Potential Vectors of Equine Arboviruses in the UK
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mosquito Species Identification Using Convolutional Neural Networks With
www.nature.com/scientificreports OPEN Mosquito species identifcation using convolutional neural networks with a multitiered ensemble model for novel species detection Adam Goodwin1,2*, Sanket Padmanabhan1,2, Sanchit Hira2,3, Margaret Glancey1,2, Monet Slinowsky2, Rakhil Immidisetti2,3, Laura Scavo2, Jewell Brey2, Bala Murali Manoghar Sai Sudhakar1, Tristan Ford1,2, Collyn Heier2, Yvonne‑Marie Linton4,5,6, David B. Pecor4,5,6, Laura Caicedo‑Quiroga4,5,6 & Soumyadipta Acharya2* With over 3500 mosquito species described, accurate species identifcation of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open‑set problem with a detection algorithm for novel species. Closed‑set classifcation of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed‑set classifcation of 39 species produces a macro F1‑score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild‑caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region. Mosquitoes are one of the deadliest animals in the world, infecting between 250–500 million people every year with a wide range of fatal or debilitating diseases, including malaria, dengue, chikungunya, Zika and West Nile Virus1. -
Mosquitoes (Diptera: Culicidae) in the Dark—Highlighting the Importance of Genetically Identifying Mosquito Populations in Subterranean Environments of Central Europe
pathogens Article Mosquitoes (Diptera: Culicidae) in the Dark—Highlighting the Importance of Genetically Identifying Mosquito Populations in Subterranean Environments of Central Europe Carina Zittra 1 , Simon Vitecek 2,3 , Joana Teixeira 4, Dieter Weber 4 , Bernadette Schindelegger 2, Francis Schaffner 5 and Alexander M. Weigand 4,* 1 Unit Limnology, Department of Functional and Evolutionary Ecology, University of Vienna, 1090 Vienna, Austria; [email protected] 2 WasserCluster Lunz—Biologische Station, 3293 Lunz am See, Austria; [email protected] (S.V.); [email protected] (B.S.) 3 Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Strasse 33, 1180 Vienna, Austria 4 Zoology Department, Musée National d’Histoire Naturelle de Luxembourg (MNHNL), 2160 Luxembourg, Luxembourg; [email protected] (J.T.); [email protected] (D.W.) 5 Francis Schaffner Consultancy, 4125 Riehen, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +352-462-240-212 Abstract: The common house mosquito, Culex pipiens s. l. is part of the morphologically hardly or non-distinguishable Culex pipiens complex. Upcoming molecular methods allowed us to identify Citation: Zittra, C.; Vitecek, S.; members of mosquito populations that are characterized by differences in behavior, physiology, host Teixeira, J.; Weber, D.; Schindelegger, and habitat preferences and thereof resulting in varying pathogen load and vector potential to deal B.; Schaffner, F.; Weigand, A.M. with. In the last years, urban and surrounding periurban areas were of special interest due to the Mosquitoes (Diptera: Culicidae) in higher transmission risk of pathogens of medical and veterinary importance. -
Wirral Heritage Open Days 2016 Welcome
Wirral Heritage Open Days 3- 11 September 2016 Wirral Heritage Welcome Open Days 2016 Heritage Open Days celebrate our Wirral’s nine day programme lasts As Wirral’s Heritage Champion, I am Heritage Open Days is a national event outstanding architecture and culture from September 3 – 11. Our heritage delighted once again to welcome you to which Wirral is proud to contribute. by allowing free access to properties is second to none and Heritage Open to Wirral Heritage Open Days. The 2016 Over the years visitor numbers have many of which are normally closed to Days give both visitors and residents programme gives visitors the chance to increased and our local open days the public or charge an admission fee. the chance to explore and enjoy its explore a wide range of historic buildings now draw in people from well outside wealth of history and architecture. and landscapes as well as providing an Wirral as well as from the peninsula Throughout the country, thousands of interesting series of tours, events and itself. Admission to all events is free. historic buildings and sites will open their and Heritage Association website: activities, organised by voluntary groups doors and local people will organise www.wirralhistoryandheritage.org.uk. and individuals, and all aimed at giving This year’s programme has been organised countless events and activities to both local residents and visitors alike a by the partnership of the Wirral History promote their community’s heritage. Downloadable copies of this programme unique opportunity to discover more of and Heritage Association and numerous Information about Heritage Open Days are available on www.visitwirral.com. -
Mosquito Survey Reveals the First Record of Aedes (Diptera: Culicidae) Species in Urban Area, Annaba District, Northeastern Algeria
Online ISSN: 2299-9884 Polish Journal of Entomology 90(1): 14–26 (2021) DOI: 10.5604/01.3001.0014.8065 Mosquito survey reveals the first record of Aedes (Diptera: Culicidae) species in urban area, Annaba district, Northeastern Algeria Djamel Eddine Rachid Arroussi1* , Ali Bouaziz2 , Hamid Boudjelida1 1 Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, University Badji Mokhtar Annaba, Algeria. 2 Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University Souk Ahras, Algeria. * Correspondending author: [email protected] Abstract: The diversity, distribution and ecology of mosquitoes, especially arbovirus vectors are important indices for arthropod-borne diseases control. The mosquito larvae were collected in different habitats in four sites of Annaba district, Algeria, during the period of March 2018 to February 2019 and the properties of larval habitats were recorded for each site. The systematic study revealed the presence of 8 species belonging to 4 genera; including Culex pipiens (Linnaeus, 1758), Culex modestus (Ficalbi, 1889), Culex theileri (Theobald, 1903), Culiseta longiareolata (Macquart, 1838), Anopheles labranchiae (Falleroni, 1926), Anopheles claviger (Meigen, 1804), Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894). Among the species, C. pipiens presented the highest species abundance (RA %) (55.23%) followed by C. longiareolata (20.21%). The Aedes species are recorded for the first time in the study urban area. Variation of diversity in different sites depends on the type of breeding habitat. These results provided important information on species diversity, distribution and factors associated with breeding habitats. They could be used for the mosquito control and to prevent the spread of mosquito-borne diseases to the population of the region. -
Culex Pipiens As a Potential Vector for Transmission of Dirofilaria Immitis and Other Unclassified Filarioidea in Southwest Spain
Culex pipiens as a potential vector for transmission of Dirofilaria immitis and other unclassified Filarioidea in Southwest Spain Daniel Bravo-Barrigaa, Ricardo Parreirab, António P.G. Almeidac, d, Manuela Caladoc, Juan Blanco-Ciudada, Francisco Javier Serrano-Aguileraa, Juan Enrique Pérez-Martína, Joaquín Sánchez-Peinadoe, João Pintoc, David Reinaa, Eva Fronteraa, * a Parasitology and Parasitic Diseases, Animal Health Department, Veterinary Faculty, University of Extremadura, Spain b Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Unidade de Microbiología Médica (Grupo de Virologia), Lisboa, Portugal c Global Health and Tropical Medicine (GHMT), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Unidade de Parasitologia Médica, Rua da Junqueira 100, 1349-008 Lisboa, Portugal d Zoonosis Research Unit, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa e Internal Medicine, Animal Medicine Department, Veterinary Faculty, University of Extremadura, Spain ∗ Corresponding author. E-mail address: [email protected] (E. Frontera). Highlights Dirofilaria immitis DNA detected in thorax of Culex pipiens f. pipiens. Culex pipiens f. pipiens as a potential vector of Dirofilaria immitis in Spain. Detection of unclassified Filarioidea, possibly of avian origin in Spanish mosquitoes. Culex pipiens biotypes can acts as a potential vector for other filarioid nematodes Abstract Dirofilaria immitis is one of the most frequently detected mosquito-transmitted zoonotic filarioid nematode in mammals in Europe, being canine dirofilariosis a major animal health problem, endemic in the Mediterranean area. This study, focused on Southwest Spain, in order to bring new insights into (i) the epidemiology of Dirofilaria spp., (ii) the species of Culicid vectors possibly involved in their transmission and (iii) the genetic variability of those potential vectors. -
Wirral Landscape Character Assessment 2019 A
Wirral Metropolitan Borough Council Wirral Landscape Character Assessment Final report Prepared by LUC October 2019 Wirral Metropolitan Borough Council Wirral Landscape Character Assessment Version Status Prepared Checked Approved Date 1. Draft Final Report A Knight K Davies K Davies 07.10.2019 K Davies 2. Final Report A Knight K Davies K Davies 30.10.2019 Bristol Land Use Consultants Ltd Landscape Design Edinburgh Registered in England Strategic Planning & Assessment Glasgow Registered number 2549296 Development Planning Lancaster Registered office: Urban Design & Masterplanning London 250 Waterloo Road Environmental Impact Assessment Manchester London SE1 8RD Landscape Planning & Assessment Landscape Management landuse.co.uk 100% recycled paper Ecology Historic Environment GIS & Visualisation Contents Wirral Landscape Character Assessment October 2019 Contents 1c: Eastham Estuarine Edge 60 Chapter 1 Introduction and Landscape Context 4 Chapter 7 Structure of this report 4 LCT 2: River Floodplains 67 Background and purpose of the Landscape Character Assessment 4 2a: The Birket River Floodplain 68 The role of Landscape Character Assessment 5 Wirral in context 5 2b: The Fender River Floodplain 75 Policy context 6 Relationship to published landscape studies 9 Chapter 8 LCT 3: Sandstone Hills 82 Chapter 2 Methodology for the Landscape 3a: Bidston Sandstone Hills 83 Character Assessment 13 3b: Thurstaston and Greasby Sandstone Hills 90 3c: Irby and Pensby Sandstone Hills 98 Approach 13 3d: Heswall Dales Sandstone Hills 105 Process of assessment -
Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist. -
Identification Key for Mosquito Species
‘Reverse’ identification key for mosquito species More and more people are getting involved in the surveillance of invasive mosquito species Species name used Synonyms Common name in the EU/EEA, not just professionals with formal training in entomology. There are many in the key taxonomic keys available for identifying mosquitoes of medical and veterinary importance, but they are almost all designed for professionally trained entomologists. Aedes aegypti Stegomyia aegypti Yellow fever mosquito The current identification key aims to provide non-specialists with a simple mosquito recog- Aedes albopictus Stegomyia albopicta Tiger mosquito nition tool for distinguishing between invasive mosquito species and native ones. On the Hulecoeteomyia japonica Asian bush or rock pool Aedes japonicus japonicus ‘female’ illustration page (p. 4) you can select the species that best resembles the specimen. On japonica mosquito the species-specific pages you will find additional information on those species that can easily be confused with that selected, so you can check these additional pages as well. Aedes koreicus Hulecoeteomyia koreica American Eastern tree hole Aedes triseriatus Ochlerotatus triseriatus This key provides the non-specialist with reference material to help recognise an invasive mosquito mosquito species and gives details on the morphology (in the species-specific pages) to help with verification and the compiling of a final list of candidates. The key displays six invasive Aedes atropalpus Georgecraigius atropalpus American rock pool mosquito mosquito species that are present in the EU/EEA or have been intercepted in the past. It also contains nine native species. The native species have been selected based on their morpho- Aedes cretinus Stegomyia cretina logical similarity with the invasive species, the likelihood of encountering them, whether they Aedes geniculatus Dahliana geniculata bite humans and how common they are. -
RESCON 2020 Proceedings
POSTGRADUATE INSTITUTE OF SCIENCE UNIVERSITY OF PERADENIYA SRI LANKA PGIS RESEARCH CONGRESS 2020 PROCEEDINGS 26th - 28th November 2020 Copyright © 2020 by Postgraduate Institute of Science All rights reserved. No part of this publication may be reproduced, distributed, stored in a retrieval system, and transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher. ISBN 978-955-8787-10-6 Published by Postgraduate Institute of Science (PGIS) University of Peradeniya Peradeniya 20400 SRI LANKA Printed by Sanduni Offset Printers (Pvt) Ltd, 1/4, Sarasavi Uyana Goodshed Road, Sarasavi Uyana, Peradeniya 20400, Sri Lanka Printed in the Democratic Socialist Republic of Sri Lanka ii TABLE OF CONTENTS Message from the Director, Postgraduate Institute of Science ....................................... v Message from the Congress Chairperson ..................................................................... vii Message from the Editor-in-Chief .................................................................................ix Message from the Chief Guest .......................................................................................xi Editorial Board ............................................................................................................ xiii Academic Coordinators of the Virtual Technical Sessions .........................................xiv A Brief Biography of the Keynote Speaker ................................................................. -
Culex Pipiens S.S
Mosquito Surveillance and Management in Turkey Filiz GÜNAY and Bülent Alten Native and non-native vector management in the Eastern Mediterranean and Middle East (EMME) 18-20 April 2018, Cyprus MOSQUITO BORN DISEASES IN TURKEY 1970 2013 Vector species in Turkey Widespread in the 1994 - 2012 2017 Number of cases Number of Anopheles sacharovi Number of cases Number of Malaria past cases Anopheles superpictus 170.000 84.345 - 5 cases 101 285(MoH) West Nile Vector species in Turkey Culex pipiens s.s. Difficult to control Egean, Mediterranean, Blood samples from Human Central, South East, Birds Horse Dog and Cow Encephelitis Culex quinquefasciatus Anatolia Culex perexiguus Vector species in the world Aedes aegypti Rearly seen in Turkey Central Anatolia antigens in Dengue Aedes albopictus serum of animals Past studies on Mosquito Surveillance in Turkey Parrish 1959 Ramsdale et.al. 2001 Aldemir et.al. 2009 SOVE Simsek et.al. 2011 1 Anopheles algeriensis Anopheles algeriensis 2 Anopheles claviger Anopheles claviger § D Parrish 1959 3 Anopheles hyrcanus Anopheles hyrcanus 4 Anopheles maculipennis ss Anopheles maculipennis ss 5 Anopheles messeae The Mosquitoes of Turkey 6 Anopheles sacharovi Anopheles sacharovi 7 Anopheles melanoon Anopheles (subalpinus) melanoon Anopheles melanoon 52 Tür; Anopheles (13), Aedes (17), Culex (16), Culiseta (4), 8 Anopheles marteri Anopheles marteri 9 Anopheles plumbeus Anopheles plumbeus Uranotaenia (1), Orthopodomyia (1). 10 Anopheles pulcherrimus 11 Anopheles superpictus Anopheles superpictus 12 Acartomyia phoeniciae -
Copyright © and Moral Rights for This Thesis Are Retained by the Author And/Or Other Copyright Owners
Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", Canterbury Christ Church University, name of the University School or Department, PhD Thesis. Renita Danabalan PhD Ecology Mosquitoes of southern England and northern Wales: Identification, Ecology and Host selection. Table of Contents: Acknowledgements pages 1 Abstract pages 2 Chapter1: General Introduction Pages 3-26 1.1 History of Mosquito Systematics pages 4-11 1.1.1 Internal Systematics of the Subfamily Anophelinae pages 7-8 1.1.2 Internal Systematics of the Subfamily Culicinae pages 8-11 1.2 British Mosquitoes pages 12-20 1.2.1 Species List and Feeding Preferences pages 12-13 1.2.2 Distribution of British Mosquitoes pages 14-15 1.2.2.1 Distribution of the subfamily Culicinae in UK pages 14 1.2.2.2. Distribution of the genus Anopheles in UK pages 15 1.2.3 British Mosquito Species Complexes pages 15-20 1.2.3.1 The Anopheles maculipennis Species Complex pages -
Spread of the West Nile Virus Vector Culex Modestus and the Potential Malaria Vector Anopheles Hyrcanus in Central Europe
Vol. 33, no. 2 Journal of Vector Ecology 269 Spread of the West Nile virus vector Culex modestus and the potential malaria vector Anopheles hyrcanus in central Europe Jan Votýpka1,2, Veronika Šeblová1, and Jana Rádrová1 1 Faculty of Sciences, Charles University, Viničná 7, 12844 Prague, Czech Republic 2 Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic Received 14 February 2008; Accepted 22 August 2008 ABSTRACT: Mosquito faunal studies were carried out in five separate wetland regions in the Czech Republic during 2004- 2007, sampling with dry ice-baited and sentinel host-baited CDC traps. A total of 79,245 adults was identified, representing 23 mosquito species that belonged to the genera Anopheles, Culiseta, Coquillettidia, Aedes, and Culex. Our findings reveal that the mosquito fauna is enriched by new elements in the Mediterranean region. Historical and CDC trap data suggest that the newly-emerging potential malaria vector, Anopheles hyrcanus, has reached the northern limit of its distribution in the Czech Republic, and the important West Nile virus (WNV) vector, Culex modestus, has widened its distribution in the Czech Republic. No significant differences were observed in a total number of mosquitoes collected by traps baited with either the sentinel animals or with CO2, although species abundance differed. A relativelyhigher proportion of Cx. modestus was collected in the sentinel-baited traps, while the proportion of Cx. pipiens was higher in the CO2-baited traps. Journal of Vector Ecology 33 (2): 269-277. 2008. Keyword Index: Mosquitoes, WNV, Czech Republic, climate change. INTRODUCTION al. 2007).