridae), with Implications for Pleurocerid Conservation
    Zoosyst. Evol. 93 (2) 2017, 437–449 | DOI 10.3897/zse.93.14856 museum für naturkunde Genetic structuring in the Pyramid Elimia, Elimia potosiensis (Gastropoda, Pleuroceridae), with implications for pleurocerid conservation Russell L. Minton1, Bethany L. McGregor2, David M. Hayes3, Christopher Paight4, Kentaro Inoue5 1 Department of Biological and Environmental Sciences, University of Houston Clear Lake, 2700 Bay Area Boulevard MC 39, Houston, Texas 77058 USA 2 Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th Street SE, Vero Beach, Florida 32962 USA 3 Department of Biological Sciences, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, Kentucky 40475 USA 4 Department of Biological Sciences, University of Rhode Island, 100 Flagg Road, Kingston, Rhode Island 02881 USA 5 Texas A&M Natural Resources Institute, 578 John Kimbrough Boulevard, 2260 TAMU, College Station, Texas 77843 USA http://zoobank.org/E6997CB6-F054-4563-8C57-6C0926855053 Corresponding author: Russell L. Minton ([email protected]) Abstract Received 7 July 2017 The Interior Highlands, in southern North America, possesses a distinct fauna with nu- Accepted 19 September 2017 merous endemic species. Many freshwater taxa from this area exhibit genetic structuring Published 15 November 2017 consistent with biogeography, but this notion has not been explored in freshwater snails. Using mitochondrial 16S DNA sequences and ISSRs, we aimed to examine genetic struc- Academic editor: turing in the Pyramid Elimia, Elimia potosiensis, at various geographic scales. On a broad Matthias Glaubrecht scale, maximum likelihood and network analyses of 16S data revealed a high diversity of mitotypes lacking biogeographic patterns across the range of E.
    [Show full text]
  • Download File
    HUMAN-MEDIATED DISPERSAL OF AQUATIC NONINDIGENOUS SPECIES: IMPACTS AND INTERVENTIONS A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by John D. Rothlisberger David M. Lodge, Director Graduate Program in Biological Sciences Notre Dame, Indiana August 2009 HUMAN-MEDIATED DISPERSAL OF AQUATIC NONINDIGENOUS SPECIES: IMPACTS AND INTERVENTIONS Abstract by John D. Rothlisberger The introduction and establishment of species beyond the boundaries of their native ranges is an environmental issue of increasing scope and seriousness. This dissertation examines the consequences of the establishment of aquatic nonindigenous species (NIS) in the Laurentian Great Lakes (GL) region and also investigates alternatives for reducing anthropogenic spread of nuisance aquatic NIS. I first investigate the pathways by which aquatic NIS are introduced to the GL to learn if introduction pathway is related to where species originate and how likely they are to have spread beyond the GL basin. My analysis shows that ballast water release is highly likely to introduce new aquatic NIS to North America, whereas unauthorized release of organisms in trade tends to introduce to the GL aquatic NIS already established in North America. Moreover, it appears that it is primarily a matter of time before novel NIS that become established in the GL appear in other North American waterways. I also consider the relationship between introduction pathway and species impacts, finding that John D. Rothlisberger there is an apparent relationship, but that further study of species-specific impacts is needed to verify this finding. Given the importance of ballast water release in bringing novel species to the GL, I use a novel technique to estimate the economic impacts in the region of ecological changes caused by populations of aquatic NIS introduced by this pathway.
    [Show full text]
  • Download BALMNH No 25 2007
    ••• 11111111 ••• ••• ... .... ... ••• ALABAMA MUSEUM of Natural History Bulletin 25 August 1, 2007 Systematics, Evolution and Biogeography of the Etheostoma simoterum Species Complex (Percidae: Subgenus Ulocentra) Distribution and Satus of Freshwater Mussels (Bivalvia Unionidae) of the Lower Coosa and Tallapoosa River Drainages in Alabama The Osteology of the Stonecat, Noturus flavus (Siluriformes: Ictaluridae), with Comparisons to Other Siluriforms 8 1 BULLETIN ALABAMA MUSEUM OF NATURAL mSTORY The scientific publication of the Alabama Museum of Natural History. Dr. Phillip Harris, Editor. BULLETIN AlABAMA MUSEUM OF NATURAL HISTORY is published by the Alabama Museum of Natural History, a unit of The University of Alabama. The BULLETIN succeeds its predecessor, the MUSEUM PAPERS, which was terminated in 1961 upon the transfer of the Museum to the University from its parent organiza­ tion, the Geological Survey of Alabama. The BULLETIN is devoted primarily to scholarship and research concerning the natural history of Alabama and the Southeast. It appears twice yearly in consecutively numbered issues. Communication concerning manuscripts, style, and editorial policy should be addressed to: Editor, BULLETIN AlABAMA MUSEUM OF NATURAL HISTORY, The University of Alabama, Box 870345, Tuscaloosa, Alabama 35487-0345; telephone (205) 348-1831 or [email protected]. Prospective authors should exam­ ine the Notice to Authors inside the back cover. Orders and requests for general information should be addressed to BULLETIN AlABAMA MUSEUM OF NATURAL HISTORY, at the above address or emailed to [email protected]. Yearly subscriptions (two issues) are $30.00 for individ­ uals, $50.00 for corporations and institutions. Numbers may be purchased individual­ ly. Payment should accompany orders and subscriptions and checks should be made out to "The University of Alabama." Library exchanges should be handled through: Exchange Librarian, The University of Alabama, Box 870266, Tuscaloosa, Alabama 35487-0340.
    [Show full text]
  • Demography of Freshwater Mussels Within the Lower Flint River
    DEMOGRAPHY OF FRESHWATER MUSSELS WITHIN THE LOWER FLINT RIVER BASIN, SOUTHWEST GEORGIA by JUSTIN C. DYCUS (Under the Direction of Robert Bringolf) ABSTRACT Environmental and spatial variation can potentially influence mussel populations through acute and chronic mechanisms. The objectives of this study were to identify and quantify the chronic factors affecting freshwater mussel growth. Live mussels were collected within the lower Flint River Basin, sacrificed, and their shells were thin-sectioned. Thin sections revealed the production of internal annuli, which were used to determine individual ages and estimate annual growth. I evaluated the relation between annual growth and presumed variables responsible for altering growth using mixed linear models. Growth was indicated to vary in relation to seasonal streamflow, species, age, tagging, channel confinement, and physiographic province. The effect of tagging should be accounted for in subsequent mark-recapture studies, and species- and site- specific characteristics should be considered when implementing management decisions to prevent future harm to freshwater mussel populations. INDEX WORDS: Thin Section, Annuli, Freshwater Mussel, Streamflow, Umbo, Villosa lienosa, Villosa vibex, Elliptio crassidens DEMOGRAPHY OF FRESHWATER MUSSELS WITHIN THE LOWER FLINT RIVER BASIN, SOUTHWEST GEORGIA By JUSTIN C. DYCUS A.S., Sandhills Community College, 2006 B.S., North Carolina State University, 2008 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2011 © 2011 JUSTIN CHARLES DYCUS All Rights Reserved DEMOGRAPHY OF FRESHWATER MUSSELS WITHIN THE LOWER FLINT RIVER BASIN, SOUTHWEST GEORGIA By JUSTIN C. DYCUS Major Professor: Robert Bringolf Committee: James T.
    [Show full text]
  • REPORT FOR: Preliminary Analysis for Identification, Distribution, And
    REPORT FOR: Preliminary Analysis for Identification, Distribution, and Conservation Status of Species of Fusconaia and Pleurobema in Arkansas Principle Investigators: Alan D. Christian Department of Biological Sciences, Arkansas State University, P.O. Box 599, State University, Arkansas 72467; [email protected]; Phone: (870)972-3082; Fax: (870)972-2638 John L. Harris Department of Biological Sciences, Arkansas State University, P.O. Box 599, State University, Arkansas 72467 Jeanne Serb Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, Iowa 50011 Graduate Research Assistant: David M. Hayes, Department of Environmental Science, P.O. Box 847, State University, Arkansas 72467: [email protected] Kentaro Inoue, Department of Environmental Science, P.O. Box 847, State University, Arkansas 72467: [email protected] Submitted to: William R. Posey Malacologist and Commercial Fisheries Biologist, AGFC P.O. Box 6740 Perrytown, Arkansas 71801 April 2008 EXECUTIVE SUMMARY There are currently 13 species of Fusconaia and 32 species of Pleurobema recognized in the United States and Canada. Twelve species of Pleurobema and two species of Fusconaia are listed as Threatened or Endangered. There are 75 recognized species of Unionidae in Arkansas; however this number may be much higher due to the presence of cryptic species, many which may reside within the Fusconaia /Pleurobema complex. Currently, three species of Fusconaia and three species of Pleurobema are recognized from Arkansas. The true conservation status of species within these genera cannot be determined until the taxonomic identity of populations is confirmed. The purpose of this study was to begin preliminary analysis of the species composition of Fusconaia and Pleurobema in Arkansas and to determine the phylogeographic relationships within these genera through mitochondrial DNA sequencing and conchological analysis.
    [Show full text]
  • Freshwater Mussel Survey of Clinchport, Clinch River, Virginia: Augmentation Monitoring Site: 2006
    Freshwater Mussel Survey of Clinchport, Clinch River, Virginia: Augmentation Monitoring Site: 2006 By: Nathan L. Eckert, Joe J. Ferraro, Michael J. Pinder, and Brian T. Watson Virginia Department of Game and Inland Fisheries Wildlife Diversity Division October 28th, 2008 Table of Contents Introduction....................................................................................................................... 4 Objective ............................................................................................................................ 5 Study Area ......................................................................................................................... 6 Methods.............................................................................................................................. 6 Results .............................................................................................................................. 10 Semi-quantitative .................................................................................................. 10 Quantitative........................................................................................................... 11 Qualitative............................................................................................................. 12 Incidental............................................................................................................... 12 Discussion........................................................................................................................
    [Show full text]