Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Making Flawless Graphene Coatings 29 November 2016
Making flawless graphene coatings 29 November 2016 perfectly regular in form. But with the present production methods, a sheet of graphene is in practice almost always made up of a patchwork of small pieces that have been grafted onto one another. Van Baarle was able to observe almost per carbon atom live how islands of graphene grow towards one another and how this process is influenced by temperature and substrate. This is the first step towards a production method for making larger, flawless sheets of graphene. Chicken wire pattern Graphene occurs spontaneously when a very clean surface of iridium comes into contact with ethylene (C2H4, a hydrocarbon) at a temperature of around 700 degrees Celsius. The gas molecules disintegrate on the hot surface, leaving behind the Credit: AlexanderAlUS/Wikipedia/CC BY-SA 3.0 carbon atoms, which spontaneously form a network of linked hexagons, in a chicken wire pattern. For his research Van Baarle used a unique piece of Graphene, the ultra-thin wonder material just a equipment in the Huygens-Kamerlingh Onnes single carbon atom in thickness, holds the promise Laboratory, the VT-STM (Variable Temperature of such impressive applications as wear-resistant, Scanning Tunneling Microscope). This apparatus friction-free coatings. But first manufacturers have comprises a minuscule stylus with a point that is to be able to produce large sheets of graphene just a few atoms thick. It can be used to under precisely controlled conditions. Dirk van systematically scan a surface with such a high Baarle studied how graphene grows at atomic degree of precision (what you are in fact doing is scale and what determines the friction with other measuring the flow of electricity between the stylus materials. -
A Chemical Kinetics Network for Lightning and Life in Planetary Atmospheres P
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by St Andrews Research Repository The Astrophysical Journal Supplement Series, 224:9 (33pp), 2016 May doi:10.3847/0067-0049/224/1/9 © 2016. The American Astronomical Society. All rights reserved. A CHEMICAL KINETICS NETWORK FOR LIGHTNING AND LIFE IN PLANETARY ATMOSPHERES P. B. Rimmer and Ch Helling School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK; [email protected] Received 2015 June 3; accepted 2015 October 22; published 2016 May 23 ABSTRACT There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life andprebiotic chemistry outside the solar system. We present an ion–neutral chemical network constructed from scratch, STAND2015, that treats hydrogen, nitrogen, carbon, and oxygen chemistry accurately within a temperature range between 100 and 30,000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. STAND2015 is successfully tested against atmospheric chemistry models for HD 209458b, Jupiter, and the present-day Earth using a simple one- dimensionalphotochemistry/diffusion code. Our results for the early Earth agree with those of Kasting for CO2,H2, CO, and O2, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. -
Vgc Senate Research Testimony
FINAL DRAFT V1.1 Written Testimony of Vinton G. Cerf Before the U.S. Senate Committee on Commerce, Science and Transportation 17 July 2014 Chairman Rockefeller, Ranking Member Thune, Members of the Committee, distinguished panelists and guests, I am honored and pleased to have this opportunity to participate in a hearing on a topic about which I am passionate and committed: basic research. There is no substitute for deep understanding of natural and artificial phenomena, especially when our national and global wellbeing depend on our ability to model and make predictions regarding them. It would be hard to overstate the benefits that have been realized from investment by the US Government and American industry in research. I am sure every member of this committee is well aware of the fundamental scientific paradigm: Theories are developed to explain observations or to speculate on how and why things might work. Experiments are undertaken to validate or refute the predictions of the theory. Theories are revised based on experimental results. Basic and Applied Research While the primary focus of attention in this panel is on basic research, I feel compelled to observe that basic and applied research go hand-in-hand, informing and stimulating each other in a never-ending Yin and Yang of partnership. In some ways, applied research is a form of validation because the success (or failure) of the application may reinforce or contradict the theoretically predicted results and the underlying theory. Basic research tries to understand and applied research tries to do and often one must pursue both in the effort to uncover new knowledge. -
Directed Gas Phase Formation of Silicon Dioxide and Implications for the Formation of Interstellar Silicates
ARTICLE DOI: 10.1038/s41467-018-03172-5 OPEN Directed gas phase formation of silicon dioxide and implications for the formation of interstellar silicates Tao Yang 1,2, Aaron M. Thomas1, Beni B. Dangi1,3, Ralf I. Kaiser 1, Alexander M. Mebel 4 & Tom J. Millar 5 1234567890():,; Interstellar silicates play a key role in star formation and in the origin of solar systems, but their synthetic routes have remained largely elusive so far. Here we demonstrate in a combined crossed molecular beam and computational study that silicon dioxide (SiO2) along with silicon monoxide (SiO) can be synthesized via the reaction of the silylidyne radical (SiH) with molecular oxygen (O2) under single collision conditions. This mechanism may provide a low-temperature path—in addition to high-temperature routes to silicon oxides in circum- stellar envelopes—possibly enabling the formation and growth of silicates in the interstellar medium necessary to offset the fast silicate destruction. 1 Department of Chemistry, University of Hawai’iatMānoa, Honolulu, HI 96822, USA. 2 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China. 3 Department of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA. 4 Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA. 5 Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, UK. Correspondence and requests for materials should be addressed to R.I.K. (email: [email protected]) or to A.M.M. (email: mebela@fiu.edu) or to T.J.M. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:774 | DOI: 10.1038/s41467-018-03172-5 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03172-5 — 28 + 28 + he origin of interstellar silicate grains nanoparticles ( SiO2 ), and 44 ( SiO ). -
Nitrogen-Nitrogen Bonds Violate Stability of N-Doped Graphene
Nitrogen-Nitrogen Bonds Violate Stability of N-Doped Graphene Vitaly V. Chaban1,2 and Oleg V. Prezhdo2 1) Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, 12231-280, São José dos Campos, SP, Brazil 2) Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States Abstract. Two-dimensional alloys of carbon and nitrogen represent an urgent interest due to prospective applications in nanomechanical and optoelectronic devices. Stability of these chemical structures must be understood as a function of their composition. The present study employs hybrid density functional theory and reactive molecular dynamics simulations to get insights regarding how many nitrogen atoms can be incorporated into the graphene sheet without destroying it. We conclude that (1) C:N=56:28 structure and all nitrogen-poorer structures maintain stability at 1000 K; (2) stability suffers from N-N bonds; (3) distribution of electron density heavily depends on the structural pattern in the N-doped graphene. Our calculations support experimental efforts on the production of highly N-doped graphene and tuning mechanical and optoelectronic properties of graphene. Key words: graphene, N-doping, reactive molecular dynamics, density functional theory, charge density, stability, reaction TOC Image Introduction Graphene is a carbonaceous nanomaterial with scientific impact and technological promise. The graphene field of research currently witnesses a variety of novel synthesis approaches and applications.1-28 Being extremely chemical versatile, carbon atoms can link with one another tetrahedrally to form diamond. Otherwise, they can arrange in layers, with a genuine chicken-wire structure, to produce graphite. The hexagonally arranged carbon-carbon bonds are rich in high-energy electrons. -
Product Detection of the CH Radical Reactions with Ammonia and Methyl-Substituted Amines Jérémy Bourgalais, Kacee L
Product Detection of the CH Radical Reactions with Ammonia and Methyl-Substituted Amines Jérémy Bourgalais, Kacee L. Caster, Olivier Durif, David L. Osborn, Sébastien D. Le Picard, Fabien Goulay To cite this version: Jérémy Bourgalais, Kacee L. Caster, Olivier Durif, David L. Osborn, Sébastien D. Le Picard, et al.. Product Detection of the CH Radical Reactions with Ammonia and Methyl-Substituted Amines. Journal of Physical Chemistry A, American Chemical Society, 2019, 123 (11), pp.2178-2193. 10.1021/acs.jpca.8b11688. hal-02089225 HAL Id: hal-02089225 https://hal-univ-rennes1.archives-ouvertes.fr/hal-02089225 Submitted on 11 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Page 1 of 47 The Journal of Physical Chemistry 1 2 3 Product Detection of the CH Radical Reactions with Ammonia and 4 5 6 Methyl-Substituted Amines 7 8 1 2 3 4 9 Jeremy Bourgalais, Kacee L. Caster, Olivier Durif, David L. Osborn, Sebastien D. Le 10 11 Picard,3 and Fabien Goulay2,* 12 13 1 LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, 14 -
Aromatic Formation Promoted by Ion-Driven Radical Pathways In
Aromatic Formation Promoted by Ion-Driven Radical Pathways in EUV Photochemical Experiments Simulating Titan’s Atmospheric Chemistry Jérémy Bourgalais, Nathalie Carrasco, Ludovic Vettier, Antoine Comby, Dominique Descamps, Stephane Petit, Valérie Blanchet, Jerôme Gaudin, Yann Mairesse, Bernard Marty To cite this version: Jérémy Bourgalais, Nathalie Carrasco, Ludovic Vettier, Antoine Comby, Dominique Descamps, et al.. Aromatic Formation Promoted by Ion-Driven Radical Pathways in EUV Photochemical Experiments Simulating Titan’s Atmospheric Chemistry. Journal of Physical Chemistry A, American Chemical Society, 2021, 125 (15), pp.3159-3168. 10.1021/acs.jpca.1c00324. insu-03201041 HAL Id: insu-03201041 https://hal-insu.archives-ouvertes.fr/insu-03201041 Submitted on 18 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Aromatic Formation Promoted by Ion-Driven Radical Pathways in EUV Photochemical Experiments Simulating Titan's Atmospheric Chemistry J´er´emyBourgalais,∗,y,z,k Nathalie Carrasco,y Ludovic Vettier,y Antoine Comby,{ Dominique Descamps,{ -
A Chemical Dynamics Study on the Gas-Phase Formation of Triplet and Singlet C5H2 Carbenes Chao Hea,1, Galiya R
A chemical dynamics study on the gas-phase formation of triplet and singlet C5H2 carbenes Chao Hea,1, Galiya R. Galimovab,c,1, Yuheng Luoa,1, Long Zhaoa, André K. Eckhardtd, Rui Suna,2, Alexander M. Mebelb,2, and Ralf I. Kaisera,2 aDepartment of Chemistry, University of Hawai’i at Manoa, Honolulu, HI 96822; bDepartment of Chemistry and Biochemistry, Florida International University, Miami, FL 33199; cLaboratory of Combustion Physics and Chemistry, Samara National Research University, Samara 443086, Russia; and dInstitute of Organic Chemistry, Justus Liebig University, 35392 Giessen, Germany Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved October 14, 2020 (received for review September 15, 2020) Since the postulation of carbenes by Buchner (1903) and Staudinger helium–acetylene discharge (13) prior to its observation toward (1912) as electron-deficient transient species carrying a divalent car- TMC-1 (4). Cyclopropenylidene (1) ring opens to propargylene (3) bon atom, carbenes have emerged as key reactive intermediates in upon photoexcitation at 360 nm (3, 5). The triplet multiplicity of the organic synthesis and in molecular mass growth processes leading electronic ground state of the C2 symmetric propargylene (3), in eventually to carbonaceous nanostructures in the interstellar medium which each unpaired electron is formally located at each terminal and in combustion systems. Contemplating the short lifetimes of carbon atom, leading to an unconventional 1,3-diradical, was rec- these transient molecules and their tendency for dimerization, free ognized by Mebel et al., who computed the ground triplet 3B to lie − carbenes represent one of the foremost obscured classes of organic 53 to 61 kJ·mol 1 below the first excited singlet 1A′ state (14–16). -
United States Patent (15) 3,678,014 Suzuki Et Al
United States Patent (15) 3,678,014 Suzuki et al. (45) July 18, 1972 54 LOW TEMPERATURE PEROXDE OTHER PUBLICATIONS CURABLE THERMOSETTING The Chemistry of Organic Film Formers, Solomon John Wiley POLYURETHANE RESN HAVING and Sons, N.Y. 1967 pp. 50-54. TERMINAL UNSATURATION Primary Examiner-Donald E. Czaja 72 Inventors: Hisao Suzuki, Fujisawa-shi; Akira Assistant Examiner-Eugene C. Rzucidlo Musashi, Kanagawa-ken; Makoto Hiruta, Attorney-George B. Oujevolk Kanagawa-ken; Hiroo Muramoto, Kanagawa-ken, all of Japan 57) ABSTRACT 73) Assignee: Nippon Soda Co., Ltd., Tokyo, Japan A thermosetting resin having the formula: (22 Filed: Aug. 7, 1969 (21) Appl. No.: 849,298 YCH=CX-Alt-Jn-Girls-D-E (PBd -E-D Gn - LN n 52 U.S. C. ...........260/77.5CR, 260/77.5 CH, 260/94.7N, 260/859 Jn-A1-CX-CHY I51) Int. Cl.......................................................... C08g 22/00 58) Field of Search.............. 260/77.5 CR, 77.5 CH, 94.7N, wherein X is hydrogen, or an alkyl radical containing up to 260/859 R four carbon atoms; Y is selected from the group consisting of hydrogen, phenyl, and alkoxycarbonyl; A is a carboxyl, or a carbonyl group; J is an alkylene group containing less than five carbon atoms and G is selected from the group consisting of (56) References Cited urethane, carboimino and ureylene group; E is urethane or carboimino, and can be the same or different from G; D is UNITED STATES PATENTS selected from the group consisting of alkylene, cycloalkylene, 2,808,391 10/1957 Pattison................................. 260/453 phenylene, naphthylene, pyrene, bis(phenylene)-methylene 2,877,212 3/1959 Seligman............................. -
On the Formation of Nitrogen-Substituted Polycyclic Aromatic Hydrocarbons (Npahs) in Cite This: Chem
Chem Soc Rev REVIEW ARTICLE On the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) in Cite this: Chem. Soc. Rev., 2017, 46,452 circumstellar and interstellar environments Dorian S. N. Parker† and Ralf I. Kaiser* The chemical evolution of extraterrestrial environments leads to the formation of polycyclic aromatic hydrocarbons (PAHs) via gas phase radical mediated aromatization reactions. We review that these de facto barrierless reactions are capable of forming prebiotic molecules such as nitrogen substituted PAHs (NPAHs), which represent the missing link between nitrogen bearing acyclic molecules and prebiotic nucleobases along with vitamins found in meteorites. Crucial routes leading to the incorporation of nitrogen atoms into the aromatic ring have been exposed. Pyridine can be formed from the reaction of abundant vinyl cyanide and its radical or via cyano radicals reacting with 1,3-butadiene. The NPAHs Received 3rd October 2016 1,4-dihydro(iso)quinoline and (iso)quinoline can be synthesized through reaction of pyridyl radicals with DOI: 10.1039/c6cs00714g 1,3-butadiene or sequentially with two acetylene molecules, respectively. The inclusion of nitrogen into an aromatic system and their growth can fill the mechanistic gaps missing leading from acyclic nitrogen- www.rsc.org/chemsocrev bearing molecules via pyridine to NPAH-type molecules in the interstellar medium. 1. Introduction Department of Chemistry, University of Hawai’i at Manoa, Honolulu, HI 96822, During the last decade, considerable progress has been made USA. E-mail: [email protected] † Present address: M Squared Lasers Ltd, 1 Kelvin Campus, Maryhill Road, in untangling the elementary reactions leading to the gas phase Glasgow, UK, G20 0SP. -
Mechanisms for Ethanol Electrooxidation on Pt(111) and Adsorption Bond Strengths Defining an Ideal Catalyst Haleema Aied Asiri and Alfred B
Journal of The Electrochemical Society, 162 (1) F115-F122 (2015) F115 Mechanisms for Ethanol Electrooxidation on Pt(111) and Adsorption Bond Strengths Defining an Ideal Catalyst Haleema Aied Asiri and Alfred B. Anderson∗,z Chemistry Department, Case Western Reserve University, Cleveland, Ohio 44106-7078, USA Ethanol electrooxidation on the Pt(111) electrode has been studied with computational theory. Using a solvation model and a modified Poison-Boltzmann theory for electrolyte polarization, standard reversible potentials for forming 17 reaction intermediates in solution were calculated with density functional theory. Reversible potentials for adsorbed intermediates were then determined by inputting calculated adsorption energies into a linear Gibbs energy relationship. A path to CO2 was found where surface potentials were low and close to the calculated 0.004 V reversible potential for the 12 electron oxidation of ethanol. An exception was the 0.49 V potential for forming the OH(ads) from H2O(l), this being required for oxidation of CO(ads) and RH(ads) intermediates. The surface potentials show that acetyl, OCCH3(ads) forms at small positive potentials and decomposes to CH(ads), CH3(ads), and CO(ads), which poison the surface at these potentials. Energy losses due to non-electron transfer reaction steps are small and cause a small shift in the reversible potential for the 12 electron oxidation. Values for adsorption bond strengths over a perfect catalyst were determined. It is concluded that on an ideal catalyst most intermediates will adsorb more weakly and OH more strongly than on Pt(111). © The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. -
The Neutral Photochemistry of Nitriles, Amines and Imines in the Atmosphere of Titan
The neutral photochemistry of nitriles, amines and imines in the atmosphere of Titan J.C. Loisonc,d, E. H´ebrarda,b, M. Dobrijevica,b,∗, K.M. Hicksonc,d, F. Caralpc,d, V. Huea,b, G. Gronoffe, O. Venotf, Y. Benilang aUniversit´ede Bordeaux, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270 Floirac, France bCNRS, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270, Floirac, France cUniversit´ede Bordeaux, Institut des Sciences Mol´eculaires, UMR 5255, F-33400 Talence, France dCNRS, Institut des Sciences Mol´eculaires, UMR 5255, F-33400 Talence, France eSSAI/NASA LaRC, Hampton, Va, USA fKatholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium gLaboratoire Interuniversitaire des Syst`emesAtmosph´eriques, UMR CNRS 7583, Universit´esParis Est Cr´eteil(UPEC) et Paris Diderot (UPD), Cr´eteil,France Abstract The photochemistry of N2 and CH4 in the atmosphere of Titan leads to a very rich chemistry which is not well understood. The aim of our study is to improve our understanding of the production of nitrogen compounds and to predict the abundances of those with high molar mass with better accuracy. We have made a careful investigation of the neutral nitrogen photochemistry to improve current chemical schemes including the most abundant species and the most efficient reactions. We also studied the propagation of uncertainties on rate constants in our model and determined the key reactions from a global sensitivity analysis. Our photochemical model contains 124 species, 60 of which are nitrogen con- taining compounds, and 1141 reactions. Our results are in reasonable agreement with Cassini/INMS data in the higher atmosphere but our model overestimates the mole fractions of several nitriles in the lower stratosphere.