Revision of the Family Alycidae (Acariformes, Acari), with Special Reference to European Species

Total Page:16

File Type:pdf, Size:1020Kb

Revision of the Family Alycidae (Acariformes, Acari), with Special Reference to European Species Revision of the family Alycidae (Acariformes, Acari), with special reference to European species Matti Uusitalo Department of Biological and Environmental Sciences University of Helsinki Academic Dissertation To be presented for public examination, with permission of the Faculty of Biosciences, in auditorium 6 at B-building (Latokartanonkaari 7) on the 12th of March at 12 noon. Helsinki 2010 Supervisor Dr. Pekka T. Lehtinen University of Turku Finland Rewievers Prof. David Evans Walter University of Alberta Canada Dr. Mark Judson Mus. natl. Hist. nat., Paris France Opponent Dr. Wojciech . Magowski Adam Mickiewicz University Poland ISBN 978-952-92-6869-6 (paperback) ISBN 978-952-10-6096-0 (PDF) http://ethesis.helsinki.fi Helsinki University Print Helsinki 2010 Revision of the family Alycidae (Acariformes, Acari), with special reference to European species Matti Uusitalo Metsälauvalantie 8 I 73, FIN-36220 KANGASALA, Finland Abstract This thesis provides a proposal to divide Alycidae G. Canestrini & Fanzago into two subfamilies and four tribes. Three of the tribes (Alycini G. Canestrini & Fanzago new rank; Bimichaeliini Womersley new rank; Petralycini new rank) include European members and are defined here. Also a preliminary generic division for both the Alycini and Bimichaeliini is introduced. This new hierarchy is based on a reassessment and reranking of new and previously known synapomorphies of the clusters concerned by cladistic analysis, using 60 morphological characters for 48 ingroup, one sister group and one outgroup species. Of special importance are the following conclusions: (1) Petralycini differ from two other major lineages by the unique structure of the prodorsum and palpi; (2) Bimichaeliinae share the presence of large lamellae and the same structure of chelicera, but there are distinct groups on the grounds of secondary and primary patterning of the integument which represent different evolutionary trends; (3) Alycini are united by presence of a reduced pair of lateral eyes but there are distinct groups on the grounds of cheliceral structure and the patterning of integument. The fine morphology of integument was revealed by Scanning Electron Microscopy. The basic characters of the taxa are illustrated either by SEM micrographs or by outline drawings. The subfamilies, tribes, genera and all European species known to now are (re)described and keys to all the ranks are given. The presented classification of Alycini includes the redescriptions of Alycus C.L. Koch, Pachygnathus Dugès and Amphialycus Zachvatkin. Orthacarus Zachvatkin is reduced to a new subgenus of Amphialycus (new rank). The species described or redescribed are: Pachygnathus wasastjernae sp. nov. from Finland; Pachygnathus villosus Dugès [in Oken] (as a senior synonym of P. ornithorhynchus Grandjean); Alycus roseus C.L. Koch; Alycus denasutus (Grandjean) comb. and stat. nov.; Alycus trichotus (Grandjean) comb. nov.; Alycus marinus (Schuster) comb. nov.; Amphialycus (Amphialycus) pentophthalmus Zachvatkin; Amphialycus (Amphialycus) leucogaster (Grandjean); and Amphialycus (Orthacarus) oblongus (Halbert) comb. nov. Alycus rostratus Trägårdh is synonymized with A. roseus; Pachygnathus berlesei Bottazzi and P. lombardinii Bottazzi are synonymized with A. trichotus; Pachygnathus arhinosus Willmann is synonymized with A. leucogaster; and Orthacarus tremli Zachvatkin is synonymized with A. oblongus. The European members of the worldwide Bimichaelia Thor are divided into two genera: Bimichaelia s.st. Thor and Laminamichaelia new genus. Bimichaelia crassipalpis Halbert, B. campylognatha Grandjean and B. rectangula Willmann are synonymized with Bimichaelia sarekensis Trägårdh; Michaelia clavigera nomen nudum in Castagnoli & Pegazzano, Bimichaelia diadema Grandjean and B. praeincisa Willmann are synonymized with Laminamichaelia setigera (Berlese) comb. nov.; Bimichaelia stellaris Womersley and B. ramosa Miheli are synonymized with Laminamichaelia arbusculosa 3 (Grandjean) comb. nov. Bimichaelia augustana (Berlese) and Laminamichaelia subnuda (Berlese) comb. nov. are redescribed. Descriptions of Petralycini and Petralycus unicornis Grandjean are rewritten in accordance with the other diagnoses given here. The Devonian genus Protacarus Hirst was found to share none of the derived character states used in the modern delineation of Alycidae. Coccalicus clavatus Willmann belongs to a tydeoid cluster. Rhyncholophus devius C.L. Koch and Pachygnathus ? cavernicola Oudemans are considered as species inquirendae. The following points are discussed: (1) reasons for the model of description, division into subfamilies and tribes and prodorsal evolution are given; (2) the importance of the sensory organs in defining the species and non-linearity in evolution of the reductive trends of chelicera and palpi between the proposed subfamilies and tribes emphasized; (3) positions of these primitive mites and other major lineages in existing cladograms; and (4) some pros and cons in working with SEM. A database of prodorsa, illustrated in details using SEM, might be an answer to future needs of species identification in soil zoology, ecology and conservation, as proposed in Appendix 2. Selected figures of an undescribed bimichaeliine species ‘sil’ from South Africa, which forms a monotypic sister-group to all the rest of the Bimichaeliinae in the analysis, are given in Appendix 3. Key words: Acari, Endeostigmata, Alycidae, cladistics, classification, new taxa, Bimichaeliinae, Bimichaeliini new rank, Alycinae, Alycini new rank, Petralycini new rank, Europe 4 Table of contents ABSTRACT ................................................................................................................................................ 3 1. INTRODUCTION .................................................................................................................................... 7 1.1. ALYCIDAE G. CANESTRINI & FANZAGO ............................................................................................................. 8 1.1.1. Synonymy ........................................................................................................................................ 8 1.1.2. Characterization of Alycidae ............................................................................................................ 9 1.1.3. Historical background of Alycidae ................................................................................................. 10 1.1.4. Searching for monophyly of Alycidae in the past .......................................................................... 11 2. MATERIAL AND METHODS .................................................................................................................. 13 2.1. THE SPECIMENS ......................................................................................................................................... 13 2.2. PHYLOGENETIC ANALYSIS ............................................................................................................................. 15 2.3. SPECIES INCLUDED ..................................................................................................................................... 16 2.4. CHARACTERS USED ..................................................................................................................................... 17 3. RESULTS ............................................................................................................................................. 27 3.1. RESULTS OF THE PHYLOGENETIC ANALYSIS ....................................................................................................... 27 3.2. KEY TO THE SUBFAMILIES AND TRIBES OF ALYCIDAE ........................................................................................... 32 4. TAXONOMY OF EUROPEAN ALYCINI ................................................................................................... 33 4.1. INTRODUCTION ......................................................................................................................................... 33 4.2. ALYCINI G. CANESTRINI & FANZAGO, 1877 NEW RANK .................................................................................... 34 4.3. KEY TO THE GENERA AND SPECIES OF ALYCINI .................................................................................................. 35 4.4. ALYCUS C.L. KOCH, 1842 ........................................................................................................................... 38 4.4.1. Alycus roseus C.L. Koch, 1842 ........................................................................................................ 40 4.4.2. Alycus denasutus (Grandjean, 1937) comb. and stat. nov. ........................................................... 45 4.4.3. Alycus trichotus (Grandjean, 1937) comb. nov. ............................................................................ 46 4.4.4. Alycus marinus (Schuster, 1958) comb. nov. ................................................................................ 49 4.5. PACHYGNATHUS DUGÈS, 1834 (S.ST.) ........................................................................................................... 50 4.5.1. Pachygnathus villosus Dugès [in Oken], 1836 ............................................................................... 52 4.5.2. Pachygnathus wasastjernae sp. nov. ............................................................................................ 53 4.6. AMPHIALYCUS ZACHVATKIN,
Recommended publications
  • Cravens Peak Scientific Study Report
    Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10.
    [Show full text]
  • (Acari: Mesostigmata) Raphael De Campos Castilho
    Universidade de São Paulo Escola Superior de Agricultura “Luiz de Queiroz” Taxonomy of Rhodacaroidea mites (Acari: Mesostigmata) Raphael de Campos Castilho Thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Science. Area of concentration: Entomology Piracicaba 2012 2 Raphael de Campos Castilho Engenheiro Agrônomo Taxonomy of Rhodacaroidea mites (Acari: Mesostigmata) Adviser: Prof. Dr. GILBERTO JOSÉ DE MORAES Thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Science. Area of concentration: Entomology Piracicaba 2012 Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA - ESALQ/USP Castilho, Raphael de Campos Taxonomy of Rhodacaroidea mites (Acari: Mesostigmata) / Raphael de Campos Castilho. - - Piracicaba, 2012. 579 p. : il. Tese (Doutorado) - - Escola Superior de Agricultura “Luiz de Queiroz”, 2012. 1. Ácaros predadores 2. Classificação 3. Ácaros de solo 4. Controle biológico I. Título CDD 595.42 C352t “Permitida a cópia total ou parcial deste documento, desde que citada a fonte – O autor” 3 To GOD Source of perseverance and life, To my mother Sonia Regina de Campos For her love, tenderness and comprehension. To my partner Karina Cezarete Semençato for her love, patience and unfailing support to me Offer To Prof. Dr. Gilberto José de Moraes For his valuable guidance, friendship and recognition of my work Special thanks 4 5 Ackanowledgements To Escola Superior de Agricultura ―Luiz de Queiroz‖ (ESALQ), Universidade de São Paulo (USP), and especially to ―Departamento de Entomologia e Acarologia‖ for providing all intellectual and material support necessary for the proper development of this work; I am especially grateful to Carlos H. W.
    [Show full text]
  • The Predatory Mite (Acari, Parasitiformes: Mesostigmata (Gamasina); Acariformes: Prostigmata) Community in Strawberry Agrocenosis
    Acta Universitatis Latviensis, Biology, 2004, Vol. 676, pp. 87–95 The predatory mite (Acari, Parasitiformes: Mesostigmata (Gamasina); Acariformes: Prostigmata) community in strawberry agrocenosis Valentîna Petrova*, Ineta Salmane, Zigrîda Çudare Institute of Biology, University of Latvia, Miera 3, Salaspils LV-2169, Latvia *Corresponding author, E-mail: [email protected]. Abstract Altogether 37 predatory mite species from 14 families (Parasitiformes and Acariformes) were collected using leaf sampling and pit-fall trapping in strawberry fi elds (1997 - 2001). Thirty- six were recorded on strawberries for the fi rst time in Latvia. Two species, Paragarmania mali (Oud.) (Aceosejidae) and Eugamasus crassitarsis (Hal.) (Parasitidae) were new for the fauna of Latvia. The most abundant predatory mite families (species) collected from strawberry leaves were Phytoseiidae (Amblyseius cucumeris Oud., A. aurescens A.-H., A. bicaudus Wainst., A. herbarius Wainst.) and Anystidae (Anystis baccarum L.); from pit-fall traps – Parasitidae (Poecilochirus necrophori Vitz. and Parasitus lunaris Berl.), Aceosejidae (Leioseius semiscissus Berl.) and Macrochelidae (Macrocheles glaber Müll). Key words: agrocenosis, diversity, predatory mites, strawberry. Introduction Predatory mites play an important ecological role in terrestrial ecosystems and they are increasingly being used in management for biocontrol of pest mites, thrips and nematodes (Easterbrook 1992; Wright, Chambers 1994; Croft et al. 1998; Cuthbertson et al. 2003). Many of these mites have a major infl uence on nutrient cycling, as they are predators on other arthropods (Santos 1985; Karg 1993; Koehler 1999). In total, investigations of mite fauna in Latvia were made by Grube (1859), who found 28 species, Eglītis (1954) – 50 species, Kuznetsov and Petrov (1984) – 85 species, Lapiņa (1988) – 207 species, and Salmane (2001) – 247 species.
    [Show full text]
  • Community Structure of Mites (Acari: Acariformes and Parasitiformes) in Nests of the Semi-Collared Flycatcher (Ficedula Semitorquata) R
    International Research Journal of Natural Sciences Vol.3, No.3, pp.48-53, December 2015 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) COMMUNITY STRUCTURE OF MITES (ACARI: ACARIFORMES AND PARASITIFORMES) IN NESTS OF THE SEMI-COLLARED FLYCATCHER (FICEDULA SEMITORQUATA) R. Davidova, V. Vasilev, N. Ali, J. Bakalova Konstantin Preslavsky University of Shumen, 115, Universitetska Str., Shumen, 9700, Bulgaria. ABSTRACT: The aims of the present paper are to establish the specific structure of communities of prostigmatic and mesostigmatic mites in nests of the semi-collared flycatcher (Ficedula semitorquata) and to compare the fauna with the mites in nests of two other European flycatchers. For analysis of community structure of mites were used the indices: prevalence, relative density, mean intensity and dominance. Mite communities are strongly dominated by the species Dermanyssus gallinae and Ornithonyssus sylviarum, which were found with the highest frequency and dominance. The mite communities are characterized by a large number of subrecedent species. KEYWORDS: Acariformes, Parasitiformes, Nest of Bird, Community Structure INTRODUCTION The nests of different species of birds are an example of a fairly unstable and isolated habitat, with its own dependent on it specific fauna which involves different groups of invertebrate animals. One of the components of this fauna which demonstrates particular abundance is the arthropods, and more specifically, the mites. The studies of Parasitiformes show that mesostigmatic mites living in birds' nests vary both in terms of their species affiliation and the structure of their communities [4, 8]. Highly important with respect to veterinary science and medicine are a number of species, such as Ornithonyssus bursa, Ornithonyssus sylviarum, Dermanyssus gallinae harboured by birds, Ornithonyssus bacoti, harboured by rodents, etc.
    [Show full text]
  • Mesostigmata No
    16 (1) · 2016 Christian, A. & K. Franke Mesostigmata No. 27 ............................................................................................................................................................................. 1 – 41 Acarological literature .................................................................................................................................................... 1 Publications 2016 ........................................................................................................................................................................................... 1 Publications 2015 ........................................................................................................................................................................................... 9 Publications, additions 2014 ....................................................................................................................................................................... 17 Publications, additions 2013 ....................................................................................................................................................................... 18 Publications, additions 2012 ....................................................................................................................................................................... 20 Publications, additions 2011 ......................................................................................................................................................................
    [Show full text]
  • Microscopic Anatomy of Eukoenenia Spelaea (Palpigradi) — a Miniaturized Euchelicerate
    MICROSCOPIC ANATOMY OF EUKOENENIA SPELAEA (PALPIGRADI) — A MINIATURIZED EUCHELICERATE Sandra Franz-Guess Gröbenzell, Deutschland 2019 For my wife ii Diese Dissertation wurde angefertigt unter der Leitung von Herrn Prof. Dr. J. Matthias Starck im Bereich von Department Biologie II an der Ludwig‐Maximilians‐Universität München Erstgutachter: Prof. Dr. J. Matthias Starck Zweitgutachter: Prof. Dr. Roland Melzer Tag der Abgabe: 18.12.2018 Tag der mündlichen Prüfung: 01.03.2019 iii Erklärung Ich versichere hiermit an Eides statt, dass meine Dissertation selbständig und ohne unerlaubte Hilfsmittel angefertigt worden ist. Die vorliegende Dissertation wurde weder ganz, noch teilweise bei einer anderen Prüfungskommission vorgelegt. Ich habe noch zu keinem früheren Zeitpunkt versucht, eine Dissertation einzureichen oder an einer Doktorprüfung teilzunehmen. Gröbenzell, den 18.12.2018 Sandra Franz-Guess, M.Sc. iv List of additional publications Publication I Czaczkes, T. J.; Franz, S.; Witte, V.; Heinze, J. 2015. Perception of collective path use affects path selection in ants. Animal Behaviour 99: 15–24. Publication II Franz-Guess, S.; Klußmann-Fricke, B. J.; Wirkner, C. S.; Prendini, L.; Starck, J. M. 2016. Morphology of the tracheal system of camel spiders (Chelicerata: Solifugae) based on micro-CT and 3D-reconstruction in exemplar species from three families. Arthropod Structure & Development 45: 440–451. Publication III Franz-Guess, S.; & Starck, J. M. 2016. Histological and ultrastructural analysis of the respiratory tracheae of Galeodes granti (Chelicerata: Solifugae). Arthropod Structure & Development 45: 452–461. Publication IV Starck, J. M.; Neul, A.; Schmidt, V.; Kolb, T.; Franz-Guess, S.; Balcecean, D.; Pees, M. 2017. Morphology and morphometry of the lung in corn snakes (Pantherophis guttatus) infected with three different strains of ferlavirus.
    [Show full text]
  • Biodiversity and Threats in Non-Protected Areas: a Multidisciplinary and Multi-Taxa Approach Focused on the Atlantic Forest
    Heliyon 5 (2019) e02292 Contents lists available at ScienceDirect Heliyon journal homepage: www.heliyon.com Biodiversity and threats in non-protected areas: A multidisciplinary and multi-taxa approach focused on the Atlantic Forest Esteban Avigliano a,b,*, Juan Jose Rosso c, Dario Lijtmaer d, Paola Ondarza e, Luis Piacentini d, Matías Izquierdo f, Adriana Cirigliano g, Gonzalo Romano h, Ezequiel Nunez~ Bustos d, Andres Porta d, Ezequiel Mabragana~ c, Emanuel Grassi i, Jorge Palermo h,j, Belen Bukowski d, Pablo Tubaro d, Nahuel Schenone a a Centro de Investigaciones Antonia Ramos (CIAR), Fundacion Bosques Nativos Argentinos, Camino Balneario s/n, Villa Bonita, Misiones, Argentina b Instituto de Investigaciones en Produccion Animal (INPA-CONICET-UBA), Universidad de Buenos Aires, Av. Chorroarín 280, (C1427CWO), Buenos Aires, Argentina c Grupo de Biotaxonomía Morfologica y Molecular de Peces (BIMOPE), Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina d Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-CONICET), Av. Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina e Laboratorio de Ecotoxicología y Contaminacion Ambiental, Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina f Laboratorio de Biología Reproductiva y Evolucion, Instituto de Diversidad
    [Show full text]
  • A NEW SPECIES of the FAMILY ALYCIDAE (ACARI, ENDEOSTIGMATA) from SOUTHERN SIBERIA, RUSSIA Matti Uusitalo
    Acarina 28 (2): 109–113 © Acarina 2020 A NEW SPECIES OF THE FAMILY ALYCIDAE (ACARI, ENDEOSTIGMATA) FROM SOUTHERN SIBERIA, RUSSIA Matti Uusitalo Zoological Museum, Center for Biodiversity, University of Turku, Turku, Finland e-mail: [email protected] ABSTRACT: A new species is described from southern Siberia, Tuva Republic, Russia: Amphialycus (Amphialycus) holarcticus sp. n. (Acari, Endeostigmata, Alycidae). This species can be recognized by its broad naso with longitudinally arranged striae; two pairs of cheliceral setae, posterior one being forked; three pairs of adoral setae; and a large number of genital setae. Two pairs of palpal eupathidia are close to each other, representing a kind of transitional form towards the fusion of the basal parts of eupathidia, observed in the subgenus Orthacarus. KEY WORDS: Mites, Amphialycus, taxonomy, Asia. DOI: 10.21684/0132-8077-2020-28-2-109-113 INTRODUCTION Mites of the family Alycidae G. Canestrini and chaelia Uusitalo, 2010 and should be re-examined. Fanzago, 1877 (Acari, Endeostigmata) are free- For example, Bimichaelia ramosus was redescribed living soil-dwellers, characterized by a worldwide and renamed as Laminamichaelia shibai Uusitalo distribution. A recent revision of the family by et al., 2020 in a recent review of the South African Uusitalo (2010) has focused on the European spe- Alycidae (Uusitalo et al. 2020). cies. Meanwhile, species from other regions are Furthermore, Bimichaelia grandis was de- virtually unknown. For example, alycids were not scribed by Berlese (1913) from the island of Java, included in a recent thorough checklist of the mites Indonesia; this species will be redescribed based of Pakistan (Halliday et al.
    [Show full text]
  • Newsletter Alaska Entomological Society
    Newsletter of the Alaska Entomological Society Volume 11, Issue 1, August 2018 In this issue: DNA barcoding Alaskan willow rosette gall mak- ers (Diptera: Cecidomyiidae: Rabdophaga)....8 Microarthropods and other soil fauna of Tanana How heating affects growth rate of Dubia roaches 14 River floodplain soils: a primer . .1 Review of the eleventh annual meeting . 16 Larger insect collection specimens are not more likely to show evidence of apparent feeding damage by dermestids (Coleoptera: Dermesti- dae) . .5 Microarthropods and other soil fauna of Tanana River floodplain soils: a primer doi:10.7299/X7HM58SN blage composed of species from the superorder Parasiti- 1 formes containing members of order Mesostigmata, and by Robin N. Andrews superorder Acariformes composed of the suborders En- deostigmata, Prostigmata, and Oribatida (Krantz and Wal- Though largely unseen, tiny microarthropods form soils, ter, 2009). influence rates of decomposition, and shape bacterial, fungal, and plant communities (Seastedt, 1984; Wall and Moore, 1999; Walter and Proctor, 2013). Difficult to see without a microscope, most microarthropods are between a 0.1 and 2 mm in length. Though they exist much deeper, microarthropods are most abundant in first 5 centimeters of soil where they can reach 70,000 per square meter in early successional alder stages and a million per square meter in mature white spruce stands. These arthropods occupy at least the first couple meters in unfrozen boreal soil decreasing in numbers with depth. We are studying the development of microarthropod communities in three forest stand types along the Tanana River floodplain: early- succession alder, mid-succesion balsam poplar, and late- succession white spruce.
    [Show full text]
  • Potential of Oribatid Mites in Biodegradation and Mineralization for Enhancing Plant Productivity
    Acarological Studies Vol 1 (2): 101-122 RESEARCH ARTICLE Potential of oribatid mites in biodegradation and mineralization for enhancing plant productivity Mohamed Abdul HAQ Division of Acarology, Department of Zoology, University of Calicut, Kerala, 673 635, India e-mail: [email protected] Received: 10 December 2018 Accepted: 8 May 2019 Available online: 31 July 2019 ABSTRACT: The degradation of litter is an essential process of the soil ecosystem leading to nutrient cycling and is mediated by a heterogeneous group of soil organisms. Oribatid mites represent one of the predominant agents of litter biodegradation in the soil. The ubiquitous presence and extensive diversity of this group of mites make them integral to the process of mineralization of litter in almost all types of soil ecosystems. However, an overall assessment of the mineralization potential of different groups of oribatid mites depicts the relative advantage of lower groups of oribatids, namely the lohmannoid and phthiracaroid members, in the degradation of leafy and woody elements of litter. Degradation of such complex materials primarily necessitates additional qualities such as strong and well developed oral and holding appendages, and the presence of the necessary enteric microflora and associated enzymes, for on-going degradation. In-depth field and laboratory studies of two representative species of the above two groups of mites, viz. Atropacarus (Hoplophorella) chaliyamensis Haq and Xavier, 2005 and Heptacarus hirsutus Wallwork, 1964, with the vegetable crop Vigna unguiculata, clearly demonstrated that these species make a remarkable contribution to the process of nutrient cycling. The combined feeding activity of these two species on the woody elements of litter was found to enhance the release of nitrogen, phosphorous and potassium, as evidenced by the increased concentration of these minerals in fecal pellets.
    [Show full text]
  • Hotspots of Mite New Species Discovery: Sarcoptiformes (2013–2015)
    Zootaxa 4208 (2): 101–126 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4208.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:47690FBF-B745-4A65-8887-AADFF1189719 Hotspots of mite new species discovery: Sarcoptiformes (2013–2015) GUANG-YUN LI1 & ZHI-QIANG ZHANG1,2 1 School of Biological Sciences, the University of Auckland, Auckland, New Zealand 2 Landcare Research, 231 Morrin Road, Auckland, New Zealand; corresponding author; email: [email protected] Abstract A list of of type localities and depositories of new species of the mite order Sarciptiformes published in two journals (Zootaxa and Systematic & Applied Acarology) during 2013–2015 is presented in this paper, and trends and patterns of new species are summarised. The 242 new species are distributed unevenly among 50 families, with 62% of the total from the top 10 families. Geographically, these species are distributed unevenly among 39 countries. Most new species (72%) are from the top 10 countries, whereas 61% of the countries have only 1–3 new species each. Four of the top 10 countries are from Asia (Vietnam, China, India and The Philippines). Key words: Acari, Sarcoptiformes, new species, distribution, type locality, type depository Introduction This paper provides a list of the type localities and depositories of new species of the order Sarciptiformes (Acari: Acariformes) published in two journals (Zootaxa and Systematic & Applied Acarology (SAA)) during 2013–2015 and a summary of trends and patterns of these new species. It is a continuation of a previous paper (Liu et al.
    [Show full text]
  • Identification of Trombiculid Chigger Mites Collected on Rodents from Southern Vietnam and Molecular Detection of Rickettsiaceae Pathogen
    ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 58, No. 4: 445-450, August 2020 ▣ ORIGINAL ARTICLE https://doi.org/10.3347/kjp.2020.58.4.445 Identification of Trombiculid Chigger Mites Collected on Rodents from Southern Vietnam and Molecular Detection of Rickettsiaceae Pathogen 1, 2, 1 3 4,5, 4,5, Minh Doan Binh †, Sinh Cao Truong †, Dong Le Thanh , Loi Cao Ba , Nam Le Van * , Binh Do Nhu * 1Ho Chi Minh Institute of Malariology-Parasitology and Entomology, Ho Chi Minh Vietnam; 2Vinh Medical University, Nghe An, Vietnam; 3National Institute of Malariology-Parasitology and Entomology, Ha Noi, Vietnam; 4Military Hospital 103, Ha Noi, Vietnam; 5Vietnam Military Medical University, Ha Noi, Vietnam Abstract: Trombiculid “chigger” mites (Acari) are ectoparasites that feed blood on rodents and another animals. A cross- sectional survey was conducted in 7 ecosystems of southern Vietnam from 2015 to 2016. Chigger mites were identified with morphological characteristics and assayed by polymerase chain reaction for detection of rickettsiaceae. Overall chigger infestation among rodents was 23.38%. The chigger index among infested rodents was 19.37 and a mean abun- dance of 4.61. A total of 2,770 chigger mites were identified belonging to 6 species, 3 genera, and 1 family, and pooled into 141 pools (10-20 chiggers per pool). Two pools (1.4%) of the chiggers were positive for Orientia tsutsugamushi. Rick- etsia spp. was not detected in any pools of chiggers. Further studies are needed including a larger number and diverse hosts, and environmental factors to assess scrub typhus. Key words: Oriental tsutsugamushi, Rickettsia sp., chigger mite, ectoparasite INTRODUCTION Orientia tsutsugamushi is a gram-negative bacteria and caus- ative agent of scrub typhus, is a vector-borne zoonotic disease Trombiculid mites (Acari: Trombiculidae) are ectoparasites with the potential of causing life-threatening febrile infection that are found in grasses and herbaceous vegetation.
    [Show full text]