Package 'Gcdkit'

Total Page:16

File Type:pdf, Size:1020Kb

Package 'Gcdkit' Package ‘GCDkit’ August 16, 2019 Version 6.0 Date 2019-08-16 Title Geochemical Data Toolkit for Windows Author Vojtech Janousek <[email protected]> Colin Farrow <[email protected]> Vojtech Erban <[email protected]> Jean-Francois Moyen <[email protected]> Maintainer Vojtech Janousek <[email protected]> Depends R (>= 3.6.0),tcltk Imports stats, methods, utils, graphics, grDevices, MASS, grid, lattice, for- eign, RODBC, R2HTML, sp, compiler Suggests XML, rgdal, tkrplot, curl Description A program for recalculation of geochemical data from igneous and metamorphic rocks. With complete graphical user interface (GUI) it runs under Windows Vista/7/8/10, complete functionality/stability under 2000/XP cannot be guaranteed. The current ver- sion should also work on Mac OS X (release 10.6 and above) and various distributions of Linux (Debian, Red- Hat, SUSE, Ubuntu). License GPL (>= 2) URL http://www.gcdkit.org R topics documented: .claslist . .6 about . .6 accessVar . .7 Add contours . .8 addResults . .9 addResultsIso . .9 AFM............................................. 10 ageEps . 12 Agrawal . 14 Ague............................................. 16 appendSingle . 18 apSaturation . 19 1 2 R topics documented: ArcMapSetup . 21 assign1col . 22 assign1symb . 23 assignColLab . 24 assignColVar . 25 assignSymbGroup . 26 assignSymbLab . 27 assignSymbLett . 28 atacazo . 29 Batchelor . 30 binary . 32 binaryBoxplot . 33 blatna . 35 Boolean conditions . 35 bpplot2 . 37 Cabanis . 38 calc ............................................. 40 calcAnomaly . 41 calcCore . 43 Catanorm . 44 CIPW............................................ 45 classify . 47 clr.transform . 49 cluster . 51 contourGroups . 52 coplotByGroup . 54 coplotTri . 56 correlationCoefPlot . 58 Cox ............................................. 59 crosstab . 62 customScript . 63 cutMy . 64 Debon . 65 DebonBMgNo . 67 DebonBQF . 69 DebonKNaB . 71 DebonQB . 73 deleteSingle . 74 EarthChem . 75 Edit labels . 77 Edit numeric data . 78 editLabFactor . 78 elemIso . 79 epsEps . 81 Export to Access . 82 Export to DBF . 83 Export to Excel . 84 Export to HTML tables . 85 F-M-W diagram . 87 FeMiddlemost . 89 figAdd . 90 figaro.identify . 94 R topics documented: 3 figCol . 95 figEdit . 96 figGbo . 97 figLoad . 98 figMulti . 98 figOverplot . 101 figOverplotDiagram . 103 figRedraw . 105 figSave ........................................... 106 figScale . 107 figUser . 108 figZoom . 109 filledContourFig . 110 Frost . 111 Frost_2008 . 114 gcdOptions . 116 graphicsOff . 119 Grebennikov . 120 groupsByCluster . 121 groupsByDiagram . 122 groupsByLabel . 123 Harris . ..
Recommended publications
  • Phd Thesis R.B. Merlet
    GROWING TO SHRINK Grafting alumina mesopores for molecular separations Renaud B. Merlet GROWING TO SHRINK Grafting alumina mesopores for molecular separations DISSERTATION to obtain the degree of doctor at the University of Twente, on the authority of the rector magnificus, prof.dr. T.T.M. Palstra, on account of the decision of the Doctorate Board, to be publicly defended on the 21st of November 2019 at 14:45. by Renaud Benoit Merlet born on the 18th of November 1986 in Paris, France This dissertation has been approved by supervisors: Prof. Dr. Ir. A. Nijmeijer and Prof. Dr. A.J.A. Winnubst This work is part of the research program “Modular Functionalized Ceramic Nanofiltration Membranes” (BL-20-10), jointly financed by the Netherlands Organization for Scientific Research (NWO) and the Institute for Sustainable Process Technology (ISPT). Cover design: Linda van Zijp Printed by: ProefschriftMaken Lay-out: ProefschriftMaken ISBN: 978-90-365-4895-3 DOI: 10.3990/1.9789036548953 © 2019 Renaud Merlet, The Netherlands. All rights reserved. No parts of this thesis may be reproduced, stored in a retrieval system or transmitted in any form or by any means without permission of the author. Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd, in enige vorm of op enige wijze, zonder voorafgaande schriftelijke toestemming van de auteur. Graduation Committee Chairman: Dean Prof. Dr. J.L Herek University of Twente Supervisors: Prof. Dr. Ir. A. Nijmeijer University of Twente Prof. Dr. A.J.A. Winnubst University of Science and Technology of China / University of Twente Committee Members: Prof. Dr. Ir. W.M.
    [Show full text]
  • Multiple Sources for Tephra from AD 1259 Volcanic Signal in Antarctic Ice
    Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino To cite this version: Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino. Mul- tiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores. Quaternary Science Reviews, Elsevier, 2019, 210, pp.164-174. 10.1016/j.quascirev.2019.03.005. hal-02350371 HAL Id: hal-02350371 https://hal.archives-ouvertes.fr/hal-02350371 Submitted on 25 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Details Manuscript number JQSR_2019_21 Title MULTIPLE SOURCES FOR TEPHRA FROM AD 1259 VOLCANIC SIGNAL IN ANTARCTIC ICE CORES Abstract Strong volcanic signals simultaneously recorded in polar ice sheets are commonly assigned to major low-latitude eruptions that dispersed large quantities of aerosols in the global atmosphere with the potential of inducing climate perturbations. Parent eruptions responsible for specific events are typically deduced from matching to a known volcanic eruption having coincidental date. However, more robust source linkage can be achieved only through geochemical characterisation of the airborne volcanic glass products (tephra) sometimes preserved in the polar strata.
    [Show full text]
  • Unsupervised Classification of Intrusive Igneous Rock Thin Section Images Using Edge Detection and Colour Analysis Note: Published As S
    Unsupervised Classification of Intrusive Igneous Rock Thin Section Images using Edge Detection and Colour Analysis Note: Published as S. Joseph, H. Ujir and I. Hipiny, "Unsupervised classification of Intrusive igneous rock thin section images using edge detection and colour analysis," 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), 2017, pp. 530-534, doi: 10.1109/ICSIPA.2017.8120669. S. Joseph H. Ujir and I. Hipiny Faculty of Computer Science & Information Technology Jabatan Mineral dan Geosains (Sarawak), Universiti Malaysia Sarawak Kementerian Sumber Asli dan Alam Sekitar, Kota Samarahan, Sarawak, Malaysia Kuching, Sarawak, Malaysia {uhamimah & mhihipni}@unimas.my [email protected] Abstract—Classification of rocks is one of the fundamental tasks in a geological study. The process requires a human expert It requires a human expert with substantial knowledge and to examine sampled thin section images under a microscope. In experience in combining multiple petrographic and microscopy this study, we propose a method that uses microscope automation, classification criteria, e.g., texture, colour, cleavage, twinning digital image acquisition, edge detection and colour analysis and tartan pattern, to perform the point counting. Due to this, (histogram). We collected 60 digital images from 20 standard thin sections using a digital camera mounted on a conventional we argue that an unsupervised classification of the rock thin microscope. Each image is partitioned into a finite number of cells sections to replace the human operator is therefore necessary. that form a grid structure. Edge and colour profile of pixels inside This paper presents our unsupervised classification method each cell determine its classification. The individual cells then and the classification results using edge and colour as the determine the thin section image classification via a majority discriminating features.
    [Show full text]
  • Groundwater Quality at a Rapid Infiltration Basin System, Cape Henlopen State Park, Delaware
    GROUNDWATER QUALITY AT A RAPID INFILTRATION BASIN SYSTEM, CAPE HENLOPEN STATE PARK, DELAWARE Scott Andres, Edward Walther, Muserref Turkmen, Changming He, Anastasia E. M. Chirnside, William Ritter Contract Report submitted to Delaware Department of Natural Resources And Environmental Control Delaware Geological Survey 2011 TABLE OF CONTENTS INTRODUCTION Purpose and Scope Previous Work Cape Henlopen State Park Delmarva Groundwater Acknowledgments METHODS Automated Literature Search Field Methods for Characterization of Soils, Sediments, and Water Installation of monitoring devices Water sampling methods Standard monitoring wells Laboratory methods and reporting procedures RESULTS AND DISCUSSION Literature Search Findings Contaminant transport N transport and denitrification P sorption and transport Effects of increased ionic strength and redox reactions Results of Field Testing and Analyses Effluent quality and flow Impact of effluent disposal on groundwater quality-contaminant tracers Tracers and indicators of groundwater contamination Variability of tracers and N and P species with map location and time Variability of N and P with depth and time Denitrification and other redox sensitive processes Influence of monitoring methods and effluent disposal on observed groundwater quality CONCLUSIONS REFERENCES CITED ILLUSTRATIONS Figure 1. General location map 2. Locations of monitoring wells and surface water sampling sites 3. Results of effluent testing 4. Ternary plots of proportions of major anions 5. Ternary plot of proportions of major cations 6. Spatial distribution of specific conductance 7. Comparison of chloride concentrations and specific conductance (SC) values for surface water and groundwater and results of regression analysis 8. Spatial distribution of ammonium-nitrogen 9. Time series plot of ammonium-nitrogen for wells Ni45-43, Ni45-35, and Ni45-45 10.
    [Show full text]
  • Open-File Report 2005-1235
    Prepared in cooperation with the Idaho Geological Survey and the Montana Bureau of Mines and Geology Spatial databases for the geology of the Northern Rocky Mountains - Idaho, Montana, and Washington By Michael L. Zientek, Pamela Dunlap Derkey, Robert J. Miller, J. Douglas Causey, Arthur A. Bookstrom, Mary H. Carlson, Gregory N. Green, Thomas P. Frost, David E. Boleneus, Karl V. Evans, Bradley S. Van Gosen, Anna B. Wilson, Jeremy C. Larsen, Helen Z. Kayser, William N. Kelley, and Kenneth C. Assmus Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government Open-File Report 2005-1235 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2005 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents Abstract .......................................................................................................................................................... 1 Introduction
    [Show full text]
  • Vanderveen Jesse R 201805
    IMPROVEMENTS IN THE PERFORMANCE AND UNDERSTANDING OF SWITCHABLE-HYDROPHILICITY SOLVENTS by Jesse R. Vanderveen A thesis submitted to the Department of Chemistry In conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada April, 2018 Copyright © Jesse R. Vanderveen, 2018 Abstract Switchable-hydrophilicity solvents (SHSs) are amine and amidine solvents that can be reversibly switched between two forms: one that forms a biphasic mixture with water and another that forms a monophasic mixture with water. The addition or removal of CO2 from SHS-based systems acts as the trigger to switch between these two forms. SHSs have attracted attention as alternative solvents for a variety of applications because their switchable behaviour allows them to be used in energy- or material- efficient ways. One such application is distillation-free solvent- solute separations. The present research builds an understanding of the properties of amines that determine whether they are SHSs or not. It also applies this understanding to the development of new SHSs with fewer health and environmental hazards, such as decreased acute toxicity and decreased volatility, as well as improved performance with respect to solvent-solute separations. The relationship between the pKaH and log Kow of an amine and the ability of the amine to act as a SHS is established. A mathematical model is described that can be used to predict whether an amine acts as a SHS based on these two properties. Furthermore, the influence of CO2 partial pressure and the water/amine volume ratio on these pKaH and log Kow requirements are investigated.
    [Show full text]
  • Title of Thesis
    Additions and Modifications to the Igneous Rock Classification Scheme Senior Thesis Submitted in partial fulfillment of the requirements for the Bachelor of Science Degree in Geological Sciences At The Ohio State University By Matthew R. H. Dugan The Ohio State University 2010 Approved by Anne E. Carey, Advisor School of Earth Sciences T ABLE OF C ONTENTS Abstract………………………………………………………………………....3 Acknowledgements……………………………………………………….…….4 Introduction……………………………………………………………………..5 Discussion……………….………………………………………………………5 Application……………….……………………………………………………..10 References Cited….……….……………………………………………………18 2 Abstract Igneous rocks as they are currently defined are in a sloppy state. Vague wording is throughout the whole of the definition, and there is not even any clear consensus on what it should be defined as. In this paper, I redefine igneous rocks in such a way as to remove a great deal of imprecision, and I go through some of the logical implications of the refined definition. I do not seek to change the intent of the definition, and I do not believe that I have. The most interesting implication of this change is that water, as it occurs on Earth, is an igneous rock, and I construct a basic classification scheme for it. 3 Acknowledgements I wish to thank Dr. Anne Carey for her intense support of the writing of this thesis, her wonderful edits and her dedication to keeping me on this. I also wish to acknowledge my lab group, also lead by Dr. Steve Goldsmith, for their wonderful feedback and encouragement. Dr. Fritz Graf, Professor and chair of the Department of Greek and Latin, was a great asset to me and he deserves recognition for his help in coining neologisms.
    [Show full text]
  • 7. the PICRITE-Tesciienite SILL Od E Liit~AR
    Downloaded from http://jgslegacy.lyellcollection.org/ at University College London on May 31, 2016 84 ~ra. (~. w. T~RRELL ox a'H~. [vol. hxii, ,7. The PICRITE-TEscIIENITE SILL ode LIIt~AR (AYRSIIIRE), By (~EOROE WALTER TYRRELL, A.R.C.Se., F.G.S., Lecturer in Mineralogy and Petrology in the University of Glasgow. (Read April 5th, 1916.) [PLATES X & XI,] CONTENTS. Page 1. Introduction ................................................... 84 II. Field Relations ................................................ 85 (1) The Glenmuir Section. (2) The Bellow Section. (3) Other Exposures. (4) Summary. III. Petrography ...................................................... 95 (1) The Contact-Rocks. (2) Teschenite. (3) Theralite. (4) Lugarite. (5) 1Mcrite and Peridotite. IV. Petrology ......................................................... 114 (1) Mineralogical Variations. (2) Chemical Variations. (3) Average Magma of the Lugar Sill. (4) Composition, Identity, and Banding of the Contact-Rocks. (5) Asymmetry. (6) Density-Stratification. (7) Variations in Texture. (8) Segregation-Veins. (9) Mode of Intrusion and Differentiation. (10) Sinking of Crystals in the Central Ultrabasic Stratum. (11) Comparison of the Lugar Sill with the other Picrite-TesChenite Sills of Scotland. I. INTRODUCTION. THE association of teschenite and ultrabasie rocks (picrite and peridotite) in a single rock-body has now been established for several occun-ences in the lowlands of Scotland. The Barnton occurrence, near Edinburgh , has been described by Sir Archibald Geilde,l by Mr. J. Henderson & Mr. J. G. Goodchild, s and by Mr. H. W. 1VIonckton.a At Blackburn, near Bathgate, occurs a ierite, which has been described by the first-named writer as a va, a but has irecentiy been shown to be intrusive and associated with b~schenite by the officers of the Geological Survey of Scotland.
    [Show full text]
  • Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan
    Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 349381, 8 pages http://dx.doi.org/10.1155/2013/349381 Research Article Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan Mohammad Arif,1 S. Wajid Hanif Bukhari,2 Noor Muhammad,3 and Muhammad Sajid1 1 Department of Geology, University of Peshawar, Peshawar 25120, Pakistan 2 Centre of Excellence in Mineralogy, University of Balochistan, Quetta 87300, Pakistan 3 Department of Mining Engineering, NWFP University of Engineering and Technology, Peshawar 25120, Pakistan Correspondence should be addressed to Mohammad Arif; arif [email protected] Received 17 April 2013; Accepted 11 May 2013 Academic Editors: M. Gregoire,N.Hirao,J.A.Morales,L.Tosi,andJ.Yvon´ Copyright © 2013 Mohammad Arif et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz.
    [Show full text]
  • Package 'NORRRM'
    Package ‘NORRRM’ March 11, 2015 Type Package Title Geochemical Toolkit for R Version 1.0.0 Date 2015-01-29 Author Renee Gonzalez Guzman Maintainer Renee Gonzalez Guzman <[email protected]> Imports ggplot2,SDMTools Description CIPW Norm (acronym from the surnames of the authors: Cross, Iddings, Pirrson and Washington) is the most commonly used calculation algorithm to estimate the standard mineral assemblages for igneous rocks from its geochemical composition. NORRRM (acronym from noRm, R lan- guage and Renee) is the highly consistent program to calculate the CIPW Norm. Depends R (>= 3.1.1) License GPL (>= 3) NeedsCompilation no Repository CRAN Date/Publication 2015-03-11 21:49:49 R topics documented: NORRRM-package . .2 AdjRock . .3 Andes . .4 AtomWeight . .5 CIPW............................................6 CIPW.trace . .7 MinWeight . .9 OxiWeight . 10 TASplot . 11 TestTAS . 12 Index 13 1 2 NORRRM-package NORRRM-package Geochemical Toolkit for R Description According to the IUGS (International Union of Geological Science), Subcommission on the Sys- tematics of Igneous Rocks, the primary classification of igneous rocks must be based according to their modal mineral composition, expressed in volume percent. Nevertheless, where these data are not available or can not be determined owing to fine-grained mineral assemblage, glassy content or changes in the original mineralogy, then other criteria based on chemical bulk composition may be used. Computed from the chemical composition, the normative mineralogy is an alternative approach for mineralogical classification and useful for set up the naming of igneous rocks (as parts of the TAS classification, TASplot). The CIPW Norm is the most commonly used calculation algorithm to estimate the standard mineral assemblages for igneous rocks CIPW, generated over more than a hundred years ago and thereafter modified by some authors to the passage of the years (e.g., Verma et al., 2002).
    [Show full text]
  • Petrography and Engineering Properties of Igneous Rocks
    ENGINEERil~G MONOGRAPHS No. I United States Department of the Interior BUREAU OF RECLAMATION PETROGRAPIIY AND ENGINEERING· PROPER11ES OF IGNEOUS ROCKS hy Rit~bard C. 1\lielenz Denver, Colorado October 1948 95 cents (R.evised September 1961) United States Department of the Interior STEWART L. UDALL, Secretacy Bureau of Reclamation FLOYD E. DOMINY, Commissioner G~T BLOODGOOD, Assistant Commissioner and Chief Engineer Engineering Monograph No. 1 PETROGRAPHY AND ENGINEERING PROPERTIRES ·OF IGNEOUS RO<;:KS by Richard C. Mielenz Revised 1959. by William Y. Holland Head. Petrographic Laboratory Section Chemical Engineering Laboratory Branch Commissioner's Office. Denver Technical Infortnation Branch Denver Federal Center Denver, Colorado ENGINEERING MONOGRAPHS are published in limited editions for the technical staff of the Bureau of Reclamation and interested technical circles in Government and private agencies. Their purpose is to record devel­ opments, innovations, .and progress in the engineering and scientific techniques and practices that are employed in the planning, design, construction, and operation of Rec­ lamation structures and equipment. Copies 'may be obtained from the Bureau of Recla- · mation, Denver Federal Center, Denver, Colon.do, and Washington, D. C. Excavation and concreting of altered zones in rhyolite dike in the spillway foundation. Davis Damsite. Arizona-Nevada. Fl'ontispiece CONTENTS Page Introduction . 1 General Basis of Classification of Rocks . 1 Relation of the Petrographic Character to the Engineering Properties of Rocks . 3 Engineering J?roperties of Igneous Rocks ................................ :. 4 Plutonic Rocks . 4 Hypabyssal Rocks . 6 Volcanic Rocks..... 7 Application of Petrography to Engineering Problems of the Bureau of Reclamation . 8 A Mineralogic and Textural Classification of Igneous Rocks .
    [Show full text]
  • Diagrams.Pdf
    CLASSIFICATION PLOTS Menu item Module name Scope1 Plot description Details (reference) AFM plot that serves to discriminate between calc-alkaline and tholeiitic AFM (Irvine + Baragar 1971) AFM G (Na2O+K2O) – FeOt – MgO ternary subalkaline series (Irvine & Baragar, 1971). Diagram of Miyashiro (1974) distinguishing between tholeiitic and calc-alkaline SiO2 - FeOt/MgO (Miyashiro 1974) Miyashiro G SiO2 vs. FeOt /MgO binary igneous rocks. SiO2 - K2O Diagram proposed by Peccerillo & Taylor (1976) to distinguish various series of PeceTaylor G SiO2 vs. K2O binary (Peccerillo + Taylor 1976) tholeiitic, calc-alkaline and shoshonitic rocks. Replacement for the previous plot of Peccerillo & Taylor (1976) using less Co - Th (Hastie et al. 2007) Hastie G Co vs. Th mobile elements, designed by Hastie et al. (2007). Diagram to distinguish meta-/peraluminous from peralkaline rocks as well as Molar Na2O – Al2O3 – K2O plot NaAlK G Na2O – Al2O3 – K2O ternary potassic, sodic and ultrapotassic suites. Al2O3/(CaO+Na2O+K2O) vs. Classic A/CNK vs A/NK plot of Shand (1943) discriminating metaluminous, A/CNK - A/NK (Shand 1943) Shand G Al2O3/(Na2O+K2O) (mol. %) peraluminous and peralkaline compositions. The principal variation of the TAS diagram, as proposed by Le Bas et al. (1986) TAS (Le Bas et al. 1986) TAS V SiO2 vs. (Na2O + K2O) binary and codified by Le Maitre (1989). Dividing line between alkaline and subalkaline series is that of Irvine & Baragar (1971). CoxVolc V Variation of the TAS diagram proposed by Cox et al. (1979) and adopted by TAS (Cox et al. 1979) SiO2 vs. (Na2O + K2O) binary CoxPlut P Wilson (1989) for plutonic rocks.
    [Show full text]