The Regulatory Effects of Interleukin-4 Receptor Signaling on Neutrophils in Type 2 Immune Responses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use of Mepolizumab in Adult Patients with Cystic Fibrosis and An
Zhang et al. Allergy Asthma Clin Immunol (2020) 16:3 Allergy, Asthma & Clinical Immunology https://doi.org/10.1186/s13223-019-0397-3 CASE REPORT Open Access Use of mepolizumab in adult patients with cystic fbrosis and an eosinophilic phenotype: case series Lijia Zhang1, Larry Borish2,3, Anna Smith2, Lindsay Somerville2 and Dana Albon2* Abstract Background: Cystic fbrosis (CF) is characterized by infammation, progressive lung disease, and respiratory failure. Although the relationship is not well understood, patients with CF are thought to have a higher prevalence of asthma than the general population. CF Foundation (CFF) annual registry data in 2017 reported a prevalence of asthma in CF of 32%. It is difcult to diferentiate asthma from CF given similarities in symptoms and reversible obstructive lung function in both diseases. However, a specifc asthma phenotype (type 2 infammatory signature), is often identifed in CF patients and this would suggest potential responsiveness to biologics targeting this asthma phenotype. A type 2 infammatory condition is defned by the presence of an interleukin (IL)-4high, IL-5high, IL-13high state and is suggested by the presence of an elevated total IgE, specifc IgE sensitization, or an elevated absolute eosinophil count (AEC). In this manuscript we report the efects of using mepolizumab in patients with CF and type 2 infammation. Results: We present three patients with CF (63, 34 and 24 year of age) and personal history of asthma, who displayed signifcant eosinophilic infammation and high total serum IgE concentrations (type 2 infammation) who were treated with mepolizumab. All three patients were colonized with multiple organisms including Pseudomonas aeruginosa and Aspergillus fumigatus and tested positive for specifc IgE to multiple allergens. -
Type 2 Immunity in Tissue Repair and Fibrosis
REVIEWS Type 2 immunity in tissue repair and fibrosis Richard L. Gieseck III1, Mark S. Wilson2 and Thomas A. Wynn1 Abstract | Type 2 immunity is characterized by the production of IL‑4, IL‑5, IL‑9 and IL‑13, and this immune response is commonly observed in tissues during allergic inflammation or infection with helminth parasites. However, many of the key cell types associated with type 2 immune responses — including T helper 2 cells, eosinophils, mast cells, basophils, type 2 innate lymphoid cells and IL‑4- and IL‑13‑activated macrophages — also regulate tissue repair following injury. Indeed, these cell populations engage in crucial protective activity by reducing tissue inflammation and activating important tissue-regenerative mechanisms. Nevertheless, when type 2 cytokine-mediated repair processes become chronic, over-exuberant or dysregulated, they can also contribute to the development of pathological fibrosis in many different organ systems. In this Review, we discuss the mechanisms by which type 2 immunity contributes to tissue regeneration and fibrosis following injury. Type 2 immunity is characterized by increased pro‑ disorders remain unclear, although persistent activation duction of the cytokines IL‑4, IL‑5, IL‑9 and IL‑13 of tissue repair pathways is a major contributing mech‑ (REF. 1) . The T helper 1 (TH1) and TH2 paradigm was anism in most cases. In this Review, we provide a brief first described approximately three decades ago2, and overview of fibrotic diseases that have been linked to for many of the intervening years, type 2 immunity activation of type 2 immunity, discuss the various mech‑ was largely considered as a simple counter-regulatory anisms that contribute to the initiation and maintenance mechanism controlling type 1 immunity3 (BOX 1). -
Levels of Interleukin-2, Interferon- , and Interleukin-4 In
Levels of Interleukin-2, Interferon-␥, and Interleukin-4 in Bronchoalveolar Lavage Fluid From Patients With Mycoplasma Pneumonia: Implication of Tendency Toward Increased Immunoglobulin E Production Young Yull Koh, MD*; Yang Park, MD*; Hoan Jong Lee, MD*; and Chang Keun Kim, MD‡ ABSTRACT. Objective. In connection with the possi- ABBREVIATIONS. IgE, immunoglobulin E; TH1, T helper type 1; ble relationship between Mycoplasma infection and the TH2, T helper type 2; IFN, interferon; IL, interleukin; BAL, bron- onset of asthma, several studies have shown not only a choalveolar lavage; FB, fiber-optic bronchoscopy; SD, standard high level of serum total immunoglobulin E (IgE) but deviation. also the production of IgE specific to Mycoplasma or common allergens during the course of Mycoplasma in- fection. It has been suggested that the balance of T helper esults of several studies over the past decade type 1 (TH1)/T helper type 2 (TH2) immune response have provided evidence linking Mycoplasma may regulate the synthesis of IgE. The objective of this Rinfection with asthma exacerbation and have study was to investigate the pattern of cytokine response raised the possibility that Mycoplasma infection is a (TH1 or TH2) during an episode of acute lower respira- factor in the pathogenesis of asthma. An acute exac- tory tract infection caused by Mycoplasma pneumoniae. erbation of wheezing in asthmatic participants in Study Design. Using a bronchoalveolar lavage (BAL) association with Mycoplasma infection has been well- with flexible bronchoscopy procedure, this study deter- 1,2 mined the levels of interleukin (IL)-2, interferon (IFN)-␥ documented. In addition, Mycoplasma pneumoniae (TH1), and IL-4 (TH2) in the supernatant of BAL fluid as has been found in the lower airways of chronic, well as the BAL cellular profiles of patients with Myco- stable asthmatics with a greater frequency than in -These results were com- control participants,3 suggesting a pathogenic mech .(14 ؍ plasma pneumonia (n pared with those of patients with pneumococcal pneu- anism in chronic asthma. -
Atopic Dermatitis: an Expanding Therapeutic Pipeline for a Complex Disease
REVIEWS Atopic dermatitis: an expanding therapeutic pipeline for a complex disease Thomas Bieber 1,2,3 Abstract | Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a complex pathophysiology that underlies a wide spectrum of clinical phenotypes. AD remains challenging to treat owing to the limited response to available therapies. However, recent advances in understanding of disease mechanisms have led to the discovery of novel potential therapeutic targets and drug candidates. In addition to regulatory approval for the IL-4Ra inhibitor dupilumab, the anti- IL-13 inhibitor tralokinumab and the JAK1/2 inhibitor baricitinib in Europe, there are now more than 70 new compounds in development. This Review assesses the various strategies and novel agents currently being investigated for AD and highlights the potential for a precision medicine approach to enable prevention and more effective long-term control of this complex disease. Atopic disorders Atopic dermatitis (AD) is the most common chronic inhibitors tacrolimus and pimecrolimus and more 1,2 A group of disorders having in inflammatory skin disease . About 80% of disease cases recently the phosphodiesterase 4 (PDE4) inhibitor cris- common a genetic tendency to typically start in infancy or childhood, with the remain- aborole. For the more severe forms of AD, besides the develop IgE- mediated allergic der developing during adulthood. Whereas the point use of ultraviolet light, current therapeutic guidelines reactions. These are atopic dermatitis, food allergy, allergic prevalence in children varies from 2.7% to 20.1% across suggest ciclosporin A, methotrexate, azathioprine and 3,4 rhino- conjunctivitis and countries, it ranges from 2.1% to 4.9% in adults . -
Modulation of the Inflammatory Response After Spinal Cord Injury
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en MODULATION OF THE INFLAMMATORY RESPONSE AFTER SPINAL CORD INJURY Presented by Jesús Amo Aparicio ACADEMIC DISSERTATION To obtain the degree of PhD in Neuroscience by the Universitat Autònoma de Barcelona 2019 Directed by Dr. Rubèn López Vales Tutorized by Dr. Xavier Navarro Acebes INDEX SUMMARY Page 7 INTRODUCTION Page 13 - Spinal cord Page 15 - Spinal cord injury Page 17 - Incidence and causes Page 18 - Types of SCI Page 18 - Biological events after SCI Page 20 - Studying SCI Page 24 - Animal models Page 24 - Lesion models Page 24 - Current therapies for SCI Page 25 - Basic principles of the immune system Page 27 - Innate immune response Page 27 - Adaptive immune response Page 28 - Inflammatory response Page 29 - Inflammatory response after SCI Page 30 - Modulation of injury environment Page 36 - Interleukin 1 Page 36 - Interleukin 37 Page 40 - Interleukin 13 Page 44 OBJECTIVES Page 47 MATERIALS AND METHODS Page 51 -
IL-1Β Induces the Rapid Secretion of the Antimicrobial Protein IL-26 From
Published June 24, 2019, doi:10.4049/jimmunol.1900318 The Journal of Immunology IL-1b Induces the Rapid Secretion of the Antimicrobial Protein IL-26 from Th17 Cells David I. Weiss,*,† Feiyang Ma,†,‡ Alexander A. Merleev,x Emanual Maverakis,x Michel Gilliet,{ Samuel J. Balin,* Bryan D. Bryson,‖ Maria Teresa Ochoa,# Matteo Pellegrini,*,‡ Barry R. Bloom,** and Robert L. Modlin*,†† Th17 cells play a critical role in the adaptive immune response against extracellular bacteria, and the possible mechanisms by which they can protect against infection are of particular interest. In this study, we describe, to our knowledge, a novel IL-1b dependent pathway for secretion of the antimicrobial peptide IL-26 from human Th17 cells that is independent of and more rapid than classical TCR activation. We find that IL-26 is secreted 3 hours after treating PBMCs with Mycobacterium leprae as compared with 48 hours for IFN-g and IL-17A. IL-1b was required for microbial ligand induction of IL-26 and was sufficient to stimulate IL-26 release from Th17 cells. Only IL-1RI+ Th17 cells responded to IL-1b, inducing an NF-kB–regulated transcriptome. Finally, supernatants from IL-1b–treated memory T cells killed Escherichia coli in an IL-26–dependent manner. These results identify a mechanism by which human IL-1RI+ “antimicrobial Th17 cells” can be rapidly activated by IL-1b as part of the innate immune response to produce IL-26 to kill extracellular bacteria. The Journal of Immunology, 2019, 203: 000–000. cells are crucial for effective host defense against a wide and neutrophils. -
The Cross-Talk Between Neurons and Microglia Through Interleukin-4 After Ischemic Injury
The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2018 The Cross-Talk Between Neurons and Microglia Through Interleukin-4 After Ischemic Injury Shun-Ming Ting Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Medicine and Health Sciences Commons Recommended Citation Ting, Shun-Ming, "The Cross-Talk Between Neurons and Microglia Through Interleukin-4 After Ischemic Injury" (2018). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 892. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/892 This Thesis (MS) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE CROSS-TALK BETWEEN NEURONS AND MICROGLIA THROUGH INTERLEUKIN-4 AFTER ISCHEMIC INJURY by Shun-Ming Ting, M.S. APPROVED: ______________________________ Jaroslaw Aronowski, Ph.D. Advisory -
Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W
UPDATE ON GENE COMPLETIONS AND ANNOTATIONS Evolutionary divergence and functions of the human interleukin (IL) gene family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W. Nebert3* and Vasilis Vasiliou1 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267–0056, USA *Correspondence to: Tel: þ1 513 821 4664; Fax: þ1 513 558 0925; E-mail: [email protected]; [email protected] Date received (in revised form): 22nd September 2010 Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term ‘interleukin’ (IL) has been used to describe a group of cytokines with complex immunomodulatory functions — including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host’s immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type. -
Expression of Interleukin-4 but Not of Interleukin-10 from a Replicative Herpes Simplex Virus Type 1 Viral Vector Precludes Experimental Allergic Encephalomyelitis
Gene Therapy (2001) 8, 769–777 2001 Nature Publishing Group All rights reserved 0969-7128/01 $15.00 www.nature.com/gt RESEARCH ARTICLE Expression of interleukin-4 but not of interleukin-10 from a replicative herpes simplex virus type 1 viral vector precludes experimental allergic encephalomyelitis E Broberg1,2,3, N Seta¨la¨ 1,3,MRo¨ytta¨4, A Salmi1, J-P Era¨linna1,5,BHe6, B Roizman6 and V Hukkanen1,2 Departments of 1Virology, 4Pathology, 5Neurology and 2MediCity Research Laboratory, University of Turku, Turku; 3Turku Graduate School of Biomedical Sciences, Turku, Finland; and 6The Marjorie B Kovler Viral Oncology Laboratories, University of Chicago, Chicago, IL, USA We have used interleukin (IL)-4 and -10-producing HSV-1 any infection, mice infected with backbone virus R3659 and ␥ 134.5 deletion viruses in gene therapy of a BALB/c model mock-infected mice. Weights and symptoms of the mice of experimental allergic encephalomyelitis (EAE), a T cell- were recorded daily and the tissue specimens were col- mediated demyelinating disease of the central nervous sys- lected at specific time-points. The results indicate that the tem. It is known that in EAE of mice the Th2-type cytokines intracranial infection with IL-4-producing virus (1) precludes are down-regulated and the Th1-type cytokines up-regulated EAE symptoms, (2) protects the spinal cord from massive during the onset and relapse of the disease. Therefore, we leukocyte infiltrations and (3) prevents demyelination and tested two HSV-1 recombinants expressing the Th2-type axonal loss. The IL-10-expressing virus R8308 did not have cytokines IL-4 and IL-10. -
Enhancement by Interleukin 4 of Interleukin 2- Or Antibody-Induced Proliferation of Lymphocytes from Interleukin 2-Treated Cancer Patients1
ICANCER RESEARCH 50. 1160-1 164. Februar} 15. 1990) Enhancement by Interleukin 4 of Interleukin 2- or Antibody-induced Proliferation of Lymphocytes from Interleukin 2-treated Cancer Patients1 Jonathan Treisman, Carl M. Higuchi, John A. Thompson, Steven Gillis, Catherine G. Lindgren, Donald E. Kern, Stanley R. Ridell, Philip D. Greenberg, and Alexander I efer Department of Medicine, Division of Medical Oncolog); University of Washington School of Medicine, Seattle. Has/tinglan 9X195 fJ. T., C. M. H.,J. A. T., C, G. L., D. E. K., S. R. R., P. D. G., A. F.]; and Immunex Corporation, Seattle, H'ashington 98101 [S. G.J ABSTRACT IL-2-activated cells for therapy are usually generated by ob taining PBMC from cancer patients shortly after systemic IL- Systemic interleukin 2 (IL-2) and IL-2-activated lymphocytes have 2 therapy and culturing them with IL-2 in vitro. The cells thus induced tumor regression in some cancer patients. The IL-2-activated cells have usually been generated by obtaining peripheral blood mono- generated for infusion are phenotypically and functionally het nuclear cells (PB1V1C)from cancer patients shortly after systemic IL-2 erogeneous and contain cells with LAK activity (5, 7), as well therapy and culturing them with IL-2 in vitro. In an effort to augment as other cells which may mediate or contribute to antitumor the ex vivogeneration of such cells preactivated in vivo, we examined the responses (8). In an effort to enhance the generation of such proliferative responses of PBIVIC from IL-2-treated cancer patients to cells i/i vitro, several agents which induce a proliferative re several proliferative signals including IL-2, interleukin 4 (II -4). -
The Impact of Hypoxia on Neutrophil Degranulation and Consequences for the Host
International Journal of Molecular Sciences Review The Impact of Hypoxia on Neutrophil Degranulation and Consequences for the Host Katharine M. Lodge 1, Andrew S. Cowburn 1 , Wei Li 2 and Alison M. Condliffe 3,* 1 Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK; [email protected] (K.M.L.); [email protected] (A.S.C.) 2 Department of Medicine, University of Cambridge, Cambridge CB2 0SP, UK; [email protected] 3 Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield S10 2RX, UK * Correspondence: a.m.condliffe@sheffield.ac.uk Received: 13 January 2020; Accepted: 8 February 2020; Published: 11 February 2020 Abstract: Neutrophils are key effector cells of innate immunity, rapidly recruited to defend the host against invading pathogens. Neutrophils may kill pathogens intracellularly, following phagocytosis, or extracellularly, by degranulation and the release of neutrophil extracellular traps; all of these microbicidal strategies require the deployment of cytotoxic proteins and proteases, packaged during neutrophil development within cytoplasmic granules. Neutrophils operate in infected and inflamed tissues, which can be profoundly hypoxic. Neutrophilic infiltration of hypoxic tissues characterises a myriad of acute and chronic infectious and inflammatory diseases, and as well as potentially protecting the host from pathogens, neutrophil granule products have been implicated in causing collateral tissue damage in these scenarios. This review discusses the evidence for the enhanced secretion of destructive neutrophil granule contents observed in hypoxic environments and the potential mechanisms for this heightened granule exocytosis, highlighting implications for the host. Understanding the dichotomy of the beneficial and detrimental consequences of neutrophil degranulation in hypoxic environments is crucial to inform potential neutrophil-directed therapeutics in order to limit persistent, excessive, or inappropriate inflammation. -
The Role of Dupilumab in Severe Asthma
biomedicines Review The Role of Dupilumab in Severe Asthma Fabio Luigi Massimo Ricciardolo * , Francesca Bertolini and Vitina Carriero Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; [email protected] (F.B.); [email protected] (V.C.) * Correspondence: [email protected]; Tel.: +39-0119026777 Abstract: Dupilumab is a fully humanized monoclonal antibody, capable of inhibiting intracellular signaling of both interleukin (IL)-4 and IL-13. These are two molecules that, together with other proinflammatory cytokines such as IL-5 and eotaxins, play a pivotal role in orchestrating the airway inflammatory response defined as Type 2 (T2) inflammation, driven by Th2 or Type 2 innate lymphoid cells, which is the major feature of the T2 high asthma phenotype. The dual inhibition of IL-4 and IL-13 activities is due to the blockade of type II IL-4 receptor through the binding of dupilumab with the subunit IL-4Rα. This results in the repression of STAT6 and in the suppression of subsequent de novo formation of several molecules involved in the T2 inflammatory signature. Several clinical trials tested the efficacy and safety of dupilumab in large populations of uncontrolled severe asthmatics, revealing significant improvements in lung function, asthma control, and exacerbation rate. Similar results were reported when dupilumab was employed in patients harboring pathogenetic processes related to T2 immune response, such as atopic dermatitis and chronic rhinosinusitis. In this review, we provide an overview of the recent research in the field of respiratory medicine about dupilumab mechanism of action and its effects.