ULVA GROWTH, DEVELOPMENT and APPLICATIONS Fatemeh

Total Page:16

File Type:pdf, Size:1020Kb

ULVA GROWTH, DEVELOPMENT and APPLICATIONS Fatemeh ULVA GROWTH, DEVELOPMENT AND APPLICATIONS by Fatemeh Ghaderiardakani A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences The University of Birmingham August 2019 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract The green marine macroalgae Ulva (Ulvophyceae) are common algae distributed worldwide, which play a key role in aquatic ecosystems. Ulva species are a potentially valuable resource for food, feed, fertiliser and fuel but can also cause massive nuisance blooms if they grow unchecked. For correct growth and development, Ulva requires the presence of a combination of regulatory morphogenetic compounds released by associated epiphytic bacteria in addition to nutritional parameters. The first results chapter examines the extent of specificity or generality of bacteria-induced morphogenesis in Ulva, by cross-testing bacteria isolated from several Ulva species on Ulva mutabilis and Ulva intestinalis. We show that pairs of bacterial strains isolated from Ulva species can fully rescue U. mutabilis or U. intestinalis morphology. In the second results chapter, activity of algal growth- and morphogenesis-promoting factors (AGPFs) derived from bacteria were estimated in a land-based integrated multitrophic aquaculture system (IMTA) of fish and macroalgae (located at the coastal lagoon Ria de Aveiro, Portugal), using a standardised bioassay with axenic cultures of Ulva. Nutrient availability was also assessed in this IMTA system. The study thus informs aspects of the various potential aquaculture-environment interactions. It was observed that both the water from the lagoon (external to the farm system) and the water from the fish pond (input for algae cultures) could completely restore the normal growth and morphology of the macroalga under axenic conditions. The results highlight the presence of a sufficient chemical cocktail of AGPFs in this IMTA system required for growth and morphogenesis of Ulva. In addition, the water of fish farming increases the nutrient availability (nitrate and ammonium) needed for macroalgae production. The conclusion of this chapter is that Ulva´s sustainable growth and development can benefit from multitrophic aquaculture systems and shallow water systems, due to the naturally enriched AGPFs and their in-situ production by bacteria in intensive algal aquacultures. In the final results chapter, the effects of U. intestinalis extracts on germination and root development in the model land plant Arabidopsis thaliana were examined. Ulva extract concentrations above 0.1% inhibited Arabidopsis germination and root growth. Ulva extract <0.1% stimulated root growth. All concentrations of Ulva extract inhibited lateral root formation. An abscisic-acid insensitive mutant showed altered sensitivity to germination- and root growth-inhibition. Ethylene- and cytokinin-insensitive mutants were partly insensitive to germination-inhibition. This suggests that different mechanisms mediate each effect of Ulva extract on early Arabidopsis development and that multiple hormones contribute to germination-inhibition. Taken together, the results of this thesis highlight: (i) Specific Ulva-associated bacterial functions (promoting cell division, or cell differentiation) that cannot be assigned to a specific genus/taxonomic group of bacteria, (ii) an IMTA system ensuring an adequate supply of nutrients and a sufficient chemical mixture of AGPFs for reliable Ulva cultivation and (iii) the first-characterised mechanisms to date by which Ulva extract can impact germination and growth in Arabidopsis. This thesis and all my academic achievements are dedicated to my mother and father. Without their endless support and encouragement, I would never have been able to complete my graduate studies. Acknowledgements I would like to take this opportunity to express my heartfelt gratitude and sincere thanks to all those who helped me to complete my thesis. Dr. Juliet Coates, my fantastic supervisor, I would like to thank you for agreeing to take me as PhD student, for your regular advice, immense support, thoughtful guidance, critical comments, correction of my papers and thesis and eventually for boosting my confidence throughout the entire PhD journey. I feel so lucky to have you as my supervisor. Dr. Thomas Wichard, I thank you from the bottom of my heart for accepting me as visiting researcher in your lab and mentoring my experiments at the Friedrich Schiller University Jena. You have been a constant source of motivation, encouragement and inspirational guidance. You introduced me a sense of discipline and attention to details in my work. Thanks for the time you spent to answer my questions and all discussions. Xulyu Cao, Clare Clayton and Alexandros Phokas, I would like to thank you as my fantastic friends for sharing your knowledge and all cheerful time we spent together. I would also like to thank my lab mates in Jena, Ralf Kessler, Anne Weiss, Jan Frieder Mohr and Gianmaria Califano for your help and advice. Dr. Daniel Gibbs, I am grateful to you and your wonderful group for supporting me. Thanks to Dr. Helena Abreu and all amazing members of ALGAplus company for your assistance, support and advices to perform my investigation in Portugal and for that particular dream you helped to come true. Finally, a big thank you to my sister and brothers, for those lots of support you all gave me during my long educational journey, to my mother-in-law and father-in-law for your understanding and sacrifices, to my sisters-in-law and brothers-in-low, you have been a source of strength and motivation during moments of distress and discouragement and to Reza, for putting up with me at home throughout my PhD and for all seaweed collecting journeys. I would like to acknowledge the Islamic Development Bank for funding my PhD studentship, networking support by the COST Action ‘Phycomorph’ FA1406 through Short Term Scientific Missions, the British Phycological Society, International Phycological Society, Estuarine and Coastal Sciences Association and Society for Experimental Biology for travel grants that enabled me to present my research in the UK, Denmark, Poland and Italy. Contents CHAPTER 1: INTRODUCTION 1 1.1 Phylogeny of macroalgae 2 1.2 The functions and benefits of macroalgae 4 1.2.1 The ecological importance of macroalgae 4 1.2.2 Nutritional and biomedical values of macroalgae 6 1.2.3 Seaweed aquaculture 11 1.3 The genus Ulva 14 1.4 Identification of Ulva 15 1.5 Ulva’s life cycle 17 1.6 Features of the Ulva mutabilis life cycle 20 1.7 The ecological and economic importance of Ulva species 22 1.7.1 Ecological and economic benefits 22 1.7.1.1 Ulvan, a unique polysaccharide found in Ulva genus with potential values in biotechnology and industry 22 1.7.1.1.1 Elicitor activity of ulvan 23 1.7.1.2 Ulva as a co-culture species in integrated multi-trophic aquaculture (IMTA) 25 1.7.2 Ecological and economic disadvantages of Ulva 29 1.7.2.1 Ulva settlement and its regulators 30 1.8 Model organisms 31 1.8.1 Arabidopsis thaliana a well-defined model organism 31 1.8.2 Algal model systems 32 1.9 Aims of this research 35 1.10 Concluding remarks 37 CHAPTER 2: MORPHOGENESIS AND DEVELOPMENT INDUCED BY BACTERIA IN ULVA SPECIES 38 2.1 The symbiosis between marine macroalgae and bacterial communities 39 2.1.1 Microbial abundance and diversity 39 2.1.2 Importance and function of algal-bacteria interaction 40 2.2 Uniqueness and variability of the epiphytic bacterial community on macroalgae 42 2.2.1 Is the epibacterial community on macroalgae host-specific? 42 2.2.2 The lottery hypothesis 43 2.2.3 The sea lettuce Ulva only adopts a typical morphotype with the right bacteria 43 2.3 A symbiotic tripartite community as a bioassay-driven approach 44 2.3.1 Cross-testing experiment 45 2.3.2 A new tripartite system more suited to the UK 46 2.4 Chapter aims 49 2.5 Materials and methods 49 2.5.1 Algal samples 49 2.5.2 Preparation of Ulva culture medium (UCM) 52 2.5.3 Cultivation conditions 52 2.5.4 Artificial induction of gametogenesis and preparation of axenic cultures 53 2.5.4.1 Purification of gametes 54 2.5.5 Phylogenetic characterisation of Ulva 55 2.5.5.1 Genomic DNA extraction 55 2.5.5.2 Primer sequences and PCR conditions 56 2.5.5.3 Cloning the tufA sequences 57 2.5.5.4 Agarose gel electrophoresis 57 2.5.5.5 Sequence analysis of rbcL and tufA genes 57 2.5.5.6 Phylogenetic analysis 58 2.5.6 Bacterial strain selection 58 2.5.6.1 Phylogenetic characterisation of bacteria 61 2.5.6.1.1 Preparation of bacterial isolates 61 2.5.6.1.2 DNA extraction, primer sequences and PCR conditions 61 2.5.6.1.3 Taxonomic classification 62 2.5.7 The Ulva bioassay array 62 2.5.7.1 Gamete distribution 62 2.5.7.2 Bacteria inoculation 63 2.5.7.3 Microscopy and quantification of parameters 64 2.6 Results 65 2.6.1 Identification of Ulva samples 65 2.6.1.1 Tubular-shape samples 65 2.6.1.2 Flat-shape samples 68 2.6.2 Identification of bacteria 71 2.6.2.1 Initial screening of morphologically active Ulva spp. surface-associated bacterial strains 71 2.6.2.2 Assay of nine further U.
Recommended publications
  • A Forensic and Phylogenetic Survey of Caulerpa Species
    J. Phycol. 42, 1113–1124 (2006) r 2006 by the Phycological Society of America DOI: 10.1111/j.1529-8817.2006.0271.x A FORENSIC AND PHYLOGENETIC SURVEY OF CAULERPA SPECIES (CAULERPALES, CHLOROPHYTA) FROM THE FLORIDA COAST, LOCAL AQUARIUM SHOPS, AND E-COMMERCE: ESTABLISHING A PROACTIVE BASELINE FOR EARLY DETECTION1 Wytze T. Stam2 Jeanine L. Olsen Department of Marine Benthic Ecology and Evolution, Center for Ecological and Evolutionary Studies, Biological Centre, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands Susan Frisch Zaleski University of Southern California Sea Grant Program, 3616 Trousdale Parkway, Los Angeles, California 90089-0373, USA Steven N. Murray Department of Biological Science, California State University, Fullerton, PO Box 6850, Fullerton, California 92834-6850, USA Katherine R. Brown and Linda J. Walters Department of Biology, University of Central Florida, Orlando, Florida 32816, USA Baseline genotypes were established for 256 in- researchers interested in the evolution and speciat- dividuals of Caulerpa collected from 27 field loca- ion of Caulerpa. tions in Florida (including the Keys), the Bahamas, Key index words: aquarium trade; Caulerpa; e-com- US Virgin Islands, and Honduras, nearly doubling merce; invasive species; ITS; marine conservation; the number of available GenBank sequences. On the phylogeny; tufA basis of sequences from the nuclear rDNA-ITS 1 þ 2 and the chloroplast tufA regions, the phylogeny of Abbreviations: CTAB, cetyltrimethylammonium bro- Caulerpa was reassessed and the presence of inva- mide; ITS, internally transcribed spacer; MCMC, sive strains was determined. Surveys in central Flor- Markov chain Monte Carlo analysis ida and southern California of 4100 saltwater aquarium shops and 90 internet sites revealed that 450% sold Caulerpa.
    [Show full text]
  • Kleptoplast Photoacclimation State Modulates the Photobehaviour of the Solar-Powered Sea Slug Elysia Viridis
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb180463. doi:10.1242/jeb.180463 SHORT COMMUNICATION Kleptoplast photoacclimation state modulates the photobehaviour of the solar-powered sea slug Elysia viridis Paulo Cartaxana1, Luca Morelli1,2, Carla Quintaneiro1, Gonçalo Calado3, Ricardo Calado1 and Sónia Cruz1,* ABSTRACT light intensities, possibly as a strategy to prevent the premature loss Some sacoglossan sea slugs incorporate intracellular functional of kleptoplast photosynthetic function (Weaver and Clark, 1981; algal chloroplasts (kleptoplasty) for periods ranging from a few days Cruz et al., 2013). A distinguishable behaviour in response to light to several months. Whether this association modulates the has been recorded in Elysia timida: a change in the position of its photobehaviour of solar-powered sea slugs is unknown. In this lateral folds (parapodia) from a closed position to a spread, opened study, the long-term kleptoplast retention species Elysia viridis leaf-like posture under lower irradiance and the opposite behaviour showed avoidance of dark independently of light acclimation state. under high light levels (Rahat and Monselise, 1979; Jesus et al., In contrast, Placida dendritica, which shows non-functional retention 2010; Schmitt and Wägele, 2011). This behaviour in response to of kleptoplasts, showed no preference over dark, low or high light. light changes was only recorded for this species and has been assumed to be linked to long-term retention of kleptoplasts (Schmitt High light-acclimated (HLac) E. viridis showed a higher preference for and Wägele, 2011). high light than low light-acclimated (LLac) conspecifics. The position of the lateral folds (parapodia) was modulated by irradiance, with In this study, we determine whether the photobehaviour of increasing light levels leading to a closure of parapodia and protection the solar-powered sea slug Elysia viridis is linked to the of kleptoplasts from high light exposure.
    [Show full text]
  • Revision of Herbarium Specimens of Freshwater Enteromorpha-Like Ulva (Ulvaceae, Chlorophyta) Collected from Central Europe During the Years 1849–1959
    Phytotaxa 218 (1): 001–029 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.218.1.1 Revision of herbarium specimens of freshwater Enteromorpha-like Ulva (Ulvaceae, Chlorophyta) collected from Central Europe during the years 849–959 ANDRZEJ S. RYBAK Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, PL61 – 614 Poznań, Poland. [email protected] Abstract This paper presents results concerning the taxonomic revision of Ulva taxa originating from herbarium specimens dating back to 1849–1959. A staining and softening mixture was applied to allow a detailed morphometric analysis of thalli and cells and to detect many morphological details. The study focused on individuals collected exclusively from inland water ecosystems (having no contact with sea water). Detailed analysis concerned the following items: structures of thalli and cells, number of pyrenoids per cell, configuration of cells inside the thallus, occurrence or not of branching thallus, shapes of apical cells, and shape of chromatophores. The objective of the study was to confirm the initial identifications of specimens of Ulva held in herbaria. The study sought to determine whether saltwater species of the genus Ulva, e.g., Ulva compressa and U. intestinalis, could have been found in European freshwater ecosystems in 19th and 20th centuries. Moreover, the paper presents a method for the initial treatment of voucher specimens for viewing stained cellular structures that are extremely vulnerable to damage (the oldest specimens were more than 160 years old).
    [Show full text]
  • University of Copenhagen
    Classification, Naming and Evolutionary History of Glycosyltransferases from Sequenced Green and Red Algal Genomes Ulvskov, Peter; Paiva, Dionisio Soares; Domozych, David; Harholt, Jesper Published in: P L o S One DOI: 10.1371/journal.pone.0076511 Publication date: 2013 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Ulvskov, P., Paiva, D. S., Domozych, D., & Harholt, J. (2013). Classification, Naming and Evolutionary History of Glycosyltransferases from Sequenced Green and Red Algal Genomes. P L o S One, 8(10), [e76511.]. https://doi.org/10.1371/journal.pone.0076511 Download date: 02. okt.. 2021 Classification, Naming and Evolutionary History of Glycosyltransferases from Sequenced Green and Red Algal Genomes Peter Ulvskov1, Dionisio Soares Paiva1¤, David Domozych2, Jesper Harholt1* 1 Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark, 2 Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York, United States of America Abstract The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from
    [Show full text]
  • Exhaustive Reanalysis of Barcode Sequences from Public
    Exhaustive reanalysis of barcode sequences from public repositories highlights ongoing misidentifications and impacts taxa diversity and distribution: a case study of the Sea Lettuce. Antoine Fort1, Marcus McHale1, Kevin Cascella2, Philippe Potin2, Marie-Mathilde Perrineau3, Philip Kerrison3, Elisabete da Costa4, Ricardo Calado4, Maria Domingues5, Isabel Costa Azevedo6, Isabel Sousa-Pinto6, Claire Gachon3, Adrie van der Werf7, Willem de Visser7, Johanna Beniers7, Henrice Jansen7, Michael Guiry1, and Ronan Sulpice1 1NUI Galway 2Station Biologique de Roscoff 3Scottish Association for Marine Science 4University of Aveiro 5Universidade de Aveiro 6University of Porto Interdisciplinary Centre of Marine and Environmental Research 7Wageningen University & Research November 24, 2020 Abstract Sea Lettuce (Ulva spp.; Ulvophyceae, Ulvales, Ulvaceae) is an important ecological and economical entity, with a worldwide distribution and is a well-known source of near-shore blooms blighting many coastlines. Species of Ulva are frequently misiden- tified in public repositories, including herbaria and gene banks, making species identification based on traditional barcoding hazardous. We investigated the species distribution of 295 individual distromatic foliose strains from the North East Atlantic by traditional barcoding or next generation sequencing. We found seven distinct species, and compared our results with all worldwide Ulva spp sequences present in the NCBI database for the three barcodes rbcL, tuf A and the ITS1. Our results demonstrate a large degree of species misidentification in the NCBI database. We estimate that 21% of the entries pertaining to foliose species are misannotated. In the extreme case of U. lactuca, 65% of the entries are erroneously labelled specimens of another Ulva species, typically U. fenestrata. In addition, 30% of U.
    [Show full text]
  • Differentiation Between Some Ulva Spp. by Morphological, Genetic and Biochemical Analyses
    Филогенетика Вавиловский журнал генетики и селекции. 2017;21(3):360­367 ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ / ORIGINAL ARTICLE DOI 10.18699/VJ17.253 Differentiation between some Ulva spp. by morphological, genetic and biochemical analyses M.M. Ismail1 , S.E. Mohamed2 1 Marine Environmental Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt 2 Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt Ulva is most common green seaweed in Egypt coast, it used as a Различия между некоторыми source of food, feed, medicines and fertilizers in all the world. This study is the first time to investigate the morphological, genetic видами рода Ulva, выявленные and biochemical variation within four Ulva species collected путем морфологического, from Eastern Harbor, Alexandria. The morphology description of генетического и биохимического thallus showed highly variations according to species, but there is not enough data to make differentiation between species in the анализа same genus since it is impacted with environmental factors and development stage of seaweeds. Genetic variations between the М.М. Исмаил1 , С.Э. Мохамед2 tested Ulva spp. were analyzed using random amplified polymor­ phic DNA (RAPD) analyses which shows that it would be possible 1 Отдел исследований морской среды Национального института to establish a unique fingerprint for individual seaweeds based on океанографии и рыболовства, Александрия, Египет 2 Отдел молекулярной биологии Исследовательского института the combined results generated from a small collection of prim­ генной инженерии и биотехнологий, Садатский университет, ers. The dendrogram showed that the most closely species are Садат, Египет U. lactuca and U. compressa, while, U. fasciata was far from both U.
    [Show full text]
  • Checklist of the Marine Macroalgae of Vietnam
    DOI 10.1515/bot-2013-0010 Botanica Marina 2013; 56(3): 207–227 Tu Van Nguyen * , Nhu Hau Le, Showe-Mei Lin , Frederique Steen and Olivier De Clerck Checklist of the marine macroalgae of Vietnam Abstract: Despite a rich seaweed flora, information about in approximately 1,000,000 sq km of sea area. The primar- Vietnamese seaweeds is scattered throughout a large number ily north-south orientation of the coastline spans two cli- of often regional publications and, hence, difficult to access. matic zones with a subtropical climate at higher latitudes This paper presents an up-to-date checklist of the marine and a tropical climate in the south. A diverse variety of macroalgae of Vietnam, compiled by means of an exhaustive ecosystems, ranging from extensive lagoons and man- bibliographical search and revision of taxon names. A total groves to rocky shores and coral reefs, provide suitable of 827 species are reported, of which the Rhodophyta show habitats for luxuriant seaweed growth. Marine macroalgae the highest species number (412 species), followed by the play an important role in the everyday lives of the people Chlorophyta (180 species), Phaeophyceae (147 species) and of Vietnam. Several species are used as food (humans and Cyanobacteria (88 species). This species richness is compa- livestock), for the extraction of agar and carrageenan, rable to that of the Philippines and considerably higher than in traditional medicine or as biofertilizer (Huynh and Taiwan, Thailand or Malaysia, which indicates that Vietnam Nguyen H. Dinh 1998, Dang et al. 2007 ). Yet knowledge possibly represents a diversity hotspot for macroalgae.
    [Show full text]
  • Comparison of Ulva Lactuca and Ulva Clathrata As Ingredients In
    International Journal of Fisheries and Aquatic Studies 2021; 9(1): 192-194 E-ISSN: 2347-5129 P-ISSN: 2394-0506 (ICV-Poland) Impact Value: 5.62 Comparison of Ulva lactuca and Ulva clathrata as (GIF) Impact Factor: 0.549 IJFAS 2021; 9(1): 192-194 ingredients in Litopenaeus vannamei feeds © 2021 IJFAS www.fisheriesjournal.com Received: 23-10-2020 Dian Yuni Pratiwi and Fittrie Meyllianawaty Pratiwy Accepted: 02-12-2020 DOI: https://doi.org/10.22271/fish.2021.v9.i1c.2401 Dian Yuni Pratiwi Faculty of Fisheries and Marine Abstract Science, Universitas Ulva lactuca and Ulva clathrata are marine green algae belonging to genera Ulva. These algae have a lot Padjadjaran, Indonesia of nutrient such as protein, carbohydrates, lipids, pigments and others. These nutrient can be used to Fittrie Meyllianawaty Pratiwy improve the growth performance and health of Shrimps. Several studies have shown that U. lactuca and Faculty of Fisheries and Marine U. clathrata have antifungal, antibacterial, antiviral activities. One of popular shrimp among people of Science, Universitas the world is Litopenaeus vannamei. So that, this review article aims to comparing the effect of U. lactuca Padjadjaran, Indonesia and U. clathrata as ingredients in L. vannamei juvenile feeds. This review also summarizes a literature survey of the nutritional content and antimicrobial activity of U. lactuca and U. clathrata. Keywords: Ulva lactuca, Ulva clathrata, Litopenaeus vannamei, growth, health 1. Introduction Shrimps is one of popular seafood commodity among people of the world. The global trade of [1] [2] shrimp achieve 5.10 million tons in 2019 and estimate at USD 28 billion per year .
    [Show full text]
  • Common Benthic Algae and Cyanobacteria in Southern California Tidal Wetlands
    Scripps Institution of Oceanography Technical Report Common benthic algae and cyanobacteria in southern California tidal wetlands Christopher N. Janousek Scripps Institution of Oceanography, University of California, San Diego 11 July 2011 Janousek 2011: Algae and cyanobacteria of southern California marine wetlands. 1 Abstract Benthic algae and photosynthetic bacteria are important components of coastal wetlands, contributing to primary productivity, nutrient cycling, and other ecosystem functions. Despite their key roles in mudflat and salt marsh food webs, the extent and patterns of diversity of these organisms is poorly known. Sediments from intertidal marshes in San Diego County, California host a variety of cyanobacteria, diatoms, and multi-cellular algae. This flora describes approximately 40 taxa of common and notable cyanobacteria, microalgae and macroalgae observed in wetland sediments, principally from a small tidal marsh in Mission Bay. Cyanobacteria included coccoid and heterocyte and non-heterocyte bearing filamentous genera. A phylogenetically-diverse assemblage of pennate and centric diatoms, euglenoids, green algae, red algae, tribophytes and brown seaweeds was also observed. Most taxa are illustrated with photographs. Key words alpha diversity • cyanobacteria • diatoms • euglenoids • Kendall-Frost Mission Bay Marsh Reserve • macroalgae • microphytobenthos • salt marsh • Tijuana Estuary • Vaucheria Introduction The sediments of coastal marine wetlands in California are inhabited by a variety of algal and bacterial primary producers in addition to the more conspicuous vascular plants that provide most of the physical structure of coastal salt marshes and seagrass meadows. The non-vascular plant flora includes microscopic cyanobacteria, anoxygenic phototrophic bacteria, diatoms, and euglenoids, often collectively known as “microphytobenthos” (Sullivan and Currin 2000). Larger green algae, red and brown seaweeds, and the macroscopic tribophyte, Vaucheria are also residents of these ecosystems (Barnhardt et al.
    [Show full text]
  • Download This Article in PDF Format
    E3S Web of Conferences 233, 02037 (2021) https://doi.org/10.1051/e3sconf/202123302037 IAECST 2020 Comparing Complete Mitochondrion Genome of Bloom-forming Macroalgae from the Southern Yellow Sea, China Jing Xia1, Peimin He1, Jinlin Liu1,*, Wei Liu1, Yichao Tong1, Yuqing Sun1, Shuang Zhao1, Lihua Xia2, Yutao Qin2, Haofei Zhang2, and Jianheng Zhang1,* 1College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China, 201306 2East China Sea Environmental Monitoring Center, State Oceanic Administration, Shanghai, China, 201206 Abstract. The green tide in the Southern Yellow Sea which has been erupting continuously for 14 years. Dominant species of the free-floating Ulva in the early stage of macroalgae bloom were Ulva compressa, Ulva flexuosa, Ulva prolifera, and Ulva linza along the coast of Jiangsu Province. In the present study, we carried out comparative studies on complete mitochondrion genomes of four kinds of bloom-forming green algae, and provided standard morphological characteristic pictures of these Ulva species. The maximum likelihood phylogenetic analysis showed that U. linza is the closest sister species of U. prolifera. This study will be helpful in studying the genetic diversity and identification of Ulva species. 1 Introduction gradually [19]. Thus, it was meaningful to carry out comparative studies on organelle genomes of these Green tides, which occur widely in many coastal areas, bloom-forming green algae. are caused primarily by flotation, accumulation, and excessive proliferation of green macroalgae, especially the members of the genus Ulva [1-3]. China has the high 2 The specimen and data preparation frequency outbreak of the green tide [4-10]. Especially, In our previous studies, mitochondrion genome of U.
    [Show full text]
  • Estudos Taxonômicos Das Coralináceas Geniculadas (Corallinales, Rhodophyta) No Litoral Do Estado De Pernambuco, Brasil
    ALANNE MORAES DA SILVA ESTUDOS TAXONÔMICOS DAS CORALINÁCEAS GENICULADAS (CORALLINALES, RHODOPHYTA) NO LITORAL DO ESTADO DE PERNAMBUCO, BRASIL RECIFE 2016 UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM BOTÂNICA ESTUDOS TAXONÔMICOS DAS CORALINÁCEAS GENICULADAS (CORALLINALES, RHODOPHYTA) NO LITORAL DO ESTADO DE PERNAMBUCO, BRASIL. Dissertação apresentada ao Programa de Pós-Graduação em Botânica (PPGB) da Universidade Federal Rural de Pernambuco, para obtenção do título de Mestre em Botânica Orientador (a): Dra. Sônia Maria Barreto Pereira (Universidade Federal Rural de Pernambuco) Conselheiro (a): Dra. Maria Elizabeth Bandeira- Pedrosa (Universidade Federal Rural de Pernambuco) RECIFE 2016 II ESTUDOS TAXONÔMICOS DAS CORALINÁCEAS GENICULADAS (CORALLINALES, RHODOPHYTA) NO LITORAL DO ESTADO DE PERNAMBUCO, BRASIL ALANNE MORAES DA SILVA Dissertação apresentada ao Programa de Pós-Graduação em Botânica (PPGB), da Universidade Federal Rural de Pernambuco, como parte dos requisitos para obtenção do título de Mestre em Botânica. Dissertação defendida e aprovada pela banca examinadora: ORIENTADORA: ______________________________________________ Dra. Sônia Maria Barreto Pereira Titular / UFRPE EXAMINADORES: ______________________________________________ Dr. Douglas Correia Burgos Titular ______________________________________________ Dra. Enide Eskinazi Leça Titular/ UFRPE ______________________________________________ Dra. Maria da Glória Gonçalves da Silva Cunha Titular/ UFPE ______________________________________________ Dra. Margareth Ferreira de Sales Suplente/ UFRPE DATA DA APROVAÇÃO: / / 2016 RECIFE 2016 III Dedicatória Aos meus bens mais preciosos, minha família e meus amigos. IV AGRADECIMENTOS Expressar gratidão com palavras é sempre uma tarefa difícil para mim, mas como não agradeceria por esses dois anos de muito aprenzidado. Como tudo na vida, não conseguimos nada sozinhos. Primeiramente quero agradecer ao Deus da minha salvação, ao meu refúgio sempre presente que em todos os momentos está comigo.
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Ephemeral green and red seaweeds on variable salinity and/or disturbed eulittoral mixed substrata MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Dr Heidi Tillin & Georgina Budd 2016-03-30 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/241]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tillin, H.M. & Budd, G., 2016. Ephemeral green and red seaweeds on variable salinity and/or disturbed eulittoral mixed substrata. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.241.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Ephemeral green and red seaweeds on variable salinity and/or disturbed eulittoral mixed substrata - Marine Life Date: 2016-03-30 Information Network Photographer: Anon.
    [Show full text]