A Fact-Finding and Scoping Study On

Total Page:16

File Type:pdf, Size:1020Kb

A Fact-Finding and Scoping Study On CBD Distr. GENERAL CBD/DSI/AHTEG/2018/1/3 12 January 2018 ENGLISH ONLY AD HOC TECHNICAL EXPERT GROUP ON DIGITAL SEQUENCE INFORMATION ON GENETIC RESOURCES Montreal, Canada, 13-16 February 2018 FACT-FINDING AND SCOPING STUDY ON DIGITAL SEQUENCE INFORMATION ON GENETIC RESOURCES IN THE CONTEXT OF THE CONVENTION ON BIOLOGICAL DIVERSITY AND THE NAGOYA PROTOCOL Note by the Executive Secretary 1. In decision XIII/16, paragraph 3(b), the Executive Secretary was requested to commission a fact-finding and scoping study, subject to the availability of funds, to clarify terminology and concepts and to assess the extent and the terms and conditions of the use of digital sequence information on genetic resources in the context of the Convention and the Nagoya Protocol. 2. Accordingly, the Executive Secretary commissioned a research team led by Ms. Sarah Laird of People and Plants International and Ms. Rachel Wynberg of the University of Cape Town, to carry out this study. The study was undertaken with the generous financial support of Canada, the European Union and Switzerland. 3. A draft of the study was made available online for peer review from 8 November to 1 December 2017.1 The comments received in response have been made available online.2 The research team revised the study in the light of the comments received and the final version is presented below in the form and language in which it was received by the Secretariat of the Convention on Biological Diversity. Any views expressed in the study are those of the authors or the sources cited in the study and do not necessarily reflect the views of the Secretariat of the Convention. 4. It may also be noted that the study and the synthesis of views that the Executive Secretary was requested to prepare pursuant to decision XIII/16, paragraph 3(a), are distinct but complementary documents. Specifically, the role of the synthesis document was to capture the range of views and information presented through the submissions while the study was meant to address the aspects identified in decision XIII/16, paragraph 3(b). 1 See notification 2017-115 of 8 November 2017. 2 See https://www.cbd.int/abs/dsi-gr/ahteg.shtml#peerreview. CBD/DSI/AHTEG/2018/1/3 Page 2 A Fact-Finding and Scoping Study on Digital Sequence Information on Genetic Resources in the Context of the Convention on Biological Diversity and the Nagoya Protocol 10 January 2018 Sarah A. Laird and Rachel P. Wynberg, with contributions from Arash Iranzadeh and Anna Sliva Kooser CBD/DSI/AHTEG/2018/1/3 Page 3 Contents EXECUTIVE SUMMARY ........................................................................................................................ 8 1. INTRODUCTION ....................................................................................................................... 18 2. TERMINOLOGY ........................................................................................................................ 19 2.1 Exploring Terminology within Scientific and Policy Circles ......................................... 20 3. THE USE OF DIGITAL SEQUENCE INFORMATION ........................................................... 22 3.1. How is digital sequence information produced, and by whom? ..................................... 23 3.2. How is digital sequence information used and by whom? ............................................. 23 3.2.1. Synthetic biology research ................................................................................. 24 3.2.2. Industrial biotechnology .................................................................................... 25 3.2.3. Healthcare biotechnology .................................................................................. 25 3.2.4. Agriculture ......................................................................................................... 26 3.2.5. Community laboratories, DIYbio, and open science ......................................... 26 4. HOW DIGITAL SEQUENCE INFORMATION IS ACCESSED, STORED AND MANAGED ................................................................................................................................. 27 4.1. Public Databases ............................................................................................................. 27 4.1.1. The International Nucleotide Sequence Database Collaboration ...................... 28 4.1.2. Increase in data flow and use ............................................................................. 29 4.1.3. Standards for digital sequence information sharing and compatibility between databases .............................................................................................. 30 5. GENERATION OF “NEW” DIGITAL SEQUENCE INFORMATION FROM PHYSICAL SAMPLES ............................................................................................................... 32 5.1. Field collections and citizen science ............................................................................... 32 5.2. Biological-to-Digital: Advances in ‘reading’ DNA ........................................................ 33 5.3. DNA Synthesis and Digital-to-Biological Converters: Advances in ’writing’ DNA ................................................................................................................................ 33 5.4. Ex situ Collections .......................................................................................................... 34 6. TOOLS TO MANAGE DIGITAL SEQUENCE INFORMATION: CONDITIONS OF USE NOTICES AND USER AGREEMENTS ........................................................................... 36 6.1. Conditions of use notices ................................................................................................ 36 6.2. Open source and user agreements ................................................................................... 37 7. DIGITAL SEQUENCE INFORMATION, BIODIVERSITY CONSERVATION, AND SUSTAINABLE USE.................................................................................................................. 39 7.1. Biodiversity Conservation .............................................................................................. 39 7.1.1. Identification and characterization of biodiversity ............................................ 39 7.1.2. Conservation genetics and genomics: understanding genetic variability in populations ......................................................................................................... 40 7.1.3. Invasive species ................................................................................................. 40 CBD/DSI/AHTEG/2018/1/3 Page 4 7.1.4. Understanding pollinators .................................................................................. 40 7.1.5. Monitoring environmental change ..................................................................... 41 7.1.6. Ex situ conservation ........................................................................................... 41 7.2. Sustainable Use ............................................................................................................... 41 7.2.1. Tracking trade and wildlife trafficking .............................................................. 41 7.2.2. Developing new crops, and minimizing genetic erosion ................................... 42 7.2.3. Pathogens and health emergencies .................................................................... 42 7.3. Conservation and sustainable use implications of technologies that use digital sequence information ...................................................................................................... 42 7.3.1. Potential positive impacts of technologies associated with digital sequence information ......................................................................................... 42 7.3.2. Potential negative impacts of technologies associated with digital sequence information ......................................................................................... 43 8. DIGITAL SEQUENCE INFORMATION, FAIR AND EQUITABLE BENEFIT-SHARING, AND THE NAGOYA PROTOCOL ...................................................... 43 8.1. Non-monetary benefits ................................................................................................... 44 8.1.1. Wider accessibility of databases, knowledge, and technology .......................... 44 8.1.2. Technology transfer, capacity-building, and collaboration ............................... 46 8.1.3. Research directed at priority public needs ......................................................... 47 8.2. Monetary benefits ........................................................................................................... 48 8.2.1. Determining the value of digital sequence information ..................................... 48 8.3. Challenges and opportunities for benefit sharing ........................................................... 51 8.3.1. Identification of contributors, users and provenance ......................................... 52 8.3.2. Monitoring the Use of Digital Sequence Information ....................................... 54 8.3.3. Distinguishing between non-commercial and commercial research ................. 55 9. CONCLUSION ............................................................................................................................ 56 ANNEXES ...............................................................................................................................................
Recommended publications
  • Studies on Authentication of True Source of Honey Using Pollen DNA
    Journal of Entomology and Zoology Studies 2018; 6(3): 255-261 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Studies on authentication of true source of honey JEZS 2018; 6(3): 255-261 © 2018 JEZS using pollen DNA barcoding Received: 09-03-2018 Accepted: 10-04-2018 Praghadeesh Manivanan Praghadeesh Manivanan, Srinivasan Madapuji Rajagopalan and Department of Plant Mohankumar Subbarayalu Biotechnology, Centre for Plant Molecular Biology& Biotechnology, Tamil Nadu Abstract Agricultural University, Plant pollen DNA comprising unique barcode signatures– serve as a highly resilient biomarker to Coimbatore, Tamil Nadu, India establish its true biological origin. Over a decade, DNA barcoding of plants has evolved as an effective tool to identify its origin down to species level that promptedits practical applications in various fields of Srinivasan Madapuji Rajagopalan applied biology. Premium unifloral honey, due to its economic value as a medicinal product is vulnerable Department of Agricultural to intentional mislabelling and adulteration to fetch higher price. Melissopalynological and Entomology, Tamil Nadu physiochemical based approaches to ascertain the true source of honey is not yet available on commercial Agricultural University, scale. DNA barcoding of pollen trapped in honey can be effectively used to identify the true source of Coimbatore, Tamil Nadu, India honey with high feasibility across labs at cheaper price. The current study was carried out to standardise Mohankumar Subbarayalu an efficient pollen DNA isolation protocol and to assess the efficiency of two barcode (rbcL and matK Professor and Head, Department gene) combinations in identifying the botanical origin of pollen and to ascertain its true source. Six honey of Plant Biotechnology, Centre samples with diverse characteristics were used in the study.
    [Show full text]
  • Using RNA-Seq to Characterize Pollen–Stigma Interactions for Pollination
    www.nature.com/scientificreports OPEN Using RNA‑seq to characterize pollen–stigma interactions for pollination studies Juan Lobaton1,3*, Rose Andrew1, Jorge Duitama2, Lindsey Kirkland1, Sarina Macfadyen3 & Romina Rader1 Insects are essential for the reproduction of pollinator‑dependent crops and contribute to the pollination of 87% of wild plants and 75% of the world’s food crops. Understanding pollen fow dynamics between plants and pollinators is thus essential to manage and conserve wild plants and ensure yields are maximized in food crops. However, the determination of pollen transfer in the feld is complex and laborious. We developed a feld experiment in a pollinator‑dependent crop and used high throughput RNA sequencing (RNA‑seq) to quantify pollen fow by measuring changes in gene expression between pollination treatments across diferent apple (Malus domestica Borkh.) cultivars. We tested three potential molecular indicators of successful pollination and validated these results with feld data by observing single and multiple visits by honey bees (Apis mellifera) to apple fowers and measured fruit set in a commercial apple orchard. The frst indicator of successful outcrossing was revealed via diferential gene expression in the cross‑pollination treatments after 6 h. The second indicator of successful outcrossing was revealed by the expression of specifc genes related to pollen tube formation and defense response at three diferent time intervals in the stigma and the style following cross‑pollination (i.e. after 6, 24, and 48 h). Finally, genotyping variants specifc to donor pollen could be detected in cross‑pollination treatments, providing a third indicator of successful outcrossing. Field data indicated that one or fve fower visits by honey bees were insufcient and at least 10 honey bee fower visits were required to achieve a 25% probability of fruit set under orchard conditions.
    [Show full text]
  • An Open-Sourced Bioinformatic Pipeline for the Processing of Next-Generation Sequencing Derived Nucleotide Reads
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.050369; this version posted May 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. An open-sourced bioinformatic pipeline for the processing of Next-Generation Sequencing derived nucleotide reads: Identification and authentication of ancient metagenomic DNA Thomas C. Collin1, *, Konstantina Drosou2, 3, Jeremiah Daniel O’Riordan4, Tengiz Meshveliani5, Ron Pinhasi6, and Robin N. M. Feeney1 1School of Medicine, University College Dublin, Ireland 2Division of Cell Matrix Biology Regenerative Medicine, University of Manchester, United Kingdom 3Manchester Institute of Biotechnology, School of Earth and Environmental Sciences, University of Manchester, United Kingdom [email protected] 5Institute of Paleobiology and Paleoanthropology, National Museum of Georgia, Tbilisi, Georgia 6Department of Evolutionary Anthropology, University of Vienna, Austria *Corresponding Author Abstract The emerging field of ancient metagenomics adds to these Bioinformatic pipelines optimised for the processing and as- processing complexities with the need for additional steps sessment of metagenomic ancient DNA (aDNA) are needed in the separation and authentication of ancient sequences from modern sequences. Currently, there are few pipelines for studies that do not make use of high yielding DNA cap- available for the analysis of ancient metagenomic DNA ture techniques. These bioinformatic pipelines are tradition- 1 4 ally optimised for broad aDNA purposes, are contingent on (aDNA) ≠ The limited number of bioinformatic pipelines selection biases and are associated with high costs.
    [Show full text]
  • Identification of Transcribed Sequences in Arabidopsis Thaliana by Using High-Resolution Genome Tiling Arrays
    Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays Viktor Stolc*†‡§, Manoj Pratim Samanta‡§¶, Waraporn Tongprasitʈ, Himanshu Sethiʈ, Shoudan Liang*, David C. Nelson**, Adrian Hegeman**, Clark Nelson**, David Rancour**, Sebastian Bednarek**, Eldon L. Ulrich**, Qin Zhao**, Russell L. Wrobel**, Craig S. Newman**, Brian G. Fox**, George N. Phillips, Jr.**, John L. Markley**, and Michael R. Sussman**†† *Genome Research Facility, National Aeronautics and Space Administration Ames Research Center, Moffett Field, CA 94035; †Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520; ¶Systemix Institute, Cupertino, CA 94035; ʈEloret Corporation at National Aeronautics and Space Administration Ames Research Center, Moffett Field, CA 94035; and **Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706 Edited by Sidney Altman, Yale University, New Haven, CT, and approved January 28, 2005 (received for review November 4, 2004) Using a maskless photolithography method, we produced DNA Genome-wide tiling arrays can overcome many of the shortcom- oligonucleotide microarrays with probe sequences tiled through- ings of the previous approaches by comprehensively probing out the genome of the plant Arabidopsis thaliana. RNA expression transcription in all regions of the genome. This technology has was determined for the complete nuclear, mitochondrial, and been used successfully on different organisms (5–12). A recent chloroplast genomes by tiling 5 million 36-mer probes. These study on A. thaliana reported measuring transcriptional activities probes were hybridized to labeled mRNA isolated from liquid of four different cell lines by using 25-mer-based tiling arrays that grown T87 cells, an undifferentiated Arabidopsis cell culture line.
    [Show full text]
  • Fungal Genomes Tell a Story of Ecological Adaptations
    Folia Biologica et Oecologica 10: 9–17 (2014) Acta Universitatis Lodziensis Fungal genomes tell a story of ecological adaptations ANNA MUSZEWSKA Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland E-mail: [email protected] ABSTRACT One genome enables a fungus to have various lifestyles and strategies depending on environmental conditions and in the presence of specific counterparts. The nature of their interactions with other living and abiotic elements is a consequence of their osmotrophism. The ability to degrade complex compounds and especially plant biomass makes them a key component of the global carbon circulation cycle. Since the first fungal genomic sequence was published in 1996 mycology has benefited from the technolgical progress. The available data create an unprecedented opportunity to perform massive comparative studies with complex study design variants targeted at all cellular processes. KEY WORDS: fungal genomics, osmotroph, pathogenic fungi, mycorrhiza, symbiotic fungi, HGT Fungal ecology is a consequence of osmotrophy Fungi play a pivotal role both in encountered as leaf endosymbionts industry and human health (Fisher et al. (Spatafora et al. 2007). Since fungi are 2012). They are involved in biomass involved in complex relationships with degradation, plant and animal infections, other organisms, their ecological fermentation and chemical industry etc. repertoire is reflected in their genomes. They can be present in the form of The nature of their interactions with other resting spores, motile spores, amebae (in organisms and environment is defined by Cryptomycota, Blastocladiomycota, their osmotrophic lifestyle. Nutrient Chytrydiomycota), hyphae or fruiting acquisition and communication with bodies. The same fungal species symbionts and hosts are mediated by depending on environmental conditions secreted molecules.
    [Show full text]
  • 1 Molecular Analysis of Honey Bee Foraging Ecology Dissertation
    Molecular analysis of honey bee foraging ecology Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Rodney Trey Richardson Graduate Program in Entomology The Ohio State University 2018 Dissertation Committee Professor Reed Johnson, Advisor Professor Mary Gardiner Professor John Christman Professor Roman Lanno 1 Copyrighted by Rodney Trey Richardson 2018 2 Abstract While numerous factors currently impact the health of honey bees and other pollinating Hymenoptera, poor floral resource availability due to habitat loss and land conversion is thought to be important. This issue is particularly salient in the upper Midwest, a location which harbors approximately 60 percent of the US honey bee colonies each summer for honey production. This region has experienced a dramatic expansion in the area devoted to crop production over the past decade. Consequently, understanding how changes to landscape composition affect the diversity, quality and quantity of available floral resources has become an important research goal. Here, I developed molecular methods for the identification of bee-collected pollen by adapting and improving upon the existing amplicon sequencing infrastructure used for microbial community ecology. In thoroughly benchmarking our procedures, I show that a simple and cost-effective three-step PCR-based library preparation protocol in combination with Metaxa2-based hierarchical classification yields an accurate and highly quantitative pollen metabarcoding approach when applied across multiple plant markers. In Chapter 1, I conducted one of the first ever proof-of-concept studies applying amplicon sequencing, or metabarcoding, to the identification of bee-collected pollen.
    [Show full text]
  • Experimental Quantification of Pollen with DNA Metabarcoding Using
    www.nature.com/scientificreports OPEN Experimental quantifcation of pollen with DNA metabarcoding using ITS1 and trnL Sandra Baksay 1*, André Pornon1, Monique Burrus1, Jérôme Mariette2, Christophe Andalo1 & Nathalie Escaravage1 Although the use of metabarcoding to identify taxa in DNA mixtures is widely approved, its reliability in quantifying taxon abundance is still the subject of debate. In this study we investigated the relationships between the amount of pollen grains in mock solutions and the abundance of high- throughput sequence reads and how the relationship was afected by the pollen counting methodology, the number of PCR cycles, the type of markers and plant species whose pollen grains have diferent characteristics. We found a signifcant positive relationship between the number of DNA sequences and the number of pollen grains in the mock solutions. However, better relationships were obtained with light microscopy as a pollen grain counting method compared with fow cytometry, with the chloroplastic trnL marker compared with ribosomal ITS1 and with 30 when compared with 25 or 35 PCR cycles. We provide a list of recommendations to improve pollen quantifcation. Environmental DNA metabarcoding is a molecular method that consists of investigating environmental DNA samples made of complex mixtures of genomes from numerous organisms1. Due to new sequencing technologies and bioinformatics tools, metabarcoding has been increasingly used to identify taxa in environmental samples1 to monitor biodiversity2–4, to investigate ecosystem functioning5 and interaction networks6–8, in both aquatic and terrestrial ecosystems. Nevertheless, its reliability in quantitative approaches, which depend on the match between counts of high-throughput sequence reads and the amount of sampled biological material2, is still the subject of debate9,10.
    [Show full text]
  • Efficient Storage and Analysis of Genome Data in Relational Database Systems
    Efficient Storage and Analysis of Genome Data in Relational Database Systems D I S S E R T A T I O N zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) angenommen durch die Fakultät für Informatik der Otto-von-Guericke-Universität Magdeburg von M.Sc. Sebastian Dorok geb. am 09.10.1986 in Haldensleben Gutachterinnen/Gutachter Prof. Dr. Gunter Saake Prof. Dr. Jens Teubner Prof. Dr. Ralf Hofestädt Magdeburg, den 27.04.2017 Dorok, Sebastian: Efficient storage and analysis of genome data in relational database systems Dissertation, University of Magdeburg, 2017. Abstract Genome analysis allows researchers to reveal insights about the genetic makeup of living organisms. In the near future, genome analysis will become a key means in the detection and treatment of diseases that are based on variations of the genetic makeup. To this end, powerful variant detection tools were developed or are still under development. However, genome analysis faces a large data deluge. The amounts of data that are produced in a typical genome analysis experiment easily exceed several 100 gigabytes. At the same time, the number of genome analysis experiments increases as the costs drop. Thus, the reliable and efficient management and analysis of large amounts of genome data will likely become a bottleneck, if we do not improve current genome data management and analysis solutions. Currently, genome data management and analysis relies mainly on flat-file based storage and command-line driven analysis tools. Such approaches offer only limited data man- agement capabilities that can hardly cope with future requirements such as annotation management or provenance tracking.
    [Show full text]
  • Pollen DNA Barcoding: Current Applications and Future Prospects
    Page 1 of 43 Pollen DNA barcoding: current applications and future prospects Authors: Karen L. Bell 1, Natasha de Vere 2, Alexander Keller 3, Rodney T. Richardson 4, Annemarie Gous 5,6 , Kevin S. Burgess 7, Berry J. Brosi 1 1Emory University, School of Environmental Sciences, Atlanta, GA, USA 2National Botanic Garden of Wales, Llanarthne, United Kingdom 3Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany 4Department of Entomology, The Ohio State University, Columbus, OH, USA 5Biotechnology Platform , Agricultural Research Council , Pretoria, South Africa 6School of Life Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa 7Columbus State University, Columbus, GA, USA Keywords (3-6): DNA metabarcoding; metagenomics; pollen; palynology; high-throughput sequencing; next-generation sequencing Genome Downloaded from www.nrcresearchpress.com by MICHIGAN STATE UNIV on 04/18/16 1 For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. Page 2 of 43 ABSTRACT (<200 words) Identification of the species origin of pollen has many applications, including assessment of plant-pollinator networks, reconstruction of ancient plant communities, product authentication, allergen monitoring, and forensics. Such applications, however, have previously been limited by microscopy-based identification of pollen, which is slow, has low taxonomic resolution, and few expert practitioners. One alternative is pollen DNA barcoding, which could overcome these issues. Recent studies demonstrate that both chloroplast and nuclear barcoding markers can be amplified from pollen. These recent validations of pollen metabarcoding indicate that now is the time for researchers in various fields to consider applying these methods to their research programs.
    [Show full text]
  • Applying Pollen DNA Metabarcoding to the Study of Plant-Pollinator Interactions Karen L
    Applying Pollen DNA Metabarcoding to the Study of Plant-Pollinator Interactions Karen L. Bell, Emory University Julie Fowler, Emory University Kevin S. Burgess, The University of Western Australia Emily K. Dobbs, Emory University David Gruenewald, Emory University Brice Lawley, Emory University Connor Morozumi, Emory University Berry Brosi, Emory University Journal Title: Applications in Plant Sciences Volume: Volume 5, Number 6 Publisher: Botanical Society of America: APPS | 2017-06-01 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.3732/apps.1600124 Permanent URL: https://pid.emory.edu/ark:/25593/s3w2z Final published version: http://dx.doi.org/10.3732/apps.1600124 Copyright information: © 2017 Bell et al. Published by the Botanical Society of America This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/). Accessed September 26, 2021 6:17 AM EDT Applying Pollen DNA Metabarcoding to the Study of Plant–Pollinator Interactions Author(s): Karen L. Bell, Julie Fowler, Kevin S. Burgess, Emily K. Dobbs, David Gruenewald, Brice Lawley, Connor Morozumi, and Berry J. Brosi Source: Applications in Plant Sciences, 5(6) Published By: Botanical Society of America https://doi.org/10.3732/apps.1600124 URL: http://www.bioone.org/doi/full/10.3732/apps.1600124 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.
    [Show full text]
  • Annual Scientific Report 2011 Annual Scientific Report 2011 Designed and Produced by Pickeringhutchins Ltd
    European Bioinformatics Institute EMBL-EBI Annual Scientific Report 2011 Annual Scientific Report 2011 Designed and Produced by PickeringHutchins Ltd www.pickeringhutchins.com EMBL member states: Austria, Croatia, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom. Associate member state: Australia EMBL-EBI is a part of the European Molecular Biology Laboratory (EMBL) EMBL-EBI EMBL-EBI EMBL-EBI EMBL-European Bioinformatics Institute Wellcome Trust Genome Campus, Hinxton Cambridge CB10 1SD United Kingdom Tel. +44 (0)1223 494 444, Fax +44 (0)1223 494 468 www.ebi.ac.uk EMBL Heidelberg Meyerhofstraße 1 69117 Heidelberg Germany Tel. +49 (0)6221 3870, Fax +49 (0)6221 387 8306 www.embl.org [email protected] EMBL Grenoble 6, rue Jules Horowitz, BP181 38042 Grenoble, Cedex 9 France Tel. +33 (0)476 20 7269, Fax +33 (0)476 20 2199 EMBL Hamburg c/o DESY Notkestraße 85 22603 Hamburg Germany Tel. +49 (0)4089 902 110, Fax +49 (0)4089 902 149 EMBL Monterotondo Adriano Buzzati-Traverso Campus Via Ramarini, 32 00015 Monterotondo (Rome) Italy Tel. +39 (0)6900 91402, Fax +39 (0)6900 91406 © 2012 EMBL-European Bioinformatics Institute All texts written by EBI-EMBL Group and Team Leaders. This publication was produced by the EBI’s Outreach and Training Programme. Contents Introduction Foreword 2 Major Achievements 2011 4 Services Rolf Apweiler and Ewan Birney: Protein and nucleotide data 10 Guy Cochrane: The European Nucleotide Archive 14 Paul Flicek:
    [Show full text]
  • Pollen DNA Barcoding Bell, Karen
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aberystwyth Research Portal Aberystwyth University Pollen DNA barcoding Bell, Karen. L.; De Vere, Natasha; Keller, Alexander; Richardson, Rodney; Gous, Annemarie; Burgess, Kevin S.; Brosi, Berry J. Published in: Genome DOI: 10.1139/gen-2015-0200 Publication date: 2016 Citation for published version (APA): Bell, K. L., De Vere, N., Keller, A., Richardson, R., Gous, A., Burgess, K. S., & Brosi, B. J. (2016). Pollen DNA barcoding: Current applications and future prospects. Genome, 59(9), 629-640. https://doi.org/10.1139/gen- 2015-0200 Document License CC BY General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 09. Jul. 2020 629 REVIEW Pollen DNA barcoding: current applications and future prospects1 Karen L.
    [Show full text]