390 Short Notes

Brehm,A., Jesus, J.,Spí nola, H., Alves, C., Vicente, L.,Harris, D.J.(2003): Phylogeography of the Madeiran endemic Lacertadugesii inferredfrom mtDNA sequences.Mol. Phylogenet. Evol. 26: 222-230. Felsenstein,J. (1985):ConŽ dence limitson phylogenies:an approach using the bootstrap. Evolution 39: 783-791. Fu,J. (2000):Toward the phylogeny of the family Lacertidae —why4,708 base pairsof mtDNA sequences cannotdraw thepicture. Biol. J. Linn.Soc. 71: 203-217. Harris, D.J.,Arnold, E.N., Thomas R.H. (1998): Relationships of the lacertid (Reptilia:Lacertidae) estimated frommitochondrial DNA sequences andmorphology. Proc. R. Soc.London B 265:1939-1948. Harris, D.J.,Sá -Sousa, P .(2002):Is Podarcishispanica aspecies complex:evidence from mitochondrial DNA sequence data.Mol. Phylogenet. Evol. 23: 75-81. Huelsenback,J.P .,Bollback,J.P .(2001):Empirical and hierarchical Bayesian estimationof ancestral states. Syst. Biol. 50: 351-366. Huelsenbeck,J.P .,Crandall,K.A. (1997): Phylogeny estimation and hypothesis testing using maximum likeli- hood.Ann. Rev. Ecol. Syst. 28: 437-466. Huelsenback,J.P .,Ronquist,F. (2001): MR-BA YES:Bayesian inference ofphylogeny. Bioinformatics 17: 754- 755. Kocher,T.D., Thomas, W .K.,Meyer, A., Edwards,S.V .,Pää bo,S., Villablanca,F.X., Wilson, A.C. (1989): Dynamics ofmitochondrial DNA evolutionin : ampliŽcation and sequencing with conserved primers. Proc.Nat. Acad. Sci.USA 86:6196-6200. Mayol,J. (1997): Podarcisperspicillata .In:Atlas ofAmphibians and in Europe. Gasc, J.-P.,Cabela, A., Crnobrnja-Isailovic,J., Dolmen, D., Grossenbacher, K., Haffner, P.,Lescure, J.,Martens, H., Martinez Rica, J.P.,Maurin,H., Oliveira, M.E., SoŽ anidou, T.S., V eith,M., Zuiderwijk,A., Eds,Paris, Societas Europaea Herpetologicaand Musé um National d’ Histoire Naturelle. Oliverio,M., Bologna,M.A., Mariottini, P .(2000):Molecular biogeography of the Mediterranean lizards Podarcis Wagler,1830 and Teira Gray,1838 (Reptilia, Lacertidae). J.Biogeography 27:1403-1420. Posada,D., Crandall,K.A. (1998): Modeltest: testing the model of DNA substitution.Bioinformatics 14: 817- 818. Posada,D., Crandall, K.A. (2001): Selecting models of nucleotide substitution: an application to human immunodeŽciency virus 1 (HIV-1).Mol. Biol. Evol. 18: 897-906. Swofford,D.L. (2002): P AUP*:Phylogenetic Analysis Using Parsimony (and other methods) 4.0.b10. Sunder- land,Massachusetts, USA,Sinauer Associates. Thompson,J.D., Higgins, D.G., Gibson, T.J. (1994): Clustal W: improving the sensitivity of progressive multiple sequence alignmentthrough sequence weighting,position speciŽ c gappenalties and weight matrix choice. Nucl.Acid. Res. 22:4673-4680.

Received: September24, 2002. Accepted: January13, 2003.

InterspeciŽc communal oviposition and reproduction of four speciesof lizards(Sauria: Gekkonidae) inthelower Keys

KennethL. Krysko 1,ColemanM. SheehyIII 1,A.NicholeHooper 2

1 FloridaMuseum of Natural History,Division of Herpetology,P .O.Box117800, University of Florida, Gainesville,Florida 32611, USA e-mail: kenneyk@mnh.u .edu, csheehy@ mnh.u .edu 2 Collegeof V eterinaryMedicine, Campus Box 100125, University of Florida, Gainesville, Florida 32610, USA e-mail: pipkin1@u.edu

© KoninklijkeBrill NV ,Leiden,2003 Amphibia-Reptilia24: 390-396 Alsoavailable online - www.brill.nl Short Notes 391

Communaloviposition or nesting has been reported to occur in numerous saurian taxa, particularlygekkonids (FitzSimons, 1943; Conant and Collins, 1991; Graves and Duvall, 1995;Espinoza and Lobo, 1996; Branch, 1998). Espinoza and Lobo (1996: 65) deŽ ned communaloviposition as “ thenonincidental deposition of eggs at a sharednest cavity bytwo or more conspeciŽ cs” . Wemodifytheir deŽ nition to include the nonincidental depositionof eggs by of different genera. This oviposition strategy should not beconfused with colonial nesting. Colonial nesting is more commonly associated with aviantaxa as acosmopolitannesting strategy (O’ Connor, 1984; T arboton,2001), in which eggsare deposited adjacent to one another at the same general site, but not in the same nestcavity (Rand, 1967; Wiewandt, 1982; Mora, 1989; Burger, 1993; Espinoza and Lobo, 1996). ConspeciŽc communaloviposition has been reported in Hemidactylusmabouia (trop- icalhouse ) (Bock, 1996) and Sphaerodactylusnotatus (Floridareef gecko)(Du- ellmanand Schwartz, 1958). However, we areunaware of any reports of Hemidactylus and utilizingcommunal oviposition sites simultaneously. Hemidactylus mabouia, H. frenatus (commonhouse gecko), and S. elegans (ashygecko) have been intro- ducedin the FloridaKeys (Duellman and Schwartz,1958; Kingand Krakauer,1966; Love, 1978;Wilson and Porras, 1983;Conantand Collins, 1991; Lawson et al.,1991; ButterŽ eld etal., 1993; Meshaka et al., 1994a, b; Powellet al.,1998; Krysko and King, 2002), where thesespecies share microhabitats with the native S. notatus.Hereinwe reportevidence of communaloviposition involving these four gecko species of two genera, and remark on themicrohabitat of ovipositionsites in thelower , Monroe County.

Duringnumerous surveys in the Florida Keys between 1993and 2002, nesting sites witheither single or multiplegecko eggs were frequentlydiscovered. The microhabitat of all nestingsites was notedduring our surveys,and numerous voucher specimens were collectedand placed in the Florida Museum of Natural History (FLMNH),University of Florida (UF collection). On 4 March2002, we collectedeggs of two entire nests inthe lowerFlorida Keys. Nest #1was foundca. 0.3m aboveground under bark of anAustralian pine tree ( Casuarina equisetifolia )at FortZachary Taylor State HistoricSite on Key West (24 ±32:510N, 81±48:360W).Nest #2was alsofound ca. 0.3m aboveground under bark of a C.equisetifolia ,butwas locatedjust SW ofPerky on Lower SugarloafKey (24 ±38:6600 N, 81±34:2050 W). Althoughthe eggs of both Hemidactylus and Sphaerodactylus are small, white,and hard-shelled, they are easily distinguishedfrom each other. Hemidactylus eggsare round,about 8-10 mm inlength, about twice the size of Sphaerodactylus eggs,and usually laid in pairs (Krysko, pers. obs.; Carr, 1940;Smith, 1946; Church, 1962;Bock, 1996). Sphaerodactylus eggsare oval,about 3 :5 5mm insize, andlaid singly (Krysko, pers. obs.; £ Barbour,1921; Carr, 1940;Smith, 1946; Taylor, 1956; Duellman and Schwartz, 1958; Fitch, 1970). Littlereproductive data has beenpublished on Hemidactylus and Sphaerodactylus regardingoviposition frequenciesand incubation times. However,we were able tocompile these data toinfer the number of different females utilizingeach nestand when oviposition occurred. Oviposition frequency is regulatedby air temperature andfemale dietaryintake, and under constant laboratory settings is knownfor the following: H. frenatus (21-28 days), H. mabouia (25-30days), S. elegans (25-35days), and S. notatus (28-40days) (J. Boone, pers. comm.). Additionally,the oviposition frequency of H. mabouia has beenreported to be 16 daysin Colombia (Bock, 1996). Incubationtime andtemperature rangesin laboratory settings is knownfor the following: H. frenatus (48-55 days at 28-29±C), H. mabouia (54-62days at 27-29 ±C), S. elegans (68-82days at 28-30 ±C), and S. notatus (75-90 daysat 28-30 ±C)(J.Boone, pers. comm.). Church(1962) reported that H. frenatus eggshatch in 90 daysunder laboratoryconditions.