2013 Honors & Awards

Total Page:16

File Type:pdf, Size:1020Kb

2013 Honors & Awards HonorsCVR_Layout 1 11/1/13 2:59 PM Page 1 2013 Honors & Awards ASME 2013 Honors & Awards Table of Contents ASME Medal....................................................................................................................4 Honorary Membership ............................................................................................5–11 Barnett-Uzgiris Product Safety Design Award ........................................................12 Bergles-Rohsenow Young Investigator Award in Heat Transfer ..........................13 Blackall Machine Tool and Gage Award....................................................................14 Per Bruel Gold Medal for Noise Control and Acoustics ........................................16 Edwin F. Church Medal ..............................................................................................18 Daniel C. Drucker Medal ............................................................................................19 Thomas A. Edison Patent Award................................................................................20 William T. Ennor Manufacturing Technology Award..............................................21 Nancy DeLoye Fitzroy and Roland V. Fitzroy Medal..............................................22 Fluids Engineering Award ..........................................................................................23 Y.C. Fung Young Investigator Award ........................................................................25 Gas Turbine Award ......................................................................................................26 Kate Gleason Award ....................................................................................................27 Melvin R. Green Codes and Standards Medal..........................................................29 J.P. Den Hartog Award ................................................................................................30 Heat Transfer Memorial Award — Art ......................................................................31 Heat Transfer Memorial Award — General..............................................................32 Heat Transfer Memorial Award — Science ..............................................................33 Mayo D. Hersey Award................................................................................................34 Patrick J. Higgins Medal ..............................................................................................35 Soichiro Honda Medal..................................................................................................36 Internal Combustion Engine Award ..........................................................................38 Warner T. Koiter Medal................................................................................................39 Robert E. Koski Medal..................................................................................................40 Frank Kreith Energy Award ........................................................................................41 Bernard F. Langer Nuclear Codes and Standards Award ......................................43 Gustus L. Larson Memorial Award............................................................................44 H.R. Lissner Medal ......................................................................................................45 Machine Design Award................................................................................................46 Charles T. Main Student Section Award — Gold ....................................................47 Charles T. Main Student Section Award — Silver....................................................48 McDonald Mentoring Award......................................................................................49 Melville Medal ..............................................................................................................50 M. Eugene Merchant Manufacturing Medal of ASME/SME ................................54 Van C. Mow Medal ......................................................................................................55 Nadai Medal ..................................................................................................................56 Sia Nemat-Nasser Early Career Award ....................................................................57 Sia Nemat-Nasser Early Career Award ....................................................................59 Burt L. Newkirk Award................................................................................................60 Old Guard Early Career Award ..................................................................................61 Rufus Oldenburger Medal ..........................................................................................62 Performance Test Codes Medal ..................................................................................63 Pi Tau Sigma Gold Medal ............................................................................................64 James Harry Potter Gold Medal ................................................................................65 Prime Movers Committee Award ..............................................................................66 Dixy Lee Ray Award ....................................................................................................68 Charles Russ Richards Memorial Award ..................................................................70 Ralph Coats Roe Medal................................................................................................71 Safety Codes and Standards Medal............................................................................73 R. Tom Sawyer Award..................................................................................................74 Milton C. Shaw Manufacturing Research Medal ....................................................75 Ben C. Sparks Medal ....................................................................................................76 Ruth and Joel Spira Outstanding Design Educator Award ....................................80 Spirit of St. Louis Medal ..............................................................................................81 Student Section Advisor Award..................................................................................82 J. Hall Taylor Medal......................................................................................................83 Technical Communities Globalization Medal ..........................................................84 Robert Henry Thurston Lecture Award ....................................................................86 Timoshenko Medal ......................................................................................................87 George Westinghouse Gold Medal ............................................................................88 Worcester Reed Warner Medal....................................................................................89 Arthur L. Williston Medal ..........................................................................................91 Henry R. Worthington Medal......................................................................................92 S. Y. Zamrik PVP Medal ..............................................................................................93 Index of Honorees ........................................................................................................95 The Alexander Holley Society ....................................................................................96 The Archimedes Club ..................................................................................................97 1 2013 HONORS AND AWARDS The recognition of the excellence of an engineer’s work by his or her peers is one of the greatest rewards for accomplishment. By present- ing these individuals with tokens of excellence, the Society brings the character and importance of the engineer’s work to the attention of the public. Accordingly, it is one of the major purposes of the Society to recognize engineering excellence through the Honors and Awards Program and to provide the forum for their exposition. Society honors and awards recognize a wide variety of accomplish- ments. Some awards are based on contributions to engineering liter- ature; others recognize general achievements in the advancement of engineering. Some are awarded for outstanding accomplishments by a young engineer beginning a career, others for distinguished service throughout a lifetime. Still others recognize contributions by outstanding Student Members. Honors and Award are bestowed by authority of the Board of Gover- nors, and certificates are signed by the President and Executive Director. The Honors and Awards Program is funded through the ASME Foundation by individual awards and endowment funds, not through member dues. The pages that follow describe all society honors and awards pre- sented in 2013 and give information about the recipients. Many awards were presented at the Society’s meetings and conferences throughout the year, and others will be presented during the 2013 International Mechanical Engineering Congress, November 15 – November 21, in San Diego, CA. ASME COMMITTEE ON HONORS* Karen A. Thole, Chair Arthur E. Bergles, Vice Chair Cristina H. Amon Kirti N. Ghia Glenn A. Anderkay Krishna C. Gupta
Recommended publications
  • Chapter 10: Composite Micromechanics
    Application of the Finite Element Method Using MARC and Mentat 10-1 Chapter 10: Composite Micromechanics 10.1 Problem Statement and Objectives Given the micromechanical geometry and the material properties of each constituent, it is possible to estimate the effective composite material properties and the micromechanical stress/strain state of a composite material. The objectives of this project are (1) to determine the effective stiffness c c ν c ν c properties E1 , E2 , 12 , 23 of a unidirectional composite material and (2) to determine the strain concentration factor in the matrix region when the composite material is subjected to a uniform transverse normal strain in the X 2 direction. NOTE TO ME 424 CLASS: Only do Part (2). 10.2 Background A composite material is often defined as a combination of two or more materials fabricated in such a way that the individual constituents (materials) can still be readily identified in the final form. If designed properly, this combination of materials yields a composite material that exhibits the best properties of each constituent as well as some advantageous properties not exhibited by the individual constituents. One example of such a material is a unidirectional fiber reinforced composite, which is often used in aerospace structures. An idealized micromechanical view of a unidirectional fiber reinforced composite material is shown in Figure 10.1. In these materials, the fibers have a very small diameter and a very high length-to-diameter ratio. This geometry yields excellent stiffness and strength characteristics in the fiber, since the crystals tend to align along the fiber axis and there are fewer internal and surface defects than in the bulk material.
    [Show full text]
  • Micromechanics As a Basis of Stochastic Finite Elements And
    Micromechanics as a basis of stochastic finite elements and differences: An overview M Ostoja-Starzewski Department of Materials Science and Mechanics Michigan State University, East Lansing, MI 48824-1226 A generalization of conventional deterministic finite element and difference methods to deal with spatial material fluctuations hinges on the problem of determination of stochastic constitutive laws. This problem is analyzed here through a paradigm of micromechanics of elastic polycrystals and matrix-inclusion composites. Passage to a sought-for random meso-continuum is based on a scale dependent window playing the role of a Representative Volume Element (RVE). It turns out that the microstructure cannot be uniquely approximated by a random field of stiffness with continuous realizations, but, rather, two random continuum fields may be introduced to bound the material response from above and from below. Since the RVE corresponds to a single finite element, or finite difference cell, not infinitely larger than the crystal size, these two random fields are to be used to bound the solution of a given boundary value problem at a given scale of resolution. The window- based random continuum formulation is also employed in analysis of rigid perfectly-plastic mate­ rials, whereby the classical method of slip-lines is generalized to a stochastic finite difference scheme. The present paper is complemented by a comparison of this methodology to other existing stochastic solution methods. 1. INTRODUCTION a locally isotropic form The necessity to account for random effects in determining a.. = X(x, co) 5..e +2u(x, co)e.. n ^ the response of a mechanical system is due, in general, to »J iJ kk 'J {Li> three different sources: random external forcing, random is adopted by simply postulating one or both elastic constants, boundary conditions, and random material parameters.
    [Show full text]
  • MICROMECHANICS of STRESS-INDUCED MARTENSITIC TRANSFORMATION in MONO- and POLYCRYSTALLINE SHAPE MEMORY ALLOYS; Ni-Ti
    Advanced Materials for the 21st Century: The 1999 Julia R. Weertman Symposium, 1999 TMS Fall Meeting in Cincinnati, OH, USA., Oct. 31-Nov.4, pp.385-396 MICROMECHANICS OF STRESS-INDUCED MARTENSITIC TRANSFORMATION IN MONO- AND POLYCRYSTALLINE SHAPE MEMORY ALLOYS; Ni-Ti Y. Liang, M. Taya and T. Mori* Department of Mechanical Engineering University of Washington Seattle, WA 98195-2600 Abstract Stress-induced martensitic transformation in single crystals and polycrystals are examined on the basis of micromechanics. A simple method to find a stress- and elastic energy-free martensite plate (combined variant), which consists of two variants, is presented. External and internal stresses preferentially produce a combined variant, to which the stresses supply the largest work upon its formation. Using the chemical energy change with temperature, the phase boundary between the parent and martensitic phases is determined in stress-temperature diagrams. The method is extended to a polycrystal, modeled as an aggregate of spherical grains. The grains constitute axisymmetric multiple fiber textures and a uniaxial load is applied to the fiber axis. The occurrence and progress of transformation are followed by examining a stress state in the grains. The stress is the sum of the external stress and internal stress. The difference in the fraction of transformation and, thus, in transformation strains between the grains causes the internal stress, which is calculated with the average field method. After a short transition stage, all the grains start to transform, and the external uniaxial stress to continue the transformation increases linearly thereafter. The external stress at the end of the transition is defined as the macroscopic yield stress due to the transformation in polycrystals.
    [Show full text]
  • The American Society of Mechanical Engineers® (ASME®) | ASME INDIVIDUAL MEMBERS | | ASME AROUND the WORLD | | ASME STANDARDS |
    Annual Report 2015-2016 The American Society of Mechanical Engineers® (ASME®) | ASME INDIVIDUAL MEMBERS | | ASME AROUND THE WORLD | | ASME STANDARDS | 130,000 150 600 COUNTRIES ASME ANNUAL REPORT 2015/2016 Table of Contents ASME ANNUAL REPORT 2 FINANCIALS 17 ASME FOUNDATION DONOR REPORT 36 Our Mission ASME’s mission is to serve diverse global communities by advancing, disseminating and applying engineering knowledge for improving the quality of life, and communicating the excitement of engineering. Our Vision ASME aims to be the essential resource for mechanical engineers and other technical professionals throughout the Our world for solutions that benefit humankind. Strategic Goal ASME will enhance its relevance and impact to global constituents by being the leader in advancing engineering technology. Our Values In performing its mission, ASME adheres to these core values: • Embrace integrity and ethical conduct • Embrace diversity and respect the dignity and culture of all people • Nurture and treasure the environment and our natural and man-made resources • Facilitate the development, dissemination and application of engineering knowledge • Promote the benefits of continuing education and of engineering education • Respect and document engineering history while continually embracing change • Promote the technical and societal contribution of engineers ASME.ORG 2 ASME remains on the edge of innovation and engineering excellence 3 ASME.ORG From the President & Executive Director World renowned inventor and former ASME member Thomas A. Edison said “There’s a way to do it better. Find it!” No truer words could encapsulate fiscal year 2016 for all of us here at ASME. In our quest to “do it better” while pursuing our mission with renewed vigor and focus, ASME has embarked on a bold and ambitious trajectory – with the aim of becoming the go-to organization for mechanical engineers and technical professionals throughout the world.
    [Show full text]
  • Professionalizing Science and Engineering Education in Late- Nineteenth Century America Paul Nienkamp Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2008 A culture of technical knowledge: professionalizing science and engineering education in late- nineteenth century America Paul Nienkamp Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the History of Science, Technology, and Medicine Commons, Other History Commons, Science and Mathematics Education Commons, and the United States History Commons Recommended Citation Nienkamp, Paul, "A culture of technical knowledge: professionalizing science and engineering education in late-nineteenth century America" (2008). Retrospective Theses and Dissertations. 15820. https://lib.dr.iastate.edu/rtd/15820 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A culture of technical knowledge: Professionalizing science and engineering education in late-nineteenth century America by Paul Nienkamp A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: History of Technology and Science Program of Study Committee: Amy Bix, Co-major Professor Alan I Marcus, Co-major Professor Hamilton Cravens Christopher Curtis Charles Dobbs Iowa State University Ames, Iowa 2008 Copyright © Paul Nienkamp, 2008. All rights reserved. 3316176 3316176 2008 ii TABLE OF CONTENTS ACKNOWLEDGEMENTS iii ABSTRACT v CHAPTER 1. INTRODUCTION – SETTING THE STAGE FOR NINETEENTH CENTURY ENGINEERING EDUCATION 1 CHAPTER 2. EDUCATION AND ENGINEERING IN THE AMERICAN EAST 15 The Rise of Eastern Technical Schools 16 Philosophies of Education 21 Robert Thurston’s System of Engineering Education 36 CHAPTER 3.
    [Show full text]
  • AWAR Volume 24.Indb
    THE AWA REVIEW Volume 24 2011 Published by THE ANTIQUE WIRELESS ASSOCIATION PO Box 421, Bloomfi eld, NY 14469-0421 http://www.antiquewireless.org i Devoted to research and documentation of the history of wireless communications. Antique Wireless Association P.O. Box 421 Bloomfi eld, New York 14469-0421 Founded 1952, Chartered as a non-profi t corporation by the State of New York. http://www.antiquewireless.org THE A.W.A. REVIEW EDITOR Robert P. Murray, Ph.D. Vancouver, BC, Canada ASSOCIATE EDITORS Erich Brueschke, BSEE, MD, KC9ACE David Bart, BA, MBA, KB9YPD FORMER EDITORS Robert M. Morris W2LV, (silent key) William B. Fizette, Ph.D., W2GDB Ludwell A. Sibley, KB2EVN Thomas B. Perera, Ph.D., W1TP Brian C. Belanger, Ph.D. OFFICERS OF THE ANTIQUE WIRELESS ASSOCIATION DIRECTOR: Tom Peterson, Jr. DEPUTY DIRECTOR: Robert Hobday, N2EVG SECRETARY: Dr. William Hopkins, AA2YV TREASURER: Stan Avery, WM3D AWA MUSEUM CURATOR: Bruce Roloson W2BDR 2011 by the Antique Wireless Association ISBN 0-9741994-8-6 Cover image is of Ms. Kathleen Parkin of San Rafael, California, shown as the cover-girl of the Electrical Experimenter, October 1916. She held both a commercial and an amateur license at 16 years of age. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner. Printed in Canada by Friesens Corporation Altona, MB ii Table of Contents Volume 24, 2011 Foreword ....................................................................... iv The History of Japanese Radio (1925 - 1945) Tadanobu Okabe .................................................................1 Henry Clifford - Telegraph Engineer and Artist Bill Burns ......................................................................
    [Show full text]
  • Society Reports USNC/TAM
    Appendix J 2008 Society Reports USNC/TAM Table of Contents J.1 AAM: Ravi-Chandar.............................................................................................. 1 J.2 AIAA: Chen............................................................................................................. 2 J.3 AIChE: Higdon ....................................................................................................... 3 J.4 AMS: Kinderlehrer................................................................................................. 5 J.5 APS: Foss................................................................................................................. 5 J.6 ASA: Norris............................................................................................................. 6 J.7 ASCE: Iwan............................................................................................................. 7 J.8 ASME: Kyriakides.................................................................................................. 8 J.9 ASTM: Chona ......................................................................................................... 9 J.10 SEM: Shukla ....................................................................................................... 11 J.11 SES: Jasiuk.......................................................................................................... 13 J.12 SIAM: Healey...................................................................................................... 14 J.13 SNAME: Karr....................................................................................................
    [Show full text]
  • Ambrose Swasey 1846-1937
    NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XXII FIRST MEMOIR BIOGRAPHICAL MEMOIR OF AMBROSE SWASEY 1846-1937 BY DAYTON C. MTLLER PRESENTED TO THE ACADEMY AT THE ANNUAL MEETING, 1940 AMBROSE SWASEY 1846-1937 BY DAYTON C. MILLER Ambrose Swasey, engineer, scientist, philanthropist, was born in Exeter, New Hampshire, on December 19, 1846; he died at the old homestead on the farm where he was born on June 15, 1937, aged 90 years and 6 months. A group of pioneers, four hundred in number, including four non-conformist clergymen, came from old England to New England in the spring of 1629. John Swasey, founder of the Swasey family in America, and his two sons, Joseph and John, Jr., presumably were members of this group and they settled in Salem, Massachusetts.1 The Governor of Salem, John Endecott, in this time of religious intolerance, showed great bigotry and harshness and expelled all Baptists, Episcopalians, and Quakers. John Swasey, being of the latter faith, was obliged to leave, about 1650, going to Satauket and later to Southold on Long Island. Joseph Swasey (second generation) the eldest son of John Swasey, remained in Salem and followed the humble oc- cupation of fisherman. Joseph was one of the charter members of the first church organized in Salem, in 1629, this being the first Congregational Church in America. This Joseph Swasey had a son named Joseph (third generation) born in 1653 in Salem. The further line of descent is: Joseph, born in 1685, in Salem; Ebenezer, born in 1727, in Old Newbury, Massachusetts; Ebenezer, born in 1758, in Old Newbury; Nathaniel, born in 1800, in Exeter, New Hampshire.
    [Show full text]
  • Memorial Tributes: Volume 5
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/1966 SHARE Memorial Tributes: Volume 5 DETAILS 305 pages | 6 x 9 | HARDBACK ISBN 978-0-309-04689-3 | DOI 10.17226/1966 CONTRIBUTORS GET THIS BOOK National Academy of Engineering FIND RELATED TITLES Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 5 i Memorial Tributes National Academy of Engineering Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 5 ii Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 5 iii National Academy of Engineering of the United States of America Memorial Tributes Volume 5 NATIONAL ACADEMY PRESS Washington, D.C. 1992 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 5 MEMORIAL TRIBUTES iv National Academy Press 2101 Constitution Avenue, NW Washington, DC 20418 Library of Congress Cataloging-in-Publication Data (Revised for vol. 5) National Academy of Engineering. Memorial tributes. Vol. 2-5 have imprint: Washington, D.C. : National Academy Press. 1. Engineers—United States—Biography. I. Title. TA139.N34 1979 620'.0092'2 [B] 79-21053 ISBN 0-309-02889-2 (v.
    [Show full text]
  • Mechanical & Aerospace Engineering Department
    Mechanical & Aerospace Engineering Department 2007-2008 Engineering HENRY SAMUELI SCHOOL OF ENGINEERING AND APPLIED SCIENCE Research Highlights Professor Y. Sungtaek Ju, with graduate students Youngsuk Nam and Stephen Sharratt, with RFID devices. Photo by Alexander Duffy. Y. Sungtaek Ju and his team win DARPA grant to conduct innovative research and development in the area of electronics cooling BY Y. SUNGTAEK JU An interdisciplinary team of researchers led by UCLA As electronic system technology advances, there has been professor of Mechanical and Aerospace Engineering, increasing pressure on the thermal engineering and heat Sungtaek Ju, recently received a $3.8 million award rejection technologies used. Despite efforts to achieve from the Defense Advanced Projects Research Agency dramatic reductions in power consumption in specific (DARPA) to conduct innovative research and development electronic devices, the need for performance inevitably in the area of electronics cooling. DARPA is an agency leads to operation of most electronic systems at the limits of the U.S. Department of Defense responsible for the of the available thermal management technology. development of revolutionary technology for military and DARPA has asked the research team to come up with military-commercial dual applications. Other participants technology that would enhance the cooling of electronic of the research program include Professors Ivan Catton devices to improve the performance of their military (MAE, UCLA), Bruce Dunn (MSE, UCLA), and Massoud electronics. RF and microwave circuits that are used in Kaviany (ME, University of Michigan); and engineers radar and communications devices and systems are the from Advanced Cooling Technologies, Inc. based in primary applications of interest.
    [Show full text]
  • Memorial Tributes: Volume 12
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/12473 SHARE Memorial Tributes: Volume 12 DETAILS 376 pages | 6.25 x 9.25 | HARDBACK ISBN 978-0-309-12639-7 | DOI 10.17226/12473 CONTRIBUTORS GET THIS BOOK National Academy of Engineering FIND RELATED TITLES Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 12 Memorial Tributes NATIONAL ACADEMY OF ENGINEERING Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 12 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 12 NATIONAL ACADEMY OF ENGINEERING OF THE UNITED STATES OF AMERICA Memorial Tributes Volume 12 THE NATIONAL ACADEMIES PRESS Washington, D.C. 2008 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 12 International Standard Book Number-13: 978-0-309-12639-7 International Standard Book Number-10: 0-309-12639-8 Additional copies of this publication are available from: The National Academies Press 500 Fifth Street, N.W. Lockbox 285 Washington, D.C. 20055 800–624–6242 or 202–334–3313 (in the Washington metropolitan area) http://www.nap.edu Copyright 2008 by the National Academy of Sciences.
    [Show full text]
  • 2014 Honors & Awards
    2014 HONORS & AWARDS The American Society of Mechanical Engineers (ASME) Honors_Assembly_BrochureCover2.indd 1 9/29/14 10:42 AM ASME 14 Honors & Awards_Layout 1 10/28/2014 1:03 PM Page a ASME 2014 Honors & Awards ASME 14 Honors & Awards_Layout 1 10/28/2014 1:03 PM Page 1 Table of Contents ASME Medal....................................................................................................................4 Honorary Membership ..............................................................................................5–9 Barnett-Uzgiris Product Safety Design Award ..........................................................9 Bergles-Rohsenow Young Investigator Award in Heat Transfer............................11 Blackall Machine Tool and Gage Award....................................................................12 Per Bruel Gold Medal for Noise Control and Acoustics ........................................15 Edwin F. Church Medal ..............................................................................................16 Daniel C. Drucker Medal ............................................................................................17 William T. Ennor Manufacturing Technology Award..............................................18 Nancy DeLoye Fitzroy and Roland V. Fitzroy Medal..............................................19 Fluids Engineering Award ..........................................................................................21 Freeman Scholar Award ..............................................................................................22
    [Show full text]