October 1998 the American Physical Society Volume 7, No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unrestricted Immigration and the Foreign Dominance Of
Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of -
書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S. -
Department of Physics and Astronomy 1
Department of Physics and Astronomy 1 PHSX 216 and PHSX 236, provide a calculus-based foundation in Department of Physics physics for students in physical science, engineering, and mathematics. PHSX 313 and the laboratory course, PHSX 316, provide an introduction and Astronomy to modern physics for majors in physics and some engineering and physical science programs. Why study physics and astronomy? Students in biological sciences, health sciences, physical sciences, mathematics, engineering, and prospective elementary and secondary Our goal is to understand the physical universe. The questions teachers should see appropriate sections of this catalog and major addressed by our department’s research and education missions range advisors for guidance about required physics course work. Chemistry from the applied, such as an improved understanding of the materials that majors should note that PHSX 211 and PHSX 212 are prerequisites to can be used for solar cell energy production, to foundational questions advanced work in chemistry. about the nature of mass and space and how the Universe was formed and subsequently evolved, and how astrophysical phenomena affected For programs in engineering physics (http://catalog.ku.edu/engineering/ the Earth and its evolution. We study the properties of systems ranging engineering-physics/), see the School of Engineering section of the online in size from smaller than an atom to larger than a galaxy on timescales catalog. ranging from billionths of a second to the age of the universe. Our courses and laboratory/research experiences help students hone their Graduate Programs problem solving and analytical skills and thereby become broadly trained critical thinkers. While about half of our majors move on to graduate The department offers two primary graduate programs: (i) an M.S. -
Senate Resolution No. 2861 Senator GOUNARDES BY: Hunter
Senate Resolution No. 2861 BY: Senator GOUNARDES COMMENDING Hunter College of the City University of New York upon the occasion of celebrating its 150th Anniversary WHEREAS, It is the sense of this Legislative Body to recognize and commend those exemplary institutions of higher education within the State of New York for their enduring commitment to the pursuit of academic excellence; and WHEREAS, Attendant to such concern, and in full accord with its long-standing traditions, this Legislative Body is justly proud to commend Hunter College of the City University of New York upon the occasion of celebrating its 150th Anniversary with a myriad of events to be held throughout the year; and WHEREAS, Located on Park Avenue in New York City, Hunter College is a public university which truly values learning in the liberal arts and sciences as a cornerstone of individual development and a vital foundation for a more just and inclusive society; and WHEREAS, Since its inception, Hunter College has strived to promote personal development and self-awareness, foster life-long learning, and equip each and every student with the habits of mind, character, and confidence to embody its motto: The Care of the Future is Mine; and WHEREAS, Throughout its 150-year history, many distinguished individuals have graduated from Hunter College such as Nobel Laureates, Rosalyn Sussman Yalow, Gertrude B. Elion; in addition to these notable luminaries, numerous others have gone on to become Pulitzer Prize winners, National Medal of Science winners, Presidential Medal -
Inspec Archive - List of Journals Covered Between 1898 and 1968
February 2006 www.iee.org/inspec Inspec Archive - List of Journals Covered between 1898 and 1968 Abhandlungen der Berlin Akademie Acta Universitatis Lundensis. Sectio II. Medica, Abhandlungen der Braunschweigischen Mathematica, Scientiae Rerum Naturalium Wissenschaftlichen Gesellschaft Acta Universitatis Tamperensis Abhandlungen der Deutschen Akademie der Acustica Wissenschaften zu Berlin, Klasse fur Advanced Energy Conversion Mathematik, Physik und Technik Advances in Atomic and Molecular Physics Abhandlungen der Konigliches Preussisches Advances in Electronics Meteorologies Institut Advances in Physics Abhandlungen der Preussischen Akademieder Advances in Theoretical Physics Wissenschaften Advances of Science Accademia delle Scienze, Medico e Naturali, AEG Mitteilungen Ferrara AEG Progress ACEC Journal AEG Zeitung ACEC Review AEI Engineering Acero y Energia AEI Engineering Review Acta Academiae Aboensis, Mathematical AEI Journal of Telecommunications Physics AEI Research Laboratory Reports Acta and Commentationes Universitatis Aerial Age Tartuensis (Dorpatensis) Aerial Age Weekly Acta Automatica Sinica Aeronautical Engineering Review Acta Bolyaiana Aeronautical Journal Acta Chemica Scandinavica Aeronautical Research Council Current Papers Acta Crystallographica Aeronautical Research Council Reports and Acta Electronica Memoranda Acta Electronica Sinica Aeronautics Acta Geophysica Sinica Aeroplane Acta Mathematica Aerospace Engineering Acta Mathematica Sinica Agricultural and Horticultural Engineering Acta Mechanica Abstracts Acta Medica -
Race in the Age of Obama Making America More Competitive
american academy of arts & sciences summer 2011 www.amacad.org Bulletin vol. lxiv, no. 4 Race in the Age of Obama Gerald Early, Jeffrey B. Ferguson, Korina Jocson, and David A. Hollinger Making America More Competitive, Innovative, and Healthy Harvey V. Fineberg, Cherry A. Murray, and Charles M. Vest ALSO: Social Science and the Alternative Energy Future Philanthropy in Public Education Commission on the Humanities and Social Sciences Reflections: John Lithgow Breaking the Code Around the Country Upcoming Events Induction Weekend–Cambridge September 30– Welcome Reception for New Members October 1–Induction Ceremony October 2– Symposium: American Institutions and a Civil Society Partial List of Speakers: David Souter (Supreme Court of the United States), Maj. Gen. Gregg Martin (United States Army War College), and David M. Kennedy (Stanford University) OCTOBER NOVEMBER 25th 12th Stated Meeting–Stanford Stated Meeting–Chicago in collaboration with the Chicago Humanities Perspectives on the Future of Nuclear Power Festival after Fukushima WikiLeaks and the First Amendment Introduction: Scott D. Sagan (Stanford Introduction: John A. Katzenellenbogen University) (University of Illinois at Urbana-Champaign) Speakers: Wael Al Assad (League of Arab Speakers: Geoffrey R. Stone (University of States) and Jayantha Dhanapala (Pugwash Chicago Law School), Richard A. Posner (U.S. Conferences on Science and World Affairs) Court of Appeals for the Seventh Circuit), 27th Judith Miller (formerly of The New York Times), Stated Meeting–Berkeley and Gabriel Schoenfeld (Hudson Institute; Healing the Troubled American Economy Witherspoon Institute) Introduction: Robert J. Birgeneau (Univer- DECEMBER sity of California, Berkeley) 7th Speakers: Christina Romer (University of Stated Meeting–Stanford California, Berkeley) and David H. -
Appendix E Nobel Prizes in Nuclear Science
Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence -
1 Restoring Scientific Integrity in Policy Making February 18, 2004
Restoring Scientific Integrity in Policy Making February 18, 2004 Science, like any field of endeavor, relies on freedom of inquiry; and one of the hallmarks of that freedom is objectivity. Now, more than ever, on issues ranging from climate change to AIDS research to genetic engineering to food additives, government relies on the impartial perspective of science for guidance. President George H.W. Bush, April 23, 1990 Successful application of science has played a large part in the policies that have made the United States of America the world’s most powerful nation and its citizens increasingly prosperous and healthy. Although scientific input to the government is rarely the only factor in public policy decisions, this input should always be weighed from an objective and impartial perspective to avoid perilous consequences. Indeed, this principle has long been adhered to by presidents and administrations of both parties in forming and implementing policies. The administration of George W. Bush has, however, disregarded this principle. When scientific knowledge has been found to be in conflict with its political goals, the administration has often manipulated the process through which science enters into its decisions. This has been done by placing people who are professionally unqualified or who have clear conflicts of interest in official posts and on scientific advisory committees; by disbanding existing advisory committees; by censoring and suppressing reports by the government’s own scientists; and by simply not seeking independent scientific advice. Other administrations have, on occasion, engaged in such practices, but not so systematically nor on so wide a front. Furthermore, in advocating policies that are not scientifically sound, the administration has sometimes misrepresented scientific knowledge and misled the public about the implications of its policies. -
Interview Apr 2008 28-31
ISSUE SIX APRIL 2008 €5.00 / £3.50 ISSN 1757-2517 THE MAGAZINE FOR SMALL SCIENCE MMIIRRAACCLLEE MCMarboAAn nTTanoEEtubRRes IIAALL Nobel conversation The future for Sir Harry Kroto Smart Yarns Spinning next generation materials Plumbing on the nanoscale Welding nanotubes together for smart circuits Credit crunch How market changes will impact nanotech Investing in the future Japan on a mission to stay top in technology What’s New in Nano Keep up with the latest news PLUS: A TRICK OF THE LIGHT? METAMATERIALS BENDING LIGHT BACKWARDS EW VI R TE IN Nobel conversation OTTILIA SAXL INTERVIEWS SIR HARRY KROTO, WHO RECEIVED THE NOBEL PRIZE FOR CHEMISTRY, IN 1996, ALONG WITH ROBERT CURL AND RICHARD SMALLEY FOR THE DISCOVERY OF CARBON C60, AN ENTIRELY NEW FORM OF CARBON WITH MANY INTRIGUING PROPERTIES. SIR HARRY IS CONVINCED THAT THE WORLD OF CIVIL ENGINEERING WILL CHANGE AS DEFECT-FREE STRUCTURES ARE CREATED ONCE LONG LENGTHS OF CARBON NANOTUBES HAVING A CONSISTENT DIAMETER CAN BE ROUTINELY SYNTHESIZED.. part from his research and other future in these as a career. My father, who got involved in athletics and worked on the interests, Sir Harry has been active had been a refugee, ran a small family student magazine. I did so many things Ain enabling leading scientists to business, and was keen for me to join him. there that I wanted to stay on, and did so by communicate with the public through the But both my chemistry teacher and my art taking a PhD in Spectroscopy. Essentially, Vega Trust, and has more recently set up a teacher were very supportive of me University for me was a place I could do all new website, GeoSet, which offers a forum continuing my studies, and it was my the things I was interested in, so I gave it a try for young scientists to share their ideas and chemistry teacher, Harry Heaney, who for 5 years. -
Heroes and Heroines of Drug Discovery
Heroes and Heroines of Drug Discovery Talking Science Lecture The Rockefeller University January 9, 2016 Mary Jeanne Kreek Mary Jeanne Kreek (b. February 9, 1937) • Recruited by a Rockefeller University researcher, Vincent P. Dole, to assess addiction, with the focus of seeing addiction as an illness, not a choice • Research focused on the synthetic drug methadone, which she found relieved heroin cravings and prevented withdrawal symptoms • Helped get methadone approved as a long term opiate addiction therapy in 1973 • Transformed our understanding of addiction from a personal shortcoming to a medical disease Alexander Fleming Alexander Fleming (August 6, 1881 – March 11, 1955) • 1928 – observed that mold accidentally developed on a staphylococcus culture plate which had created a bacteria-free circle around itself • Further experimentation found that this mold, even when diluted 800 times, prevented the growth of staphylococci • He would name it Penicillin • 1945 – won the Nobel Prize in Physiology or Medicine Charles L. Sawyers Charles L. Sawyers (b. 1959) • Interested in the Philadelphia Chromosome, a genetic aberration where 2 chromosomes swap segments, enabling white blood cells to grow without restraint and causing chronic myeloid leukemia • Focused on determining what turns cancer cells “on” or “off” • Found the specific oncogenes that control a cancer cell and shut them off – Enabled patients to receive a treatment targeted specifically for their cancer, rather than a general treatment for all kinds of cancer • 2013 – won the Breakthrough -
Prezentacja Programu Powerpoint
1 Sprawy organizacyjne Zajęcia laboratoryjne: CHEMIA: piątki, 14:15 – 18:00 TECHNOLOGIA CHEMICZNA: środy, 10:15 – 14:00 Miejsce zajęć (zgodnie z podanym planem): Katedra Fizyki Molekularnej (dr Izabela Bobowska) Międzyresortowy Instytut Techniki Radiacyjnej (sala 213) (dr Sławomir Kadłubowski, dr Radosław Wach, dr hab. Piotr Ulański – pok. 224 MITR) 2 Sprawy organizacyjne Zajęcia laboratoryjne: 30 godzin, każdy student wykonuje 5 ćwiczeń po 4 h Podział na grupy pięcioosobowe A1, A2, A3; B1, B2, B3; C1, C2, C3; D1, D2, D3 Grafik będzie podany Sprawozdanie składa grupa Na końcu wszyscy zdają dwuczęściowe kolokwium Zasady określone w regulaminie (link będzie podany) Regulamin TRZEBA przeczytać Instrukcje (MITR) są na stronie (samoobsługa) 3 Sprawy organizacyjne 4 Sprawy organizacyjne 5 ”There is plenty of room at the bottom …” 6 Richard Feynman (laureat nagrody Nobla z fizyki) Products - Nano The Nobel Prize in Chemistry 2016: NANOMOTORS Jean-Pierre Sauvage, Sir J. F. Stoddart, Bernard Feringa „For the design and synthesis of molecular machines". The Nobel Prize in Chemistry 2014: TO SEE AT NANOSCALE Eric Betzig, Stefan W. Hell and William E. Moerner „For the development of super-resolved fluorescence microscopy". 7 Nano-słownik Nano = 10-9 (jedna miliardowa część) Z greckiego νᾶνος (nanos) - karzeł Nanosekunda = 1 10-9 s Bardzo szybkie reakcje chemiczne W ciągu 1 ns światło przebywa drogę 30 cm, a dźwięk w powietrzu 0,00033 mm (0,33 mikrona) Nanogram = 1 10-9 g (obiekty o wymiarach ok. 10 mikronów, około 1/300 masy ziarenka maku) Nanometr -
Famous Female Scientists
Appendix B: Scientific Contributions of Thirteen Outstanding Female Scientists Scientific Contributions of Thirteen Outstanding Female Scientists Gerty Cori, with her husband, received international recognition for discovering how glucose converts to glycogen (Cori cycle). This husband and wife team won the 1947 Nobel Prize in physiology or medicine for “discovering the course of the catalytic conversion of glycogen” (mechanism for blood glucose regulation). Cori’s later studies on enzymes and hormones advanced research in diabetes treatment, contributing new understandings that missing enzymes resulted from defective genes. This laid the foundation for future studies of genetic defects in humans. Her research profoundly affected diabetes treatment, allowing physicians to understand how the body stores glucose by converting it predominantly into glycogen, which the body then uses for energy. Despite her significant research, she fought discrimination and nepotism within the Gerty Radnitz Cori scientific community. In 1947, the same year she became the first American woman and the (1896–1954) third worldwide to receive a Nobel Prize in the sciences, she achieved full professor status in biochemistry at Washington University, St. Louis. In 1950, President Harry Truman appointed her to the Board of Directors of the National Science Foundation. Considered the most famous of all women scientists, this Polish researcher “extraordinarie” was the first person (male or female) to win two Nobel Prizes. At age 16, she had already won a gold medal at the Russian lycée in Poland upon completion of her secondary education. In 1891, almost penniless, she began her education at the Sorbonne in Paris and later became the first woman professor to teach there.