Symbolic Logic: an Accessible Introduction to Serious Mathematical Logic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tt-Satisfiable
CMPSCI 601: Recall From Last Time Lecture 6 Boolean Syntax: ¡ ¢¤£¦¥¨§¨£ © §¨£ § Boolean variables: A boolean variable represents an atomic statement that may be either true or false. There may be infinitely many of these available. Boolean expressions: £ atomic: , (“top”), (“bottom”) § ! " # $ , , , , , for Boolean expressions Note that any particular expression is a finite string, and thus may use only finitely many variables. £ £ A literal is an atomic expression or its negation: , , , . As you may know, the choice of operators is somewhat arbitary as long as we have a complete set, one that suf- fices to simulate all boolean functions. On HW#1 we ¢ § § ! argued that is already a complete set. 1 CMPSCI 601: Boolean Logic: Semantics Lecture 6 A boolean expression has a meaning, a truth value of true or false, once we know the truth values of all the individual variables. ¢ £ # ¡ A truth assignment is a function ¢ true § false , where is the set of all variables. An as- signment is appropriate to an expression ¤ if it assigns a value to all variables used in ¤ . ¡ The double-turnstile symbol ¥ (read as “models”) de- notes the relationship between a truth assignment and an ¡ ¥ ¤ expression. The statement “ ” (read as “ models ¤ ¤ ”) simply says “ is true under ”. 2 ¡ ¤ ¥ ¤ If is appropriate to , we define when is true by induction on the structure of ¤ : is true and is false for any , £ A variable is true iff says that it is, ¡ ¡ ¡ ¡ " ! ¥ ¤ ¥ ¥ If ¤ , iff both and , ¡ ¡ ¡ ¡ " ¥ ¤ ¥ ¥ If ¤ , iff either or or both, ¡ ¡ ¡ ¡ " # ¥ ¤ ¥ ¥ If ¤ , unless and , ¡ ¡ ¡ ¡ $ ¥ ¤ ¥ ¥ If ¤ , iff and are both true or both false. 3 Definition 6.1 A boolean expression ¤ is satisfiable iff ¡ ¥ ¤ there exists . -
Semiring Frameworks and Algorithms for Shortest-Distance Problems
Journal of Automata, Languages and Combinatorics u (v) w, x–y c Otto-von-Guericke-Universit¨at Magdeburg Semiring Frameworks and Algorithms for Shortest-Distance Problems Mehryar Mohri AT&T Labs – Research 180 Park Avenue, Rm E135 Florham Park, NJ 07932 e-mail: [email protected] ABSTRACT We define general algebraic frameworks for shortest-distance problems based on the structure of semirings. We give a generic algorithm for finding single-source shortest distances in a weighted directed graph when the weights satisfy the conditions of our general semiring framework. The same algorithm can be used to solve efficiently clas- sical shortest paths problems or to find the k-shortest distances in a directed graph. It can be used to solve single-source shortest-distance problems in weighted directed acyclic graphs over any semiring. We examine several semirings and describe some specific instances of our generic algorithms to illustrate their use and compare them with existing methods and algorithms. The proof of the soundness of all algorithms is given in detail, including their pseudocode and a full analysis of their running time complexity. Keywords: semirings, finite automata, shortest-paths algorithms, rational power series Classical shortest-paths problems in a weighted directed graph arise in various contexts. The problems divide into two related categories: single-source shortest- paths problems and all-pairs shortest-paths problems. The single-source shortest-path problem in a directed graph consists of determining the shortest path from a fixed source vertex s to all other vertices. The all-pairs shortest-distance problem is that of finding the shortest paths between all pairs of vertices of a graph. -
Critical Thinking STARS Handout Finalx
Critical Thinking "It is the mark of an educated mind to be able to entertain a thought without accepting it." - Aristotle "The important thing is not to stop questioning." - Albert Einstein What is critical thinking? Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. In its exemplary form, it is based on universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness. A Critical Thinker: Asks pertinent questions Assess statements and arguments Is able to admit a lack of understanding or information Has a sense of curiosity Is interested in finding new solutions Examines beliefs, assumptions and opinions and weighs them against facts Listens carefully to others and can give effective feedback Suspends judgment until all facts have been gathered and considered Look for evidence to support assumptions or beliefs Is able to adjust beliefs when new information is found Examines problems closely Is able to reject information that is irrelevant or incorrect Critical Thinking Standards and Questions: The most significant thinking (intellectual) standards/questions: • Clarity o Could you elaborate further on that point? o Could you give me an example? o Could you express -
Arguments Vs. Explanations
Arguments vs. Explanations Arguments and explanations share a lot of common features. In fact, it can be hard to tell the difference between them if you look just at the structure. Sometimes, the exact same structure can function as an argument or as an explanation depending on the context. At the same time, arguments are very different in terms of what they try to accomplish. Explaining and arguing are very different activities even though they use the same types of structures. In a similar vein, building something and taking it apart are two very different activities, but we typically use the same tools for both. Arguments and explanations both have a single sentence as their primary focus. In an argument, we call that sentence the “conclusion”, it’s what’s being argued for. In an explanation, that sentence is called the “explanandum”, it’s what’s being explained. All of the other sentences in an argument or explanation are focused on the conclusion or explanandum. In an argument, these other sentences are called “premises” and they provide basic reasons for thinking that the conclusion is true. In an explanation, these other sentences are called the “explanans” and provide information about how or why the explanandum is true. So in both cases we have a bunch of sentences all focused on one single sentence. That’s why it’s easy to confuse arguments and explanations, they have a similar structure. Premises/Explanans Conclusion/Explanandum What is an argument? An argument is an attempt to provide support for a claim. One useful way of thinking about this is that an argument is, at least potentially, something that could be used to persuade someone about the truth of the argument’s conclusion. -
Critical Thinking for the Military Professional
Document created: 17 Jun 04 Critical Thinking For The Military Professional Col W. Michael Guillot “Any complex activity, if it is to be carried on with any degree of virtuosity, calls for appropriate gifts of intellect and temperament …Genius consists in a harmonious combination of elements, in which one or the other ability may predominate, but none may be in conflict with the rest.”1 In a previous article on Strategic leadership I described the strategic environment as volatile, uncertain, complex, and ambiguous (VUCA). Additionally, that writing introduced the concept of strategic competency.2 This article will discuss the most important essential skill for Strategic Leaders: critical thinking. It is hard to imagine a Strategic leader today who does not think critically or at least uses the concept in making decisions. Critical thinking helps the strategic leader master the challenges of the strategic environment. It helps one understand how to bring stability to a volatile world. Critical thinking leads to more certainty and confidence in an uncertain future. This skill helps simplify complex scenarios and brings clarity to the ambiguous lens. Critical thinking is the kind of mental attitude required for success in the strategic environment. In essence, critical thinking is about learning how to think and how to judge and improve the quality of thinking—yours and others. Lest you feel you are already a great critical thinker, consider this, in a recent study supported by the Kellogg Foundation, only four percent of the U.S. organizational -
Recent Work in Relevant Logic
Recent Work in Relevant Logic Mark Jago Forthcoming in Analysis. Draft of April 2013. 1 Introduction Relevant logics are a group of logics which attempt to block irrelevant conclusions being drawn from a set of premises. The following inferences are all valid in classical logic, where A and B are any sentences whatsoever: • from A, one may infer B → A, B → B and B ∨ ¬B; • from ¬A, one may infer A → B; and • from A ∧ ¬A, one may infer B. But if A and B are utterly irrelevant to one another, many feel reluctant to call these inferences acceptable. Similarly for the validity of the corresponding material implications, often called ‘paradoxes’ of material implication. Relevant logic can be seen as the attempt to avoid these ‘paradoxes’. Relevant logic has a long history. Key early works include Anderson and Belnap 1962; 1963; 1975, and many important results appear in Routley et al. 1982. Those looking for a short introduction to relevant logics might look at Mares 2012 or Priest 2008. For a more detailed but still accessible introduction, there’s Dunn and Restall 2002; Mares 2004b; Priest 2008 and Read 1988. The aim of this article is to survey some of the most important work in the eld in the past ten years, in a way that I hope will be of interest to a philosophical audience. Much of this recent work has been of a formal nature. I will try to outline these technical developments, and convey something of their importance, with the minimum of technical jargon. A good deal of this recent technical work concerns how quantiers should work in relevant logic. -
Notes on Pragmatism and Scientific Realism Author(S): Cleo H
Notes on Pragmatism and Scientific Realism Author(s): Cleo H. Cherryholmes Source: Educational Researcher, Vol. 21, No. 6, (Aug. - Sep., 1992), pp. 13-17 Published by: American Educational Research Association Stable URL: http://www.jstor.org/stable/1176502 Accessed: 02/05/2008 14:02 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=aera. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. http://www.jstor.org Notes on Pragmatismand Scientific Realism CLEOH. CHERRYHOLMES Ernest R. House's article "Realism in plicit declarationof pragmatism. Here is his 1905 statement ProfessorResearch" (1991) is informative for the overview it of it: of scientificrealism. -
Form and Explanation
Form and Explanation Jonathan Kramnick and Anahid Nersessian What does form explain? More often than not, when it comes to liter- ary criticism, form explains everything. Where form refers “to elements of a verbal composition,” including “rhythm, meter, structure, diction, imagery,” it distinguishes ordinary from figurative utterance and thereby defines the literary per se.1 Where form refers to the disposition of those elements such that the work of which they are a part mimes a “symbolic resolution to a concrete historical situation,” it distinguishes real from vir- tual phenomena and thereby defines the task of criticism as their ongoing adjudication.2 Both forensic and exculpatory in their promise, form’s ex- planations have been applied to circumstances widely disparate in scale, character, and significance. This is nothing new, but a recent flurry of de- bates identifying new varieties of form has thrown the unruliness of its application into relief. Taken together, they suggest that to give an account of form is to contribute to the work of making sense of linguistic meaning, aesthetic production, class struggle, objecthood, crises in the humanities and of the planet, how we read, why we read, and what’s wrong with these queries of how and why. In this context, form explains what we cannot: what’s the point of us at all? Contemporary partisans of form maintain that their high opinion of its exegetical power is at once something new in the field and the field’s 1. René Wellek, “Concepts of Form and Structure in Twentieth-Century Criticism,” Concepts of Criticism (New Haven, Conn., 1963), p. -
Computational Advantages of Relevance Reasoning in Bayesian Belief Networks
342 Computational Advantages of Relevance Reasoning in Bayesian Belief Networks Yan Lin Marek J. Druzdzel University of Pittsburgh University of Pittsburgh Intelligent Systems Program Department of Information Science Pittsburgh, PA 1.5260 and Intelligent Systems Program [email protected] Pittsburgh, PA 15260 marek@sis. pitt. edu Abstract reasoning, shown to be NP-hard both for exact infer ence [Cooper, 1990] and for approximate [Dagurn. and This paper introduces a computational Luby, 1993] inference. framework for reasoning in Bayesian belief The critical factor in exact inference schemes is the networks that derives significant advantages topology of the underlying graph and, more specifi from focused inference and relevance reason cally, its connectivity. The complexity of approximate ing. This framework is based on d-separation schemes may, in addition, depend on factors like the and other simple and computationally effi a-priori likelihood of the observed evidenee or asymme cient techniques for pruning irrelevant parts tries in probability distributions. There are a number of a network. Our main contribution is a of ingeniously efficient algorithms that allow for fast technique that we call relevance-based decom belief updating in moderately sized models.2 Still, position. Relevance-based decomposition ap eaeh of them is subject to the growth in complexity proaches belief updating in large networks that is generally exponential in the size of the model. by focusing on their parts and decompos Given the promise of the decision-theoretic approach ing them into partially overlapping subnet and an increasing number of its practical applications, works. This makes reasoning in some in it is important to develop schemes that will reduce the tractable networks possible and, in addition, computational complexity of inference. -
What Is a Philosophical Analysis?
JEFFREY C. KING WHAT IS A PHILOSOPHICAL ANALYSIS? (Received 24 January 1996) It is common for philosophers to offer philosophical accounts or analyses, as they are sometimes called, of knowledge, autonomy, representation, (moral) goodness, reference, and even modesty.1 These philosophical analyses raise deep questions. What is it that is being analyzed (i.e. what sorts of things are the objects of analysis)? What sort of thing is the analysis itself (a proposition? sentence?)? Under what conditions is an analysis correct? How can a correct analysis be informative? How, if at all, does the production of philo- sophical analyses differ from what scientists do? The purpose of the present paper is to provide answers to these questions. The traditional answers to the ®rst and last of these questions are that concepts are the objects of philosophical analysis and that philo- sophical analyses differ from the results of scienti®c investigation in being conceptual analyses. Like many philosophers I am suspicious of the notions of concept and conceptual analysis as traditionally understood. Though the critique of these notions is beyond the scope of the present work, the answers I shall give to the questions raised above shall not invoke concepts (understood as things distinct from properties).2 I count it as a virtue of my account that it is able to provide answers to the questions raised above without an appeal to concepts. And to the extent that it has been felt that concepts are needed to answer these questions, the present account weakens the case for positing concepts. Before addressing these questions, however, we shall make the simplifying assumption that analyses are given in a ªcanonical formº. -
Chapter 9: Initial Theorems About Axiom System
Initial Theorems about Axiom 9 System AS1 1. Theorems in Axiom Systems versus Theorems about Axiom Systems ..................................2 2. Proofs about Axiom Systems ................................................................................................3 3. Initial Examples of Proofs in the Metalanguage about AS1 ..................................................4 4. The Deduction Theorem.......................................................................................................7 5. Using Mathematical Induction to do Proofs about Derivations .............................................8 6. Setting up the Proof of the Deduction Theorem.....................................................................9 7. Informal Proof of the Deduction Theorem..........................................................................10 8. The Lemmas Supporting the Deduction Theorem................................................................11 9. Rules R1 and R2 are Required for any DT-MP-Logic........................................................12 10. The Converse of the Deduction Theorem and Modus Ponens .............................................14 11. Some General Theorems About ......................................................................................15 12. Further Theorems About AS1.............................................................................................16 13. Appendix: Summary of Theorems about AS1.....................................................................18 2 Hardegree, -
John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected]
John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected] LOGIC & PHILOSOPHICAL METHODOLOGY Introduction For present purposes “logic” will be understood to mean the subject whose development is described in Kneale & Kneale [1961] and of which a concise history is given in Scholz [1961]. As the terminological discussion at the beginning of the latter reference makes clear, this subject has at different times been known by different names, “analytics” and “organon” and “dialectic”, while inversely the name “logic” has at different times been applied much more broadly and loosely than it will be here. At certain times and in certain places — perhaps especially in Germany from the days of Kant through the days of Hegel — the label has come to be used so very broadly and loosely as to threaten to take in nearly the whole of metaphysics and epistemology. Logic in our sense has often been distinguished from “logic” in other, sometimes unmanageably broad and loose, senses by adding the adjectives “formal” or “deductive”. The scope of the art and science of logic, once one gets beyond elementary logic of the kind covered in introductory textbooks, is indicated by two other standard references, the Handbooks of mathematical and philosophical logic, Barwise [1977] and Gabbay & Guenthner [1983-89], though the latter includes also parts that are identified as applications of logic rather than logic proper. The term “philosophical logic” as currently used, for instance, in the Journal of Philosophical Logic, is a near-synonym for “nonclassical logic”. There is an older use of the term as a near-synonym for “philosophy of language”.