Tribonacci Cat Map a Discrete Chaotic Mapping with Tribonacci Matrix
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Simultaneous Elements of Prescribed Multiplicative Orders 2
Simultaneous Elements Of Prescribed Multiplicative Orders N. A. Carella Abstract: Let u 6= ±1, and v 6= ±1 be a pair of fixed relatively prime squarefree integers, and let d ≥ 1, and e ≥ 1 be a pair of fixed integers. It is shown that there are infinitely many primes p ≥ 2 such that u and v have simultaneous prescribed multiplicative orders ordp u = (p − 1)/d and ordp v = (p − 1)/e respectively, unconditionally. In particular, a squarefree odd integer u > 2 and v = 2 are simultaneous primitive roots and quadratic residues (or quadratic nonresidues) modulo p for infinitely many primes p, unconditionally. Contents 1 Introduction 1 2 Divisors Free Characteristic Function 4 3 Finite Summation Kernels 5 4 Gaussian Sums, And Weil Sums 7 5 Incomplete And Complete Exponential Sums 7 6 Explicit Exponential Sums 11 7 Equivalent Exponential Sums 12 8 Double Exponential Sums 13 9 The Main Term 14 10 The Error Terms 15 arXiv:2103.04822v1 [math.GM] 5 Mar 2021 11 Simultaneous Prescribed Multiplicative Orders 16 12 Probabilistic Results For Simultaneous Orders 18 1 Introduction The earliest study of admissible integers k-tuples u1, u2, . , uk ∈ Z of simultaneous prim- itive roots modulo a prime p seems to be the conditional result in [21]. Much more general March 9, 2021 AMS MSC2020 :Primary 11A07; Secondary 11N13 Keywords: Distribution of primes; Primes in arithmetic progressions; Simultaneous primitive roots; Simul- taneous prescribed orders; Schinzel-Wojcik problem. 1 Simultaneous Elements Of Prescribed Multiplicative Orders 2 results for admissible rationals k-tuples u1, u2, . , uk ∈ Q of simultaneous elements of independent (or pseudo independent) multiplicative orders modulo a prime p ≥ 2 are considered in [26], and [14]. -
The Development of a Vertical Axis Tidal Current Turbine
The development of a vertical axis tidal current turbine Daniel Brinck Nicklas Jeremejeff Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2013-090 Division of Energy Technology SE-100 44 STOCKHOLM Master of Science Thesis EGI 2013:090 The development of a vertical axis tidal current turbine Daniel Brinck Nicklas Jeremejeff Approved Examiner Supervisor Joachim Claesson Peter Kjaerboe Commissioner Contact person Subsea Technology Scandinavia AB Peter Lindberg Abstract Globally the amount of electricity produced each year is increasing significantly. Between 1980 and 2010 the average increase was 407 billion kWh per year. To be able to meet this increasing electricity demand, without burdening the environment in a too large extent, the research and development of renewable energy production techniques is of great importance. In the light of this we wanted to dedicate our master thesis to help Subsea Technology Scandinavia AB with the development of a vertical axis tidal current turbine. The project set out to do the initial design proposal of a 2 x 4 meter H-shaped Darrieus turbine by applying the Double Multiple Streamtube model. The optimization process was performed with the aid of MATLAB for four different foils. The study included two symmetrical foils; NACA 0012 and S-1046 together with two asymmetrical foils; S-1210 and E216. The parameters studied were the number of blades, chord length, tip speed ratio, fixed pitch and the operational range. In the project, effects such as blade to wake interaction, torque fluctuations etc. were also considered. From the simulations the two bladed turbine fitted with the S-1046 hydrofoil showed the highest performance but was struggling with an unfavorable oscillating torque. -
Computing Multiplicative Order and Primitive Root in Finite Cyclic Group
Computing Multiplicative Order and Primitive Root in Finite Cyclic Group Shri Prakash Dwivedi ∗ Abstract Multiplicative order of an element a of group G is the least positive integer n such that an = e, where e is the identity element of G. If the order of an element is equal to |G|, it is called generator or primitive root. This paper describes the algorithms for computing multiplicative order and Z∗ primitive root in p, we also present a logarithmic improvement over classical algorithms. 1 Introduction Algorithms for computing multiplicative order or simply order and primitive root or generator are important in the area of random number generation and discrete logarithm problem among oth- Z∗ ers. In this paper we consider the problem of computing the order of an element over p, which is Z∗ multiplicative group modulo p . As stated above order of an element a ∈ p is the least positive integer n such that an = 1. In number theoretic language, we say that the order of a modulo m is n, if n is the smallest positive integer such that an ≡ 1( mod m). We also consider the related Z∗ Z∗ problem of computing the primitive root in p. If order of an element a ∈ n usually denoted as Z∗ ordn(a) is equal to | n| i.e. order of multiplicative group modulo n, then a is called called primi- Z∗ tive root or primitive element or generator [3] of n. It is called generator because every element Z∗ in n is some power of a. Efficient deterministic algorithms for both of the above problems are not known yet. -
A Quantum Primality Test with Order Finding
A quantum primality test with order finding Alvaro Donis-Vela1 and Juan Carlos Garcia-Escartin1,2, ∗ 1Universidad de Valladolid, G-FOR: Research Group on Photonics, Quantum Information and Radiation and Scattering of Electromagnetic Waves. o 2Universidad de Valladolid, Dpto. Teor´ıa de la Se˜nal e Ing. Telem´atica, Paseo Bel´en n 15, 47011 Valladolid, Spain (Dated: November 8, 2017) Determining whether a given integer is prime or composite is a basic task in number theory. We present a primality test based on quantum order finding and the converse of Fermat’s theorem. For an integer N, the test tries to find an element of the multiplicative group of integers modulo N with order N − 1. If one is found, the number is known to be prime. During the test, we can also show most of the times N is composite with certainty (and a witness) or, after log log N unsuccessful attempts to find an element of order N − 1, declare it composite with high probability. The algorithm requires O((log n)2n3) operations for a number N with n bits, which can be reduced to O(log log n(log n)3n2) operations in the asymptotic limit if we use fast multiplication. Prime numbers are the fundamental entity in number For a prime N, ϕ(N) = N 1 and we recover Fermat’s theory and play a key role in many of its applications theorem. − such as cryptography. Primality tests are algorithms that If we can find an integer a for which aN−1 1 mod N, determine whether a given integer N is prime or not. -
Exponential and Character Sums with Mersenne Numbers
Exponential and character sums with Mersenne numbers William D. Banks Dept. of Mathematics, University of Missouri Columbia, MO 65211, USA [email protected] John B. Friedlander Dept. of Mathematics, University of Toronto Toronto, Ontario M5S 3G3, Canada [email protected] Moubariz Z. Garaev Instituto de Matem´aticas Universidad Nacional Aut´onoma de M´exico C.P. 58089, Morelia, Michoac´an, M´exico [email protected] Igor E. Shparlinski Dept. of Computing, Macquarie University Sydney, NSW 2109, Australia [email protected] Dedicated to the memory of Alf van der Poorten 1 Abstract We give new bounds on sums of the form Λ(n) exp(2πiagn/m) and Λ(n)χ(gn + a), 6 6 nXN nXN where Λ is the von Mangoldt function, m is a natural number, a and g are integers coprime to m, and χ is a multiplicative character modulo m. In particular, our results yield bounds on the sums exp(2πiaMp/m) and χ(Mp) 6 6 pXN pXN p with Mersenne numbers Mp = 2 − 1, where p is prime. AMS Subject Classification Numbers: 11L07, 11L20. 1 Introduction Let m be an arbitrary natural number, and let a and g be integers that are coprime to m. Our aim in the present note is to give bounds on exponential sums and multiplicative character sums of the form n n Sm(a; N)= Λ(n)em(ag ) and Tm(χ, a; N)= Λ(n)χ(g + a), 6 6 nXN nXN where em is the additive character modulo m defined by em(x) = exp(2πix/m) (x ∈ R), and χ is a nontrivial multiplicative character modulo m. -
Elp -Discography
ELP Discography ELP -DISCOGRAPHY- (1970 - 2002) NOTE: THIS DISCOGRAPHY and SONG LIST is BASED ON MY OWN COLLECTION, plus LATEST INFO FROM WEBSITES (inc. DISCOGRAPHY ORIGINALLY PUBLISHED by ELP DIGEST) and “THE SHOW THAT NEVER ENDS…” A MUSICAL BIOGRAPHY (by FORRESTER, HANSON & ASKEW) DICOGRAPHY covers ALL KNOWN ALBUMS, SINGLES and VIDEOS by EMERSON, LAKE and PALMER (either TOGETHER or INDIVIDUALLY), ordered CHRONOLOGICALLY between the Years 1970 to 2002 Clive ffitch (a fan!) Logo/Link to Official ELP Global Web Site SUMMARY: ALL ALBUMS / CDs (inc. ELPowell and Three) ALL SINGLES + ALBUMS - KEITH EMERSON + ALBUMS - GREG LAKE + ALBUMS - CARL PALMER + ALL ELP VIDEOS + THE BOOK! Page 1 ELP Discography ELP - THE COLLECTION TITLES: ELP ALBUMS / CDs (inc. ELPowell and Three): ELP SINGLES (inc. Individuals): Vinyl CD Vinyl CD (excluding other Promo’s) [ ] [ ] 1. Emerson Lake and Palmer [ ] 1. Lucky Man / Knife Edge [ ] [ ] 2. Tarkus [ ] 2. Take a Pebble / Lucky Man [ ] [ ] 3. Pictures at an Exhibition [ ] 3. Stones of Years / A Time... [ ] [ ] 4. Trilogy [ ] 4. Nutrocker / Great Gates... [ ] [ ] 5. Brain Salad Surgery [ ] 5. From the Beginning / Living... [ ] [ ] 6. Welcome Back My Friends [ ] 6. Brain Salad (NME Floppie) [ ] [ ] 7. Works Vol.I [ ] 7. Jerusalem / Apple Blossom... [ ] [ ] 8. Works Vol.II [ ] 8. Still... You Turn Me On / Brain [ ] [ ] 9. Love Beach [ ] [ ] 9. I Believe in Father Xmas (L) [ ]. 10. In Concert (re-issued as Works Live) [ ] 10. Honky Tonk Train Blues (E) [ ] [ ] 11. The Best of ELP (1980) [ ] [ ] 11. Fanfare for Common Man [ ] [ ] 12. Emerson Lake and Powell (ELPo) [ ] 12. C’est La Vie (L) [ ] [ ] 13. To the Power of Three (Three) [ ] 13. All I Want is You / Tiger.. -
Overpseudoprimes, Mersenne Numbers and Wieferich Primes 2
OVERPSEUDOPRIMES, MERSENNE NUMBERS AND WIEFERICH PRIMES VLADIMIR SHEVELEV Abstract. We introduce a new class of pseudoprimes - so-called “overpseu- doprimes” which is a special subclass of super-Poulet pseudoprimes. De- noting via h(n) the multiplicative order of 2 modulo n, we show that odd number n is overpseudoprime if and only if the value of h(n) is invariant of all divisors d > 1 of n. In particular, we prove that all composite Mersenne numbers 2p − 1, where p is prime, and squares of Wieferich primes are overpseudoprimes. 1. Introduction n Sometimes the numbers Mn =2 − 1, n =1, 2,..., are called Mersenne numbers, although this name is usually reserved for numbers of the form p (1) Mp =2 − 1 where p is prime. In our paper we use the latter name. In this form numbers Mp at the first time were studied by Marin Mersenne (1588-1648) at least in 1644 (see in [1, p.9] and a large bibliography there). We start with the following simple observation. Let n be odd and h(n) denote the multiplicative order of 2 modulo n. arXiv:0806.3412v9 [math.NT] 15 Mar 2012 Theorem 1. Odd d> 1 is a divisor of Mp if and only if h(d)= p. Proof. If d > 1 is a divisor of 2p − 1, then h(d) divides prime p. But h(d) > 1. Thus, h(d)= p. The converse statement is evident. Remark 1. This observation for prime divisors of Mp belongs to Max Alek- seyev ( see his comment to sequence A122094 in [5]). -
Introduction to Abstract Algebra “Rings First”
Introduction to Abstract Algebra \Rings First" Bruno Benedetti University of Miami January 2020 Abstract The main purpose of these notes is to understand what Z; Q; R; C are, as well as their polynomial rings. Contents 0 Preliminaries 4 0.1 Injective and Surjective Functions..........................4 0.2 Natural numbers, induction, and Euclid's theorem.................6 0.3 The Euclidean Algorithm and Diophantine Equations............... 12 0.4 From Z and Q to R: The need for geometry..................... 18 0.5 Modular Arithmetics and Divisibility Criteria.................... 23 0.6 *Fermat's little theorem and decimal representation................ 28 0.7 Exercises........................................ 31 1 C-Rings, Fields and Domains 33 1.1 Invertible elements and Fields............................. 34 1.2 Zerodivisors and Domains............................... 36 1.3 Nilpotent elements and reduced C-rings....................... 39 1.4 *Gaussian Integers................................... 39 1.5 Exercises........................................ 41 2 Polynomials 43 2.1 Degree of a polynomial................................. 44 2.2 Euclidean division................................... 46 2.3 Complex conjugation.................................. 50 2.4 Symmetric Polynomials................................ 52 2.5 Exercises........................................ 56 3 Subrings, Homomorphisms, Ideals 57 3.1 Subrings......................................... 57 3.2 Homomorphisms.................................... 58 3.3 Ideals......................................... -
Forms of Intertextuality: Keith Emerson’S Development As a “Crossover” Musician
FORMS OF INTERTEXTUALITY: KEITH EMERSON’S DEVELOPMENT AS A “CROSSOVER” MUSICIAN Akitsugu Kawamoto A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Musicology in the Department of Music. Chapel Hill 2006 Approved by Advisor: John Covach Reader: John Nádas Reader: Severine Neff Reader: Allen Anderson Reader: David Garcia © 2006 Akitsugu Kawamoto ALL RIGHTS RESERVED ii ABSTRACT AKITSUGU KAWAMOTO: Forms of Intertextuality: Keith Emerson’s Development as a “Crossover” Musician (Under the direction of John Covach) Despite the broad range of attempts to mix “rock” and “classical” music by “progressive (“prog”) rock” musicians from the late 1960s, many writers on prog rock have interpreted the music in a relatively monolithic manner; they often have interpreted the resulting intertextuality simplistically as an elitist experiment that opposes rock’s populist origin. This could certainly be one interpretation of prog, but it is only one of many; there are additional kinds of possible narratives, according to the specific ways in which the materials are combined and fused. Yet the variety of intertextual approaches has rarely been recognized explicitly, and little analytical or musicological attention has been paid to the distinctly different intertextual styles. Generalized approaches to intertextuality have been common not only within popular music studies, however, but also within many humanistic fields. Since Julia Kristeva’s coinage of the term intertextuality in the late 1960s, theorists of the arts (literature, music, painting, architecture, etc.), sociology, politics, economics, and many other fields, have almost always treated intertextuality in a singular manner, presuming that all intertextual practices are more or less of the same kind. -
Cyclic Groups and Primitive Roots
Cyclic Groups and Primitive Roots Ryan C. Daileda Trinity University Number Theory Daileda Primitive Roots Cyclic Subgroups Let G be a group and let a ∈ G. The set hai = {am | m ∈ Z} is clearly closed under multiplication and inversion in G. hai is therefore a group in its own right, the cyclic subgroup generated by a. Our work last time immediately proves: Theorem 1 Let G be a group and let a ∈ G. If |a| is infinite, so is hai. If |a| = n ∈ N, then hai = {e, a, a2,..., an−1}, and these elements are all distinct. Daileda Primitive Roots Examples The (additive) subgroup of Z/20Z generated by 12 + 20Z is {12 + 20Z, 4 + 20Z, 16 + 20Z, 8 + 20Z, 0 + 20Z}, 20 which has 5 = (12,20) elements, as expected. The (multiplicative) subgroup of (Z/16Z)× generated by 3 + 16Z is {3 + 16Z, 9 + 16Z, 11 + 16Z, 1 + 16Z}, which has 4 = |3 + 16Z| elements. Daileda Primitive Roots Cyclic Groups Definition A group G is called cyclic if there is an a ∈ G so that G = hai. In this case we say that G is generated by a. Since |a| = hai , if G is finite we find that G is cyclic ⇔ G has an element of order |G|. Since the additive order of 1+ nZ in Z/nZ is exactly n, we conclude that Z/nZ (under addition) is always cyclic. Daileda Primitive Roots n Recall that the additive order of a + nZ in Z/nZ is (a,n) . Thus: The (additive) generators of Z/nZ are the elements of (Z/nZ)×. -
Whole Numbers
Unit 1: Whole Numbers 1.1.1 Place Value and Names for Whole Numbers Learning Objective(s) 1 Find the place value of a digit in a whole number. 2 Write a whole number in words and in standard form. 3 Write a whole number in expanded form. Introduction Mathematics involves solving problems that involve numbers. We will work with whole numbers, which are any of the numbers 0, 1, 2, 3, and so on. We first need to have a thorough understanding of the number system we use. Suppose the scientists preparing a lunar command module know it has to travel 382,564 kilometers to get to the moon. How well would they do if they didn’t understand this number? Would it make more of a difference if the 8 was off by 1 or if the 4 was off by 1? In this section, you will take a look at digits and place value. You will also learn how to write whole numbers in words, standard form, and expanded form based on the place values of their digits. The Number System Objective 1 A digit is one of the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. All numbers are made up of one or more digits. Numbers such as 2 have one digit, whereas numbers such as 89 have two digits. To understand what a number really means, you need to understand what the digits represent in a given number. The position of each digit in a number tells its value, or place value. -
2Y, X > 0, Y ≥ 0 1. Scope We Consider the Number of Ways to Repr
THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x2 − 2y, x > 0, y ≥ 0 RICHARD J. MATHAR Abstract. We count solutions to the Ramanujan-Nagell equation 2y +n = x2 for fixed positive n. The computational strategy is to count the solutions separately for even and odd exponents y, and to handle the odd case with modular residues for most cases of n. 1. Scope We consider the number of ways to represent n > 0 as (1) n = x2 − 2y; for pairs of the non-negative unknowns x and y. Equivalently we count the y such that (2) n + 2y = x2 are perfect squares. Remark 1. For n = 0 the number of solutions is infinite because each even value of y creates one solution. The n for which the count is nonzero end up in [8, A051204]. Remark 2. Negative n for which solutions exists are listed in [8, A051213] [4,2] . The solutions are counted separately for even y and odd y and added up. The total count is at most 4 [6]. 2. Even Exponents y Counting the squares x2 of the format (2) considering only even y is basically a matter of considering the values y = 0; 2; 4;::: in turn and checking explicitly each y2 + n against being a square. An upper limit to the y is determined as follows: • The y-values in the range 2y < n are all checked individually. • For larger y the values of 2y + n on the left hand side of (2) are represented in binary by some most significant bit contributed by 2y and|after a train of zero bits depending of how much larger 2y is than n|the trailing bits of n.