Sepiidae 723

Total Page:16

File Type:pdf, Size:1020Kb

Sepiidae 723 click for previous page Sepiidae 723 Sepiidae SEPIIDAE Cuttlefishes biserial suckers by A.L. Reid tentacular tetraserial club suckers stalk hectocotylus buccal membrane normal pocket for suckers at retractile distal end swollen dorsal tentacle of arm mantle protective funnel membrane fin proximal half of arm modified: modified region transverse folds suckers with reduced reduced, suckers widely spaced, and arm normal suckers swollen at proximal end of arm spine a) b) ventral view (after Sasaki, 1929) (after Nesis, 1982) Fig. 1 diagram of basic cuttlefish features Fig. 2 examples of male hectocotylized arms 5 suckers in (oblique) transverse row club suckers swimming uniform keel dorsal in size protective dorsal membrane club suckers protective differ in size, ventral membrane medial suckers protective swimming enlarged membrane keel dorsal and dorsal and membrane ventral ventral separating protective protective sucker-bearing membranes membranes face of club joined not joined from stalk a) Sepia apama b) Sepia esculenta c) Sepia latimanus (after Lu, in press) (after Okutani et al., 1987) (after Roper et al., 1984) Fig. 3 tentacular clubs 724 Cephalopods anterior last loculus (anterior smooth zone of cuttlebone) anterior striae anterior inverted striae U-shape inverted V-shape median sulcus (furrow) outer cone keel inner cone inner cone spine with keel forming a spine (ridge) thickened ledge posterior (or rostrum) posteriorly ventral view a) lateral view b) Fig. 4 cuttlebone I II IV I II IV III III buccal membrane funnel locking funnel valve cartilage mantle locking mantle cartilage funnel locking funnel organ cartilage anus renal gill papilla anus gill accessory nidamental genital genital gland opening opening nidamental gland renal sac fin ink sac ink sac ovary (containing a) male b) female eggs) Fig. 5 mantle cavity (Sepia officinalis) Sepiidae 725 iagnostic characters: Small to medium-sized cephalopods. Mantle robust, slightly flattened dor- Dsoventrally, may be broad or slender; oval, oblong or nearly circular in outline; anterior dorsal mantle margin projected forward, not fused with head. Fins narrow, located dorsolaterally on mantle, approximately equal to mantle length; posterior fin lobes free, not connected to each other (Fig. 1). Head robust, slightly narrower than mantle; eyes prominent, covered by a transparent membrane and a conspicuous secondary fold on the eyelid. Mouth surrounded by 10 appendages (8 arms, 2 tentacles). Arms with 2 to 4 suckers in transverse rows (Fig. 1). Males of some species with hectocotylized ventral arm(s) IV for holding sper- matophores; when present, usually consists of a modified region of reduced suckers (Fig. 2); hectocotylized region may also be swollen and crenulated by transverse folds (Fig. 2b). Tentacular clubs (Fig. 3) with 4 or more suckers in transverse rows; tentacles retractile into pockets on the ventrolateral sides of the head (Fig. 1). Arm and club suckers with chitinous rings. Mantle locking apparatus angular (Fig. 10a) or curved (Fig. 10b) in shape. Internal calcareous cuttlebone (Fig. 4) located dorsally underneath the skin, cuttlebone length usually equal to mantle length; cuttlebone shape ranges from lanceolate, oval, to diamond-shaped; dorsal side a calcareous plate (dorsal shield); ventrally, finely laminate, porous and comprised of thin, transverse septa supported by transverse calcareous rods. One pair of gills (Fig. 5); no branchial canal between afferent and efferent branchial blood vessels. Liver divided or bilobed. Buccal membrane present (Figs 1 and 5), with or without suckers; each radula tooth unicuspid (with a single projection). Olfactory organ a ciliated pit. Habitat, biology, and fisheries: On the continental shelf and upper slope to a maximum depth of approximately 600 m. Primarily bottom dwellers over a range of habitats, including rocky, sandy and muddy bottoms to seagrass, seaweed and coral reefs. Slower swimmers than the more streamlined squids. Able to attain neutral buoyancy by regulating the relative amounts of gas and fluid in the chambers of the cuttlebone; able to hover in midwater, with fins acting as stabilisers. Some species migrate seasonally in response to temperature changes and aggregate, usually in shallow water, at the time of spawning. Within a species, individuals may attain sexual maturity at very different sizes, depending upon the combined effects of temperature and light. Eggs, relatively few in number, are individually attached to various substrates in clusters; length of development varies with temperature. Life span (studied for Sepia officinalis) between 18 months and 2 years, though males may live longer; post-spawning mortality is high in females. Prey on a wide range of invertebrates and fish. Many species of cuttlefish are important to fisheries in the area. Fishing activity ranges from local, or subsistence fisheries, to major export industries. Sepiids are also an important component of finfish and prawn trawl bycatch in the area. They are used primarily for human consumption, but also as bait and are marketed fresh, frozen or dried. In 1995, FAO’s Yearbook of Fishery Statistics reports 96 198 t of cuttlefish (and bobtail squids) from the Western Central Pacific (about 44% of the total world catch of cuttlefish for that year). This figure comprises 42 700 t caught off Thailand, 37 000 t from Viet Nam, 2 836 t from the Philippines, and 3 t from Australia. Similar families occurring in the area Some species are superficially similar in appearance to the loliginid squid genus Sepioteuthis, but can be readily distinguished due to the presence of a calcareous cuttlebone in the sepiids. Loliginidae Sepiidae (Sepioteuthis) Identification note The taxonomy and biology of the cuttlefish from the area is generally poorly known and in need of review. While some, particularly commercial species, can be easily recognized, others which may occur in catches are not well defined. This presents difficulties in attempting to construct a key to all species occurring in the area, as particular character states for many species have been incompletely documented. For this reason, the key below should only be used in combination with the species accounts to follow to confirm identification. Many distinguishing features are seen only in males, so animals of this sex are generally required for identification. Where possible, however, features of the cuttlebone and tentacular clubs have been included in the key to enable females to be identified. Males can often be recognized by the presence of a hectocotylus. One (usually the left), or both ventral arms (IV) may be modified. Not all species have a hectocotylus. In addition, in juvenile males this secondary sexual character may not be fully developed, so 726 Cephalopods it may be necessary to check internal anatomical features to determine sex. To examine the contents of the mantle cavity, a median longitudinal incision needs to be made through the mantle on the ventral side of the animal. The internal features of males and females are shown in Figure 5. Mature females can readily be distinguished from males by the presence of a pair of leaf-shaped creamy yellow nidamental glands (Fig. 5b). Eggs may also be seen in the ovary, below and posterior to the nidamental glands. In immature females, the nidamental glands may be greatly reduced in size or visible only as two short slits. The shape of the male and female genital openings on the left side of the mantle cavity also differs slightly between the sexes (Fig. 5a, b). Any body patterning, such as transverse wavy lines or bands on the dorsal side of the mantle, is usually more pronounced in males and may be faint or absent in females. The number and size of the tentacular club suckers are important traits. If the tentacles are retracted, they can readily be extracted in fresh animals by gently probing inside the pouches between arms III and IV on either side of the buccal mass (Fig. 1). Extraction of the club may be more difficult in preserved specimens and dissection may be necessary.The number of club suckers given for each species, and used in the keys, refers to the number of suckers in transverse rows. This is determined by counting the number of suckers that are intersected in an oblique line midway along the tentacular club as shown in Fig. 3a. Other important features of the tentacular club include: 1. The relative sizes of the suckers: they may vary in size (Fig. 3a, c), or be of similar size (Fig. 3b); 2. The protective membranes may be joined at the posterior end of the sucker-bearing face of the club (Fig. 3a, c), or not joined (Fig. 3b); 3. The swimming keel may extend beyond the sucker-bearing face of the club (Fig. 3c), or may be equivalent in length to the sucker-bearing face; 4. The sucker-bearing face may be joined to the tentacle stalk (Fig. 3b), or may be separated from it by a membrane (Fig. 3c). Suckers are described as normal or normal-sized if they do not differ obviously in size from other suckers. As for club suckers, arm sucker “rows” refer to suckers positioned in transverse rows, that is, positioned in oblique lines approximately perpendicular to the longitudinal axis of the arm. “Series” refers to suckers positioned approximately parallel to the longitudinal axis of the arm. Biserial suckers are those arranged in 2 series, tetraserial are those arranged in 4 series. The cuttlebone (Fig. 4) can easily be removed from a fresh animal by making a median longitudinal incision along the length of the mantle, and two shorter incisions at the anterior end of the mantle as shown in Fig. 6. The skin can then be peeled open to reveal the cuttlebone below. Aside from its shape, important features of the cuttlebone include: 1. The width of the outer cone: it may broaden posteriorly (Fig. 4a, b), or be of approximately uniform width along the length of the cuttlebone (Fig.
Recommended publications
  • 7. Index of Scientific and Vernacular Names
    Cephalopods of the World 249 7. INDEX OF SCIENTIFIC AND VERNACULAR NAMES Explanation of the System Italics : Valid scientific names (double entry by genera and species) Italics : Synonyms, misidentifications and subspecies (double entry by genera and species) ROMAN : Family names ROMAN : Scientific names of divisions, classes, subclasses, orders, suborders and subfamilies Roman : FAO names Roman : Local names 250 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1 A B Acanthosepion pageorum .....................118 Babbunedda ................................184 Acanthosepion whitleyana ....................128 bandensis, Sepia ..........................72, 138 aculeata, Sepia ............................63–64 bartletti, Blandosepia ........................138 acuminata, Sepia..........................97,137 bartletti, Sepia ............................72,138 adami, Sepia ................................137 bartramii, Ommastrephes .......................18 adhaesa, Solitosepia plangon ..................109 bathyalis, Sepia ..............................138 affinis, Sepia ...............................130 Bathypolypus sponsalis........................191 affinis, Sepiola.......................158–159, 177 Bathyteuthis .................................. 3 African cuttlefish..............................73 baxteri, Blandosepia .........................138 Ajia-kouika .................................. 115 baxteri, Sepia.............................72,138 albatrossae, Euprymna ........................181 belauensis, Nautilus .....................51,53–54
    [Show full text]
  • The Diet of Sepia Officinalis (Linnaeus, 1758) and Sepia Elegans (D'orhigny, 1835) (Cephalopoda, Sepioidea) from the Ria De Vigo (NW Spain)*
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283605363 The diet of Sepia officinalis (Linnaeus, 1758) and Sepia elegans (D'Orbigny, 1835) (Cephalopoda, Sepioidea) from the Ria de Vigo (NW Spain) Article in Scientia Marina · January 1990 CITATIONS READS 92 453 2 authors, including: Angel Guerra Spanish National Research Council 391 PUBLICATIONS 7,005 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: CEFAPARQUES View project CAIBEX View project All content following this page was uploaded by Angel Guerra on 18 January 2016. The user has requested enhancement of the downloaded file. sn MAR .. 54(-ll 115.31;.<i 1990 The diet of Sepia officinalis (Linnaeus, 1758) and Sepia elegans (D'Orhigny, 1835) (Cephalopoda, Sepioidea) from the Ria de Vigo (NW Spain)* BERNA RDJNO G. CASTR O & ANGEL G U ERRA lnMituto de lnvc~ 1igacionc~ Marinas (CSIC) . Eduardo Cabello. 6. 36208 Vigo. Spnin. SUMMA RY: The :.tomaeh content\ of 1345 Sep/(/ nffirinalis and 717 Sepia elegm1t caught in the Rfa de Vigo have bcen examined. The reeding analysi~ of both pccics ha~ been made employing an index of occurrence, a~ other indices gave similar results. The diet of both specie:. i\ described and compared. C'u1tlefish feed mostly on cru,tacca and fo,h. S. nfjici11ali.1 show, -10 different item~ of prey bclonging t<> 4 group~ (polyehacta , ccphalopods, cru,wcca. bony ri,h) and S. elegm1s 18 different item, of prey belonging to 3 groups (polychaeta. crustacea. bony ri,11) . A significant ch:111gc occurs in diet wi th growth in S.
    [Show full text]
  • Octopus Consciousness: the Role of Perceptual Richness
    Review Octopus Consciousness: The Role of Perceptual Richness Jennifer Mather Department of Psychology, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; [email protected] Abstract: It is always difficult to even advance possible dimensions of consciousness, but Birch et al., 2020 have suggested four possible dimensions and this review discusses the first, perceptual richness, with relation to octopuses. They advance acuity, bandwidth, and categorization power as possible components. It is first necessary to realize that sensory richness does not automatically lead to perceptual richness and this capacity may not be accessed by consciousness. Octopuses do not discriminate light wavelength frequency (color) but rather its plane of polarization, a dimension that we do not understand. Their eyes are laterally placed on the head, leading to monocular vision and head movements that give a sequential rather than simultaneous view of items, possibly consciously planned. Details of control of the rich sensorimotor system of the arms, with 3/5 of the neurons of the nervous system, may normally not be accessed to the brain and thus to consciousness. The chromatophore-based skin appearance system is likely open loop, and not available to the octopus’ vision. Conversely, in a laboratory situation that is not ecologically valid for the octopus, learning about shapes and extents of visual figures was extensive and flexible, likely consciously planned. Similarly, octopuses’ local place in and navigation around space can be guided by light polarization plane and visual landmark location and is learned and monitored. The complex array of chemical cues delivered by water and on surfaces does not fit neatly into the components above and has barely been tested but might easily be described as perceptually rich.
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • Is Sepiella Inermis ‘Spineless’?
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 12, Issue 5 Ver. IV (Sep. – Oct. 2017), PP 51-60 www.iosrjournals.org Is Sepiella inermis ‘Spineless’? 1 Visweswaran B * 1Department of Zoology, K.M. Centre for PG Studies (Autonomous), Lawspet Campus, Pondicherry University, Puducherry-605 008, India. *Corresponding Author: Visweswaran B Abstract: Many a report seemed to project at a noble notion of having identified some novel and bioactive compounds claimed to have been found from Sepiella inermis; but lagged to log their novelty scarcely defined due to certain technical blunders they seem to have coldly committed in such valuable pieces of aboriginal research works, reported to have sophistically been accomplished but unnoticed with considerable lack of significant finesse. They have dealt with finer biochemicals already been reported to have been available from S.inermis; yet, to one’s dismay, have failed to maintain certain conventional means meant for original research. This quality review discusses about the illogical math rooting toward and logical aftermath branching from especially certain spectral reports. Keywords: Sepiella inermis, ink, melanin, DOPA ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 16-09-2017 Date of acceptance: 28-09-2017 ----------------------------------------------------------------------------------------------------------------------------- ---------- I. Introduction Sepiella inermis is a demersally 1 bentho-nektonic 2, Molluscan, cephalopod ‗spineless‘ cuttlefish species, with invaluable juveniles 3, from the megametrical Indian coast 4-6, as incidental catches in shore seine 7 & 8, as egg clusters 9 from shallow waters 1 after monsoon at Vizhinjam coast 10 and Goa coast 11 of India and sundried, abundantly but rarely 8. II.
    [Show full text]
  • Characterization of Arm Autotomy in the Octopus, Abdopus Aculeatus (D’Orbigny, 1834)
    Characterization of Arm Autotomy in the Octopus, Abdopus aculeatus (d’Orbigny, 1834) By Jean Sagman Alupay A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Roy L. Caldwell, Chair Professor David Lindberg Professor Damian Elias Fall 2013 ABSTRACT Characterization of Arm Autotomy in the Octopus, Abdopus aculeatus (d’Orbigny, 1834) By Jean Sagman Alupay Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair Autotomy is the shedding of a body part as a means of secondary defense against a predator that has already made contact with the organism. This defense mechanism has been widely studied in a few model taxa, specifically lizards, a few groups of arthropods, and some echinoderms. All of these model organisms have a hard endo- or exo-skeleton surrounding the autotomized body part. There are several animals that are capable of autotomizing a limb but do not exhibit the same biological trends that these model organisms have in common. As a result, the mechanisms that underlie autotomy in the hard-bodied animals may not apply for soft bodied organisms. A behavioral ecology approach was used to study arm autotomy in the octopus, Abdopus aculeatus. Investigations concentrated on understanding the mechanistic underpinnings and adaptive value of autotomy in this soft-bodied animal. A. aculeatus was observed in the field on Mactan Island, Philippines in the dry and wet seasons, and compared with populations previously studied in Indonesia.
    [Show full text]
  • Reproductive Behavior of the Japanese Spineless Cuttlefish Sepiella Japonica
    VENUS 65 (3): 221-228, 2006 Reproductive Behavior of the Japanese Spineless Cuttlefish Sepiella japonica Toshifumi Wada1*, Takeshi Takegaki1, Tohru Mori2 and Yutaka Natsukari1 1Graduate School of Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan 2Marine World Uminonakamichi, 18-28 Saitozaki, Higashi-ku, Fukuoka 811-0321, Japan Abstract: The reproductive behavior of the Japanese spineless cuttlefish Sepiella japonica was observed in a tank. The males competed for females before egg-laying and then formed pairs with females. The male then initiated mating by pouncing on the female head, and maintained the male superior head-to-head position during the mating. Before ejaculation, the male moved his right (non-hectocotylized) arm IV under the ventral portion of the female buccal membrane, resulting in the dropping of parts of spermatangia placed there during previous matings. After the sperm removal behavior, the male held spermatophores ejected through his funnel with the base of hectocotylized left arm IV and transferred them to the female buccal area. The spermatophore transfer occurred only once during each mating. The female laid an egg capsule at average intervals of 1.5 min and produced from 36 to more than 408 egg capsules in succession during a single egg-laying bout. Our results also suggested one female produced nearly 200 fertilized eggs without additional mating, implying that the female have potential capacity to store and use active sperm properly. The male continued to guard the spawning female after mating (range=41.8-430.1 min), and repeated matings occurred at an average interval of 70.8 min during the mate guarding.
    [Show full text]
  • The Biology and Ecology of the Common Cuttlefish (Sepia Officinalis)
    Supporting Sustainable Sepia Stocks Report 1: The biology and ecology of the common cuttlefish (Sepia officinalis) Daniel Davies Kathryn Nelson Sussex IFCA 2018 Contents Summary ................................................................................................................................................. 2 Acknowledgements ................................................................................................................................. 2 Introduction ............................................................................................................................................ 3 Biology ..................................................................................................................................................... 3 Physical description ............................................................................................................................ 3 Locomotion and respiration ................................................................................................................ 4 Vision ................................................................................................................................................... 4 Chromatophores ................................................................................................................................. 5 Colour patterns ................................................................................................................................... 5 Ink sac and funnel organ
    [Show full text]
  • Spatial Learning in the Cuttlefish Sepia Officinalis
    © 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 2928-2933 doi:10.1242/jeb.129080 RESEARCH ARTICLE Spatial learning in the cuttlefish Sepia officinalis: preference for vertical over horizontal information Gabriella Scata1,̀*, Christelle Jozet-Alves2,Céline Thomasse2, Noam Josef1,3 and Nadav Shashar1 ABSTRACT fish. In a previous study, fish were trained to reach a goal at the end of The world is three-dimensional; hence, even surface-bound animals one of the arms of a three-dimensional Y-maze (Holbrook and Burt need to learn vertical spatial information. Separate encoding of de Perera, 2009). The maze arms were placed at a 45 deg angle to the vertical and horizontal spatial information seems to be the common vertical so that the goal to be learned had both a vertical and a strategy regardless of the locomotory style of animals. However, a horizontal coordinate. When the maze was rotated along its axis to difference seems to exist in the way freely moving species, such as position its arms either vertically or horizontally for the test trials, the fish, learn and integrate spatial information as opposed to surface- fish selected the arm associated with the correct vertical or horizontal bound species, which prioritize the horizontal dimension and encode component of the previously learned location (Davis et al., 2014; it with a higher resolution. Thus, the locomotory style of an animal may Holbrook and Burt de Perera, 2009, 2011). Rats trained to reach a goal shape how spatial information is learned and prioritized. An in a cubic lattice maze learned the vertical coordinate first (Grobéty alternative hypothesis relates the preference for vertical information and Schenk, 1992), and when both components were acquired, they to the ability to sense hydrostatic pressure, a prominent cue unique to went first to the horizontal coordinate and then climbed up to the this dimension.
    [Show full text]
  • Tropical Cuttlefish a Model Organism to Study Travelling Waves in Biological Systems 4 August 2014
    Tropical cuttlefish a model organism to study travelling waves in biological systems 4 August 2014 several millions of them. The size of each chromatophore can be rapidly and individually altered by neural activation of radial muscles. If those muscles relax, their chromatophore shrinks. If they contract, the chromatophore grows larger. One form of cephalopod pigmentation pattern is the passing cloud – a dark band that travels across the body of the animal. It can be superimposed on various static body patterns and textures. The passing cloud results from the coordinated activation of chromatophore arrays to generate one, or as in the present case, several simultaneous traveling waves of pigmentation. The tropical cuttlefish Metasepia tullbergi proves to be a suitable model organism to investigate the possible neural mechanisms underlying these The cuttlefish Metasepia tullbergi is not only extremely passing clouds. Using high-speed video cameras colourful, it can also generate colour waves traveling with 50 or 100 frames per second, the scientists across its body. Credit: Stephan Junek from the Max Planck Institute for Brain Research observed that the mantle of Metasepia contains four regions of wave travel on each half of the Some cephalopods are masters of display: Not body. Each region supports a different propagation only can they adapt their skin colour to their direction with the waves remaining within the immediate environment, thereby merging with the boundaries of a given region. The animal then uses background, they can also produce propagating different combinations of such regions of wave colour waves along their body. These so-called travel to produce different displays.
    [Show full text]
  • Cuttlefish, <I>Sepia</I>
    Marine Science 2015, 5(1): 6-10 DOI: 10.5923/j.ms.20150501.02 Size at First Maturity of Cuttlefish, Sepia latimanus, from North Sulawesi Waters, Indonesia Silvester B. Pratasik1,2,*, Marsoedi3, D. Arfiati3, D. Setyohadi3 1Postgraduate student of Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java 2Faculty of Fisheries and Marine Science, Sam Ratulangi Manado, North Sulawesi 3Faculty of Fisheries and Marine Science, Brawijaya University Malang, East Java Abstract Biological overfishing could occur from either excessive and immature individual exploitation or habitat destruction. This study was aimed to estimate size at first maturity of cuttlefish, Sepia latimanus, collected from North Sulawesi waters. All samples were measured and observed their maturity level. Based on these data, the dorsal mantle length (DML) at first maturity was assessed for minimum legal size determination. Results showed that the cuttlefish samples had maturity level range from immature to post-spawning conditions, while the size at first maturity was estimated as 16 cm DML. Maximum DML was estimated as 55.53 cm and growth coefficient as 0.248. The deviation of mean DML from maximum dorsal length was also considered to see the population condition. Keywords Cuttlefish, Sepia latimanus, Size at first maturity than that maximizing the economic rent (economic 1. Introduction overfishing) [8]. Size at first maturity (lm) or 50% of mature individuals has been taken as reference point of minimum Cuttlefish are one of the high economic value exported legal size to prevent stock depletion. It has been used by fisheries resources, and therefore, they are highly exploited many fisheries managers as management measure of fish in the world.
    [Show full text]
  • Sepia Bandensis Adam, 1939 Fig
    72 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1 Sepia bandensis Adam, 1939 Fig. 122; Plate IV, 21–22 Sepia bandensis Adam, 1939b. Bulletin du Musée royal d’Histoire naturelle de Belgique, 15(18): 1 [type locality: Indonesia: Banda Sea, Banda Neira]. Frequent Synonyms: Sepia baxteri (Iredale, 1940) and Sepia bartletti (Iredale, 1954) are possible synonyms. Misidentifications: None. FAO Names: En – Stumpy cuttlefish; Fr – Seiche trapue; Sp – Sepia achaparrada. Diagnostic Features: Club with 5 suckers in transverse rows, central 3 suckers enlarged. Swimming keel extends beyond base of club. Dorsal and ventral protective membranes joined at base of club, separated from stalk by a membrane. Cuttlebone outline broad, oval; bone bluntly rounded anteriorly and posteriorly; dorsal surface evenly convex; calcified with reticulate sculpture; dorsal median and lateral ribs absent. Spine reduced to tiny, blunt tubercle. Sulcus shallow, narrow, extends along striated zone only. Anterior striae are inverted U-shape. Inner cone limbs are narrow anteriorly, broaden posteriorly, slightly convex; outer cone narrow anteriorly, broadens posteriorly. Dorsal mantle has longitudinal row of ridge-like papillae along each side, adjacent to base of each fin and scattered short ridges dorsal to cuttlebone dorsal view ventral view (corresponding to whitish bars). Head tentacular club cuttlebone and arms with short, scattered, bar-like (illustrations: K. Hollis) papillae positioned dorsally and laterally. Colour: Light brown, or Fig. 122 Sepia bandensis greenish yellow-brown when fresh, and with whitish mottle. Head with scattered white spots. Dorsal mantle has white blotches concentrated into short, longitudinal bars. It often shows a pair of brown patches on the posterior end of the mantle, often accompanied by white patches over the eye orbits.
    [Show full text]