Gerhard Hochschild (1915–2010) Walter Ferrer Santos and Martin Moskowitz, Coordinating Editors

Total Page:16

File Type:pdf, Size:1020Kb

Gerhard Hochschild (1915–2010) Walter Ferrer Santos and Martin Moskowitz, Coordinating Editors Gerhard Hochschild (1915–2010) Walter Ferrer Santos and Martin Moskowitz, Coordinating Editors In the mid-1940s and early 1950s, homological and Dickson (1906); and later Brauer (1928), Baer algebra was ripe for formalization, or to put it (1934), and Hall (1938). In 1941 H. Hopf gave an in Hochschild’s own words—see his now classic explicit formula for the second homology group in review of the book Homological Algebra by Car- terms of a description of the first homotopy group tan and Eilenberg ([1])— “The appearance of this using generators and relations which, according book must mean that the experimental phase of to Mac Lane, provided the justification for the homological algebra is now surpassed.” study of group cohomology. The actual definition From its topological origins in the work of Rie- of homology and cohomology of a group first mann (1857), Betti (1871), and Poincaré (1895) on appears in the famous papers by Eilenberg and the “homology numbers” and after 1925 with the Mac Lane: first in the 1943 announcement [2] and work of E. Noether showing that the homology of later in 1947 in [3] in full detail. More or less a space was better viewed as a group and not as simultaneously and independently, Freudenthal Betti numbers and torsion coefficients, the subject considered the same concepts in the Netherlands of homology of a space became more and more (c. 1944) and, in a different guise, Hopf was doing algebraic. A further step was taken with the ap- the same in Switzerland. In his 1944 paper, instead pearance of the concept of a chain complex in 1929 of using explicit complexes as in [3], Hopf uses as formulated by Mayer and in a different guise free resolutions to define homology groups with by de Rham in his 1931 thesis. In 1935 Hurewicz integral coefficients, the concept of free resolution showed that the homology of an aspherical space having been used in algebra since its introduction depended only on its first homotopy group, hence by Hilbert in his famous 1890 paper on invariant defining implicitly the (co)homology of a group. In theory. For the above historical comments the au- parallel, and purely from the viewpoint of algebra, thors followed closely the information appearing the low-dimensional cohomology of a group had in Chapter 28, History of Homological Algebra by been considered earlier. For example, it appeared C. A. Weibel in [13]. implicitly in Hilbert’s Theorem 90 in 1897—known While still a graduate student at Princeton, also to Kummer before—as well as in the study Hochschild submitted a paper for publication of so-called factor sets used to classify group dealing with the study of the behavior of Lie extensions. It also occurred in other contexts—in algebras and associative algebras with respect to the early work of Hölder (1893), Schur (1904), derivations. In the Introduction to [4]—which was published in 1942 shortly after he was drafted Walter Ferrer Santos is professor of mathematics at the Univ. de la República, Montevideo, Uruguay. He finished into the army at the end of 1941—he states: his thesis under Hochschild’s direction in 1980. His email “These ‘generalized derivations’…were found to address is [email protected]. be significant for the structure of an algebra. In fact Martin Moskowitz is professor emeritus of mathematics we shall obtain a characterization of semisimple at the City University of New York Graduate Center. He Lie algebras and semisimple associative algebras finished his thesis under Hochschild’s direction in 1964. in terms of these generalized derivations.” His email address is [email protected]. Gerhard’s dissertation committee, cochaired by All photographs, unless otherwise noted, are courtesy of Chevalley and Lefschetz, reports: “The thesis deals the Hochschild family. with certain important problems in Lie algebras 1078 Notices of the AMS Volume 58,Number8 and related questions in associative algebras. It mathematics graduate student at UIUC—and his contains in particular a highly interesting charac- daughter and son were born in 1955 and 1957, terization of semisimple Lie algebras in terms of respectively. Some relevant aspects of his mathe- the operation of formal derivation. The thesis is matical work during this period are described in highly worthy of publication as it contains many the following works. new results in addition to those indicated above. In the contribution by John T. Tate, “Memories Furthermore, Hochschild set the problem himself of Hochschild, with a Letter from Serre”, the and also did the research in an essentially inde- author writes about his pendent way.”1 In modern terms Gerhard proved personal and mathematical in his thesis that an associative algebra has the interaction with Gerhard in property that all its derivations are inner if and the genesis of the cohomo- only if it is separable. The method he uses is logical perspective of class basically homological, and with the tool of a sep- field theory. He also adjoins arability idempotent, constructs from the given a letter by Serre describ- derivation the element that is used to characterize ing the process that led it as a conjugation. In these terms he was dealing to the construction of the with what is now called the first Hochschild co- so-called Hochschild-Serre homology group and proving its triviality. It still spectral sequence. took Gerhard three years to publish a proof of the There are many mathemati- natural extension of his thesis results to a general cal objects carrying Gerhard’s cohomology theorem, and for that it was necessary name. In another contribu- first to construct an adequate cohomology theory. tion to this memorial, Andy With that purpose in mind he generalized the com- Magid, in “The Hochschild- plexes used in group cohomology to define what Mostow group”, reviews this is now called Hochschild cohomology. Putting it in concept (named in that fash- Gerhard Hochschild at his his own words: “The cohomology of an associative ion by Lubotzky in 1979), daughter Ann’s wedding, algebra is concerned with the m-linear mappings which appeared initially un- 1978. of an algebra into a two-sided module…A linear der the name of the “group of R(G) R(G) mapping…analogous to the coboundary opera- proper automorphisms of ”, being the G tor of combinatorial topology and leading to the algebra of representative functions of the group . notion of ‘cohomology group’ has been defined This construction appeared in a series of papers by by Eilenberg and Mac Lane (unpublished)…The these authors published between 1957 and 1969. present paper is concerned primarily with the G.HochschildandG.D.Mostowtogetherwrote connections between the structure of an algebra seventeen papers in different subjects. This very and vanishing of its cohomology groups”—see the rich mathematical collaboration started while both Introduction to [5]. All these aspects of Hochschild were members of the Institute for Advanced Study cohomology, as well as its applications and many in the academic year 1956–1957. Dan Mostow, other topics, are treated in detail in the contri- in “Gerhard Hochschild as Collaborator”, writes a bution by M. Gerstenhaber, “Hochschild’s Work very personal and illustrative note on their per- on Cohomology”, that appears later in this arti- sonal and mathematical interaction. One of its cle. In that contribution the author also describes landmarks is the important paper on the invariant the particular circumstances in which these first theory of unipotent groups [10]. Another is their papers were written. Particularly interesting are theorem on faithful representations of real and his considerations concerning the back-and-forth complex connected Lie groups which is a global interactions between the results of [5] and of extension of Ado’s theorem on Lie algebras (see the [3]—e.g., concerning the concept of dimension contribution to this memorial by M. Moskowitz). shifting. The subject of representative functions is also Paul Bateman contributed a note, “Gerhard dealtwithintheinterview that Pierre Cartier Hochschild at Urbana (1948–58)”, about the par- gave to one of the authors, which appears later. ticipation of Hochschild in the early development In particular, Cartier mentions the influence that of the Department of Mathematics at the University his view of Tannaka duality and the concept of Hopf algebras had in this line of research. This of Illinois at Urbana-Champaign in the late 1940s is also explicitly spelled out in the introduction and 1950s. That was an extremely fruitful period to [6], in which Hochschild writes: “We are con- of Gerhard’s professional as well as personal life. cerned with the analogues for Lie algebras of the He married Ruth Heinsheimer in 1950—then a problems centered around the Tannaka duality 1We thank the librarians of the Seeley G. Mudd Man- theorem…The analogue of the Tannaka theorem uscript Library, Princeton, NJ, and Hochschild’s family for semisimple Lie algebras was established by for providing access to Hochschild’s records at Princeton Harish-Chandra in 1950. More recently P. Cartier University. has sketched (without proofs) a general duality September 2011 Notices of the AMS 1079 theory for algebraic groups and Lie algebras which went together with, but often transcended, his absorbs Harish-Chandra’s result.” mathematical influence. These two notes are by Cartier—as well as Tate in his article—also N. Nahlus, his last student (who finished in 1986), comments on the not-too-well-known interaction “Gerhard Hochschild as My Advisor and Friend”, of Gerhard with the Bourbaki group, which began and M. Moskowitz, who finished in 1964, “Some in the early 1950s when he attended three of the Reminiscences”. group congresses.2 Finally, with the help of Hochschild’s family The crucial institutional role he played in the files, the science writer and Gerhard’s son-in-law, development of mathematics at U.
Recommended publications
  • Curriculum Vitæ of Peter B. Shalen
    Curriculum Vit½ of Peter B. Shalen Address Department of Mathematics, Statistics and Computer Science (M/C 249) University of Illinois at Chicago 851 South Morgan Street Chicago, IL 60607-7045 312-996-4825 (FAX) 312-996-1491 E-mail: [email protected] Education Ph.D. 1972 Harvard University B.A. 1966 Harvard College Pensionnaire ¶etranger, Ecole Normale Sup¶erieure, Paris, 1966-67 Employment 1985|present Professor University of Illinois at Chicago 1998-99 Long-term visitor, University of Chicago June, 1998 Professeur Invit¶e Universit¶e Paul Sabatier, Toulouse June, 1997 Professeur Invit¶e Universit¶e de Bourgogne June, 1996 Professeur Invit¶e University of Paris June, 1993 Professeur Invit¶e Universit¶e Paul Sabatier, Toulouse Spring 1985 Member Mathematical Sciences Research Institute, Berkeley Fall 1984 Professeur Associ¶e University of Paris (Orsay) Spring 1984 Professeur Associ¶e University of Nantes 1983|85 Professor Rice University 1981|82 Visiting Scholar Columbia University 1979|83 Associate Professor Rice University 1978|79 Visiting Member Courant Institute of Mathematical Sciences, N.Y.U. 1974|79 Assistant Professor Rice University 1971|74 J.F. Ritt Assistant Professor Columbia University 1 Professional Honors Alfred P. Sloan Foundation Fellowship for Basic Research, 1977|79. Invited one-hour address, A.M.S. Regional Meeting, University of Wisconsin at Parkside, October, 1980. J. Clarence Karcher Lectures in Mathematics, University of Oklahoma, April 1980. Member, Mathematical Sciences Research Institute, Berkeley, Spring 1985, and December 1988. Invited 45-minute address, International Congress of Mathematicians, Berkeley, California, August 1986. Fourth annual Zabrodsky lecture, Hebrew University, Jerusalem. December, 1990. University Scholar award, University of Illinois, 1996 Invited visits, American Institute of Mathematics, May 2000 and May 2002.
    [Show full text]
  • Lie Group and Geometry on the Lie Group SL2(R)
    INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear
    [Show full text]
  • Cohomology Theory of Lie Groups and Lie Algebras
    COHOMOLOGY THEORY OF LIE GROUPS AND LIE ALGEBRAS BY CLAUDE CHEVALLEY AND SAMUEL EILENBERG Introduction The present paper lays no claim to deep originality. Its main purpose is to give a systematic treatment of the methods by which topological questions concerning compact Lie groups may be reduced to algebraic questions con- cerning Lie algebras^). This reduction proceeds in three steps: (1) replacing questions on homology groups by questions on differential forms. This is accomplished by de Rham's theorems(2) (which, incidentally, seem to have been conjectured by Cartan for this very purpose); (2) replacing the con- sideration of arbitrary differential forms by that of invariant differential forms: this is accomplished by using invariant integration on the group manifold; (3) replacing the consideration of invariant differential forms by that of alternating multilinear forms on the Lie algebra of the group. We study here the question not only of the topological nature of the whole group, but also of the manifolds on which the group operates. Chapter I is concerned essentially with step 2 of the list above (step 1 depending here, as in the case of the whole group, on de Rham's theorems). Besides consider- ing invariant forms, we also introduce "equivariant" forms, defined in terms of a suitable linear representation of the group; Theorem 2.2 states that, when this representation does not contain the trivial representation, equi- variant forms are of no use for topology; however, it states this negative result in the form of a positive property of equivariant forms which is of interest by itself, since it is the key to Levi's theorem (cf.
    [Show full text]
  • Variables Separated Equations: Strikingly Different Roles for the Branch Cycle Lemma and the Finite Simple Group Classification
    VARIABLES SEPARATED EQUATIONS: STRIKINGLY DIFFERENT ROLES FOR THE BRANCH CYCLE LEMMA AND THE FINITE SIMPLE GROUP CLASSIFICATION MICHAEL D. FRIED∗ Abstract. H. Davenport's Problem asks: What can we expect of two poly- nomials, over Z, with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport, D.J. Lewis and A. Schinzel. By bounding the degrees, but expanding the maps and variables in Daven- port's Problem, Galois stratification enhanced the separated variable theme, solving an Ax and Kochen problem from their Artin Conjecture work. J. Denef and F. Loeser applied this to add Chow motive coefficients to previously in- troduced zeta functions on a diophantine statement. By restricting the variables, but leaving the degrees unbounded, we found the striking distinction between Davenport's problem over Q, solved by apply- ing the Branch Cycle Lemma, and its generalization over any number field, solved using the simple group classification. This encouraged J. Thompson to formulate the genus 0 problem on rational function monodromy groups. R. Guralnick and Thompson led its solution in stages. We look at at two developments since the solution of Davenport's problem. • Stemming from C. MacCluer's 1967 thesis, identifying a general class of problems, including Davenport's, as monodromy precise. • R(iemann) E(xistence) T(heorem)'s role as a converse to problems gen- eralizing Davenport's, and Schinzel's (on reducibility). We use these to consider: Going beyond the simple group classification to han- dle imprimitive groups; and what is the role of covers and correspondences in going from algebraic equations to zeta functions with Chow motive coefficients.
    [Show full text]
  • Interview with Henri Cartan, Volume 46, Number 7
    fea-cartan.qxp 6/8/99 4:50 PM Page 782 Interview with Henri Cartan The following interview was conducted on March 19–20, 1999, in Paris by Notices senior writer and deputy editor Allyn Jackson. Biographical Sketch in 1975. Cartan is a member of the Académie des Henri Cartan is one of Sciences of Paris and of twelve other academies in the first-rank mathe- Europe, the United States, and Japan. He has re- maticians of the twen- ceived honorary doc- tieth century. He has torates from several had a lasting impact universities, and also through his research, the Wolf Prize in which spans a wide va- Mathematics in 1980. riety of areas, as well Early Years as through his teach- ing, his students, and Notices: Let’s start at the famed Séminaire the beginning of your Cartan. He is one of the life. What are your founding members of earliest memories of Bourbaki. His book Ho- mathematical inter- mological Algebra, writ- est? ten with Samuel Eilen- Cartan: I have al- berg and first published ways been interested Henri Cartan’s father, Élie Photograph by Sophie Caretta. in 1956, is still in print in mathematics. But Cartan. Henri Cartan, 1996. and remains a standard I don’t think it was reference. because my father The son of Élie Cartan, who is considered to be was a mathematician. I had no doubt that I could the founder of modern differential geometry, Henri become a mathematician. I had many teachers, Cartan was born on July 8, 1904, in Nancy, France. good or not so good.
    [Show full text]
  • Title: Algebraic Group Representations, and Related Topics a Lecture by Len Scott, Mcconnell/Bernard Professor of Mathemtics, the University of Virginia
    Title: Algebraic group representations, and related topics a lecture by Len Scott, McConnell/Bernard Professor of Mathemtics, The University of Virginia. Abstract: This lecture will survey the theory of algebraic group representations in positive characteristic, with some attention to its historical development, and its relationship to the theory of finite group representations. Other topics of a Lie-theoretic nature will also be discussed in this context, including at least brief mention of characteristic 0 infinite dimensional Lie algebra representations in both the classical and affine cases, quantum groups, perverse sheaves, and rings of differential operators. Much of the focus will be on irreducible representations, but some attention will be given to other classes of indecomposable representations, and there will be some discussion of homological issues, as time permits. CHAPTER VI Linear Algebraic Groups in the 20th Century The interest in linear algebraic groups was revived in the 1940s by C. Chevalley and E. Kolchin. The most salient features of their contributions are outlined in Chapter VII and VIII. Even though they are put there to suit the broader context, I shall as a rule refer to those chapters, rather than repeat their contents. Some of it will be recalled, however, mainly to round out a narrative which will also take into account, more than there, the work of other authors. §1. Linear algebraic groups in characteristic zero. Replicas 1.1. As we saw in Chapter V, §4, Ludwig Maurer thoroughly analyzed the properties of the Lie algebra of a complex linear algebraic group. This was Cheval­ ey's starting point.
    [Show full text]
  • Theory of Lie Groups I
    854 NATURE December 20. 1947 Vol. t60 Theory of lie Groups, I deficiency is especially well treated, and the chapters By Claude Chevalley. (Princeton Mathematical on feeding experiments contain one of the best Series.) Pp. xii + 217. (Princeton, N.J.: Princeton reasoned discussions on the pros and cons of the University Press; London: Oxford University paired-feeding technique. In the author's view this Press, 1946.) 20s. net. method would appear to find its largest usefulness N recent years great advances have been made in in comparisons in which food consumption is not I our knowledge of the fundamental structures of markedly restricted by the conditions imposed, and analysis, particularly of algebra and topology, and in which the measure is in terms of the specific an exposition of Lie groups from the modern point effect of the nutrient under study, instead of the more of view is timely. This is given admirably in the general measure of increase in weight. It is considered book under review, which could well have been called that there are many problems concerning which the "Lie Groups in the Large". To make such a treatment use of separate experiments of both ad libitum and intelligible it is necessary to re-examine from the new controlled feeding will give much more information point of view such subjects as the classical linear than either procedure alone. groups, topological groups and their underlying The chapters on growth, reproduction, lactation topological spaces, and analytic manifolds. Excellent and work production are likewise excellent. In its accounts of these, with the study of integral manifolds clarity and brevity this work has few equals.
    [Show full text]
  • On Chevalley's Z-Form
    Indian J. Pure Appl. Math., 46(5): 695-700, October 2015 °c Indian National Science Academy DOI: 10.1007/s13226-015-0134-7 ON CHEVALLEY’S Z-FORM M. S. Raghunathan National Centre for Mathematics, Indian Institute of Technology, Mumbai 400 076, India e-mail: [email protected] (Received 28 October 2014; accepted 18 December 2014) We give a new proof of the existence of a Chevalley basis for a semisimple Lie algebra over C. Key words : Chevalley basis; semisimple Lie algebras. 1. INTRODUCTION Let g be a complex semisimple Lie algebra. In a path-breaking paper [2], Chevalley exhibitted a basis B of g (known as Chevalley basis since then) such that the structural constants of g with respect to the basis B are integers. The basis moreover consists of a basis of a Cartan subalgebra t (on which the roots take integral values) together with root vectors of g with respect to t. The structural constants were determined explicitly (up to signs) in terms of the structure of the root system of g. Tits [3] provided a more elegant approach to obtain Chevalley’s results which essentially exploited geometric properties of the root system. Casselman [1] used the methods of Tits to extend the Chevalley theorem to the Kac-Moody case. In this note we prove Chevalley’s theorem through an approach different from those of Chevalley and Tits. Let G be the simply connected algebraic group corresponding to g. Let T be a maximal torus (the Lie subalgebra t corresponding to it is a Cartan subalgebra of G).
    [Show full text]
  • Leray in Oflag XVIIA: the Origins of Sheaf Theory
    Leray in Oflag XVIIA: The origins of sheaf theory, sheaf cohomology, and spectral sequences Haynes Miller∗ February 23, 2000 Jean Leray (November 7, 1906{November 10, 1998) was confined to an officers’ prison camp (“Oflag”) in Austria for the whole of World War II. There he took up algebraic topology, and the result was a spectacular flowering of highly original ideas, ideas which have, through the usual metamorphism of history, shaped the course of mathematics in the sixty years since then. Today we would divide his discoveries into three parts: sheaves, sheaf cohomology, and spectral sequences. For the most part these ideas became known only after the war ended, and fully five more years passed before they became widely understood. They now stand at the very heart of much of modern mathematics. I will try to describe them, how Leray may have come to them, and the reception they received. 1 Prewar work Leray's first published work, in 1931, was in fluid dynamics; he proved the basic existence and uniqueness results for the Navier-Stokes equations. Roger Temam [74] has expressed the view that no further significant rigorous work on Navier-Stokes equations was done until that of E. Hopf in 1951. The use of Picard's method for proving existence of solutions of differential equa- tions led Leray to his work in topology with the Polish mathematician Juliusz Schauder. Schauder had recently proven versions valid in Banach spaces of two theorems proven for finite complexes by L. E. J. Brouwer: the fixed point theorem and the theorem of invariance of domain.
    [Show full text]
  • Hopf Algebroids and Their Cyclic Theory
    Hopf Algebroids and Their Cyclic Theory NIELS KOWALZIG May 29, 2009 Contents Introduction 1 1 Preliminaries 11 1.1 Cyclic Theory . 11 1.2 A-rings and A-corings . 20 1.3 Hopf Algebras and Their Cyclic Cohomology . 22 1.4 Lie-Rinehart Algebras . 24 1.5 Groupoids . 26 2 Hopf Algebroids 27 2.1 Left Bialgebroid Structures . 27 2.2 Left Hopf Algebroids . 29 2.3 Left Bialgebroid Modules and Comodules . 30 2.4 Homological Coalgebra for Left Bialgebroid Comodules . 32 2.5 Right Bialgebroids . 34 2.6 Hopf Algebroids . 36 3 Constructions 43 3.1 Left and Right Duals of Bialgebroids . 43 3.2 Push Forward Bialgebroids . 51 3.3 Matched Pairs of Bialgebroids . 52 3.3.1 Left Module Rings for Bialgebroids . 53 3.3.2 Right Comodule Corings for Bialgebroids . 54 3.3.3 Matched Pairs . 55 4 Examples of Hopf Algebroids 59 4.1 Immediate Examples . 59 4.1.1 The Enveloping Algebra Ae .............................. 59 4.1.2 Hopf Algebras Twisted by a Character . 59 4.2 Universal Enveloping Algebras of Lie-Rinehart Algebras . 61 4.2.1 The Canonical Left Hopf Algebroid Structure on VL . 61 4.2.2 Hopf Algebroid Structures on VL ........................... 62 4.3 Jet Spaces of Lie-Rinehart Algebras . 66 4.4 Convolution Algebras . 69 4.5 Function Algebras . 72 4.6 Connes-Moscovici Algebras . 76 4.7 Bicrossed Product Realisation . 79 5 Hopf-Cyclic Cohomology 85 5.1 The Space of Coinvariants . 85 5.2 Cocyclic Structures on Hopf Algebroids . 86 5.2.1 Connes’ Associated Bicomplex . 91 5.3 Hopf-Hochschild Cohomology as a Derived Functor .
    [Show full text]
  • On the Classifying Space for Proper Actions of Groups with Cyclic Torsion
    On the classifying space for proper actions of groups with cyclic torsion Yago Antol´ınand Ram´on Flores September 17, 2018 Abstract In this paper we introduce a common framework for describing the topological part of the Baum-Connes conjecture for a wide class of groups. We compute the Bredon homology for groups with aspherical presentation, one-relator quotients of products of locally indicable groups, extensions of Zn by cyclic groups, and fuchsian groups. We take advantage of the torsion structure of these groups to use appropriate models of the universal space for proper actions which allow us, in turn, to extend some technology defined by Mislin in the case of one-relator groups. 2010 Mathematics Subject Classification. Primary: 55N91; Secondary: 20F05, 20J05. Key words. Bredon homology, classifying space for proper actions, aspherical presentations, Hempel groups, Baum-Connes conjecture 1 Introduction In [28], Mislin computed the Bredon homology of one-relator groups with coeffi- cients in the complex representation ring. These homology groups were defined arXiv:1107.0566v2 [math.KT] 24 Oct 2011 in the sixties by Bredon in the context of equivariant Homotopy Theory. Since the statement by Baum-Connes of their famous conjecture (see [5] for a thor- ough account and section 5 here for a quick review), there has been a growing interest in the computation of the Bredon homology groups, as they give, via a spectral sequence, a very close approximation to the topological part of the conjecture. Moreover, they are reasonably accessible from the point of view of the computations. Let G be a discrete group.
    [Show full text]
  • Gerhard Hochschild (1915/2010) a Mathematician of the Xxth Century
    GERHARD HOCHSCHILD (1915/2010) A MATHEMATICIAN OF THE XXth CENTURY WALTER FERRER SANTOS Abstract. Gerhard Hochschild’s contribution to the development of mathematics in the XX century is succinctly surveyed. We start with a personal and mathematical biography, and then consider with certain detail his contributions to algebraic groups and Hopf algebras. 1. The life, times and mathematics of Gerhard Hochschild 1.1. Berlin and South Africa. Gerhard Paul Hochschild was born on April 29th, 1915 in Berlin of a middle class Jewish family and died on July 8th, 2010 in El Cerrito where he lived after he moved to take a position as professor at the University of California at Berkeley in 1958. His father Heiner was an engineer working as a patent attonery and in search of safety sent Gerhard and his older brother Ulrich, to Cape Town in May of 1933. The boys were some of the many germans escaping from the Nazis that were taking over their native country. The first 18 years of his life in Germany were not uneventful. In 1924 his mother Lilli was diagnosed with a lung ailment and sent –together with his younger son Gerhard that was then nine years old– to a sanatorium in the Alps, near Davos. Later in life he commented to the author that reading in Der Zauberberg (The Magic Mountain) by Thomas Mann, about Hans Castorp –Mann’s main character in the book– he evoked his own personal experiences. Castorp was transported away from his ordered and organized family life to pay a visit to his cousin interned also in a sanatorium in Davos.
    [Show full text]