Algebraic Geometry from an a -Homotopic Viewpoint

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Geometry from an a -Homotopic Viewpoint Algebraic geometry from an 1 A -homotopic viewpoint Aravind Asok February 4, 2019 2 Contents 1 Topological preliminaries 9 1 1 2 Affine varieties, A -invariance and naive A -homotopies 17 3 Projective modules, gluing and locally free modules 33 1 4 Picard groups, normality and A -invariance 55 1 5 Grothendieck groups, regularity and A -invariance 79 6 Local triviality and smooth fiber bundles 103 7 Schemes, sheaves and Grothendieck topologies 129 1 8 Vector bundles and A -invariance 155 1 9 Symmetric bilinear forms and endomorphisms of P 175 10 Punctured affine space and naive homotopy classes 189 11 Milnor K-theory 191 12 Milnor–Witt K-theory 195 A Sets, Categories and Functors 199 3 CONTENTS 4 Outline/Motivation 1 This course is supposed to serve as an introduction to A -algebraic topology, which is a term coined by Fabien Morel [Mor06b, Mor12]. Officially, the prerequisites for this class were the introduc- tory topology sequence (homology, covering spaces, fundamental groups, manifolds, elementary differential topology, de Rham cohomology) and the algebra sequence (groups, rings, fields, lin- ear algebra, a touch of commutative algebra and some elementary non-commutative ring theory). The true prerequisite is willingness to learn on the fly. Given that background, this course was constructed around the following conceit: it is possible and interesting to learn something about 1 A -homotopy theory. 1 Thus, the natural question to ask is: why should one care about A -homotopy theory (especially if you have not yet learned homotopy theory or algebraic geometry!)? This course is essentially my answer to this question: I want to provide a “modern” approach to the study of projective modules over commutative rings. The theory of projective modules is by now a very classical subject: the formal notion of projec- tive module goes back to the work of Cartan–Eilenberg in the foundations of homological algebra [CE99, Chapter I.2], but examples of projective modules arose much earlier (e.g., the theory of in- vertible fractional ideals). The notion of projective module becomes indispensible in cohomology, e.g., group cohomology may be computed using projective resolutions. One may look at the collec- tion of projective modules over a ring as a certain invariant of the ring itself (“representations” of the ring). The results of Serre showed that the language of algebraic geometry might provide a good language to study projective modules over commutative unital rings [Ser55, x50 p. 242]. More precisely, Serre showed that finitely generated projective modules over commutative unital rings are precisely the same things as finite rank algebraic vector bundles over affine algebraic varieties. Serre furthermore showed that this dictionary was useful for providing a better understanding about projective modules because it allowed one to exploit an analogy between algebraic geometry and algebraic topology: projective modules over rings are analogous to vector bundles over topological spaces. From this point of view, projective modules take on additional significance. For example, in differential topology, one may turn a non-linear problem (e.g., existence of an immersion of one manifold into another) into a linear problem by looking at associated bundles (a corresponding injection of tangent bundles in the case of immersions). In good situations, a solution to the linear problem can actually be promoted to a solution of the non-linear problem (in our parenthetical exmaple, this is an incarnation of the Hirsch-Smale theory of immersions). Based on this analogy, Serre observed that if R is a Noetherian ring of dimension d, one could “simplify” projective modules P of rank r > d greater than the dimension: any such module could be written as a sum of a projective module of rank r0 ≤ d and a free module of rank r0 − r [Ser58b]. After the work of Bass [Bas64], which furthermore amalgamated Grothendieck’s ideas regarding K-theory with Serre’s results, J.F. Adams wrote: “This leads to the following programme: take definitions, constructions and theorems from bundle-theory; express them as particular cases of definitions, constructions and statements about finitely-generated projective modules over a general ring; and finally, try to prove the statements under suitable assumptions”. 5 CONTENTS 1 My point of view in this class is that the Morel-Voevodsy A -homotopy theory provides arguably the ultimate realization of this program. Pontryagin and Steenrod observed that one could use techniques of homotopy theory to study vector bundles on spaces having the homotopy type of CW complexes. Indeed, the basic goal of the class will be to establish the analog in algebraic geometry of this result, at least for sufficiently nice (i.e., non-singular) affine varieties. Looking beyond this, just as the Weil conjectures provides a beautiful link between the arithmetic problem of counting the number of solutions of a system of equations over a finite field and a “topologically inspired” etale´ cohomology theory of algebraic 1 varieties, A -homotopy theory allows one to construct a link between the algebraic theory of projec- tive modules over commutative rings, and an “algebro-geometric” analog of the homotopy groups of spheres! After very quickly recalling some of the topological constructions that provide sources of in- spiration (and which we will attempt to mirror), I will begin a brief study of the theory of affine algebraic varieties. While this will not suffice for our eventual applications, affine varieties are, arguably, intuitively appealing, and it seemed better not to require too much algebro-geometric so- phistication at first. Then, I will introduce a “naive” version of homotopy for algebraic varieties and, following the topological story, describe various “homotopy invariants” in algebraic geometry. Along the way, I will introduce a number of important invariants of algebraic varieties: projective modules, Picard groups, and K-theory. The ultimate goal is to prove Lindel’s theorem that shows that the functor “isomorphism classes of projective modules” is homotopy invariant, in a suitable algebro-geometric sense, on suitably nice (i.e., non-singular, affine) algebraic varieties. Along the way, I will try to 1 build things up in a way that motivates some of the tools used in the study of A -homotopy theory over a field. There are many texts that talk about cohomology theories in algebraic geometry and these notes are not intended to be another such text. Rather, there is a hope, supported by recent results, that 1 A -homotopy theory can give us information not just about cohomology of algebraic varieties, but actually about their geometry. We have attempted to illustrate this by focusing on projective modules and vector bundles on algebraic varieties. What’s next? To proceed from the “naive” theory to the “true” theory, requires more sophistication: one needs to know some homotopy theory of simplicial sets, Grothendieck topologies, model categories etc. The syllabus listed the following plan, which I would argue is the “next step” beyond what I now want to cover in the class. The subsequent background is written with this plan in mind. • Week 1. Some abstract algebraic geometry: the Nisnevich topology and basic properties. • Week 2. Simplicial sets and simplicial (pre)sheaves. 1 • Week 3. Model categories in brief; the simplicial and A -homotopy categories 1 • Week 4. Basic properties of the A -homotopy category (e.g., homotopy purity) • Week 5. Fibrancy, cd-structures and descent • Week 6. Classifying spaces: simplicial homotopy classification of torsors 1 • Week 7. A -homotopy classification results 1 • Week 8. Eilenberg-MacLane spaces and strong and strict A -invariance CONTENTS 6 • Week 9. Postnikov towers 1 • Week 10. Homotopy sheaves and A -connectivity 1 • Week 11. The unstable A -connectivity property and applications • Week 12. Loop spaces and relative connectivity 1 • Week 13. Gersten resolutions and strong/strict A -invariance 1 1 • Week 14. A -homology and A -homotopy sheaves 1 • Week 15. A -quasifibrations and some computations of homotopy sheaves Background. While there isn’t a specific textbook for the class, I will use a number of different sources for some of the background material. There is formally quite a lot of background for the subject of the class and I don’t expect anyone to have digested all the prerequisites in any sort of linear fashion. Instead, there will be a lot of “on-the-fly” learning and going backwards to fill in details as necessary. • To get started, I will expect that people know some basic things about commutative ring theory. A good introductory textbook is [AM69], but [Mat89] is more comprehensive. For a discussion that is more algebro-geometric, you can look at [Eis95]. We will also need more detailed results about modules, for which you consule [Lam99]. • We will study affine varieties and eventually discuss sheaf cohomology on topological spaces. Beyond what I mention in the class, useful references for the theory of algebraic varieties will include [Har77, Chapters 1-2]. Useful background for the notions of sheaf cohomology we will need on topological spaces in general, and on schemes in particular, can be found in [God73] or [Har77, Chapter 3]. Implicit here is a basic understanding of some ideas from homological algebra [Wei94]. Furthermore, from the standpoint of references, I think there is now no better definitive source than Johan de Jong’s Stacks Project [Sta15]. • I will also expect some familiarity with basic concepts of algebraic and differential topology, e.g., topological spaces, smooth manifolds and maps, CW complexes, singular homology, covering spaces, vector bundles, and homotopy groups as can be found in [Spa81] or [Hat02]. The point of view exposed in [AGP02] will also be useful. • Finally, the course will, from the beginning, use category-theoretic terminology. Beyond the usual notions of categories, functors, and natural transformations, I will expect some famil- iarity with various kinds of universal properties, limits (and colimits) and adjoint functors and their properties, as can be picked up in [ML98] or [Kel05].
Recommended publications
  • Connections Between Differential Geometry And
    VOL. 21, 1935 MA THEMA TICS: S. B. MYERS 225 having no point of C on their interiors or boundaries, the second composed of the remaining cells of 2,,. The cells of the first class will form a sub-com- plex 2* of M,. The cells of the second class will not form a complex, since they may have cells of the first class on their boundaries; nevertheless, their duals will form a complex A. Moreover, the cells of the second class will determine a region Rn containing C. Now, there is no difficulty in extending Pontrjagin's relation of duality to the Betti Groups of 2* and A. Moreover, every cycle of S - C is homologous to a cycle of 2, for sufficiently large values of n and bounds in S - C if and only if the corresponding cycle of 2* bounds for sufficiently large values of n. On the other hand, the regions R. close down on the point set C as n increases indefinitely, in the sense that the intersection of all the RI's is precisely C. Thus, the proof of the relation of duality be- tween the Betti groups of C and S - C may be carried through as if the space S were of finite dimensionality. 1 L. Pontrjagin, "The General Topological Theorem of Duality for Closed Sets," Ann. Math., 35, 904-914 (1934). 2 Cf. the reference in Lefschetz's Topology, Amer. Math. Soc. Publications, vol. XII, end of p. 315 (1930). 3Lefschetz, loc. cit., pp. 341 et seq. CONNECTIONS BETWEEN DIFFERENTIAL GEOMETRY AND TOPOLOG Y BY SumNR BYRON MYERS* PRINCJETON UNIVERSITY AND THE INSTITUTE FOR ADVANCED STUDY Communicated March 6, 1935 In this note are stated the definitions and results of a study of new connections between differential geometry and topology.
    [Show full text]
  • On the Topology of Ending Lamination Space
    1 ON THE TOPOLOGY OF ENDING LAMINATION SPACE DAVID GABAI Abstract. We show that if S is a finite type orientable surface of genus g and p punctures where 3g + p ≥ 5, then EL(S) is (n − 1)-connected and (n − 1)- locally connected, where dim(PML(S)) = 2n + 1 = 6g + 2p − 7. Furthermore, if g = 0, then EL(S) is homeomorphic to the p−4 dimensional Nobeling space. 0. Introduction This paper is about the topology of the space EL(S) of ending laminations on a finite type hyperbolic surface, i.e. a complete hyperbolic surface S of genus-g with p punctures. An ending lamination is a geodesic lamination L in S that is minimal and filling, i.e. every leaf of L is dense in L and any simple closed geodesic in S nontrivally intersects L transversely. Since Thurston's seminal work on surface automorphisms in the mid 1970's, laminations in surfaces have played central roles in low dimensional topology, hy- perbolic geometry, geometric group theory and the theory of mapping class groups. From many points of view, the ending laminations are the most interesting lam- inations. For example, the stable and unstable laminations of a pseudo Anosov mapping class are ending laminations [Th1] and associated to a degenerate end of a complete hyperbolic 3-manifold with finitely generated fundamental group is an ending lamination [Th4], [Bon]. Also, every ending lamination arises in this manner [BCM]. The Hausdorff metric on closed sets induces a metric topology on EL(S). Here, two elements L1, L2 in EL(S) are close if each point in L1 is close to a point of L2 and vice versa.
    [Show full text]
  • William P. Thurston the Geometry and Topology of Three-Manifolds
    William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 2002 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed by Princeton University. The text was typed in TEX by Sheila Newbery, who also scanned the figures. Typos have been corrected (and probably others introduced), but otherwise no attempt has been made to update the contents. Genevieve Walsh compiled the index. Numbers on the right margin correspond to the original edition’s page numbers. Thurston’s Three-Dimensional Geometry and Topology, Vol. 1 (Princeton University Press, 1997) is a considerable expansion of the first few chapters of these notes. Later chapters have not yet appeared in book form. Please send corrections to Silvio Levy at [email protected]. CHAPTER 5 Flexibility and rigidity of geometric structures In this chapter we will consider deformations of hyperbolic structures and of geometric structures in general. By a geometric structure on M, we mean, as usual, a local modelling of M on a space X acted on by a Lie group G. Suppose M is compact, possibly with boundary. In the case where the boundary is non-empty we do not make special restrictions on the boundary behavior. If M is modelled on (X, G) then the developing map M˜ −→D X defines the holonomy representation H : π1M −→ G. In general, H does not determine the structure on M. For example, the two immersions of an annulus shown below define Euclidean structures on the annulus which both have trivial holonomy but are not equivalent in any reasonable sense.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • 4. Coherent Sheaves Definition 4.1. If (X,O X) Is a Locally Ringed Space
    4. Coherent Sheaves Definition 4.1. If (X; OX ) is a locally ringed space, then we say that an OX -module F is locally free if there is an open affine cover fUig of X such that FjUi is isomorphic to a direct sum of copies of OUi . If the number of copies r is finite and constant, then F is called locally free of rank r (aka a vector bundle). If F is locally free of rank one then we way say that F is invertible (aka a line bundle). The group of all invertible sheaves under tensor product, denoted Pic(X), is called the Picard group of X. A sheaf of ideals I is any OX -submodule of OX . Definition 4.2. Let X = Spec A be an affine scheme and let M be an A-module. M~ is the sheaf which assigns to every open subset U ⊂ X, the set of functions a s: U −! Mp; p2U which can be locally represented at p as a=g, a 2 M, g 2 R, p 2= Ug ⊂ U. Lemma 4.3. Let A be a ring and let M be an A-module. Let X = Spec A. ~ (1) M is a OX -module. ~ (2) If p 2 X then Mp is isomorphic to Mp. ~ (3) If f 2 A then M(Uf ) is isomorphic to Mf . Proof. (1) is clear and the rest is proved mutatis mutandis as for the structure sheaf. Definition 4.4. An OX -module F on a scheme X is called quasi- coherent if there is an open cover fUi = Spec Aig by affines and ~ isomorphisms FjUi ' Mi, where Mi is an Ai-module.
    [Show full text]
  • Anastasiia Tsvietkova Email A.Tsviet@Rutgers
    1/6 Anastasiia Tsvietkova Email [email protected] Appointments Continuing Assistant Professor, t.-track, Rutgers University, Newark, NJ, USA 09/2016 – present Temporary or Past Von Neumann Fellow, Institute of Advanced Study, Princeton 09/2020 – 08/2021 Assistant Professor and Head of Geometry and Topology of Manifolds 09/2017 – 08/2019 Unit, OIST (research institute), Japan Krener Assistant Professor (non t.-track), University of California, Davis 01/2014 – 08/2016 Postdoctoral Fellow, ICERM, Brown University (Semester program in Fall 2013 Low-dimensional Topology, Geometry, and Dynamics) NSF VIGRE Postdoctoral Researcher, Louisiana State University 08/2012 – 08/2013 Education PhD in Mathematics, University of Tennessee, 05/2012, honored by Graduate Academic Achievement Award Thesis: Hyperbolic structures from link diagrams. Advisor: Prof. Morwen Thistlethwaite. Master’s degree with Honors in Applied Mathematics, Kiev National University, Ukraine, 07/2007 Thesis: Decomposition of cellular balleans into direct products. Advisor: Prof. Ihor Protasov. Bachelor’s degree with Honors in Applied Mathematics, Kiev National University, Ukraine, 05/2005 Thesis: Asymptotic Rays. Advisor: Prof. Ihor Protasov. GPA 5.0/5.0 Research Interests Low-dimensional Topology and Geometry Knot theory Geometric group theory Computational Topology Quantum Topology Hyperbolic geometry Academic Honors, Grants and Other Funding • NSF grant (sole PI), Geometry, Topology and Complexity of 3-manifolds, DMS-2005496, $213,906, 2020-present • NSF grant (sole PI), Hyperbolic
    [Show full text]
  • Topics in Low Dimensional Computational Topology
    THÈSE DE DOCTORAT présentée et soutenue publiquement le 7 juillet 2014 en vue de l’obtention du grade de Docteur de l’École normale supérieure Spécialité : Informatique par ARNAUD DE MESMAY Topics in Low-Dimensional Computational Topology Membres du jury : M. Frédéric CHAZAL (INRIA Saclay – Île de France ) rapporteur M. Éric COLIN DE VERDIÈRE (ENS Paris et CNRS) directeur de thèse M. Jeff ERICKSON (University of Illinois at Urbana-Champaign) rapporteur M. Cyril GAVOILLE (Université de Bordeaux) examinateur M. Pierre PANSU (Université Paris-Sud) examinateur M. Jorge RAMÍREZ-ALFONSÍN (Université Montpellier 2) examinateur Mme Monique TEILLAUD (INRIA Sophia-Antipolis – Méditerranée) examinatrice Autre rapporteur : M. Eric SEDGWICK (DePaul University) Unité mixte de recherche 8548 : Département d’Informatique de l’École normale supérieure École doctorale 386 : Sciences mathématiques de Paris Centre Numéro identifiant de la thèse : 70791 À Monsieur Lagarde, qui m’a donné l’envie d’apprendre. Résumé La topologie, c’est-à-dire l’étude qualitative des formes et des espaces, constitue un domaine classique des mathématiques depuis plus d’un siècle, mais il n’est apparu que récemment que pour de nombreuses applications, il est important de pouvoir calculer in- formatiquement les propriétés topologiques d’un objet. Ce point de vue est la base de la topologie algorithmique, un domaine très actif à l’interface des mathématiques et de l’in- formatique auquel ce travail se rattache. Les trois contributions de cette thèse concernent le développement et l’étude d’algorithmes topologiques pour calculer des décompositions et des déformations d’objets de basse dimension, comme des graphes, des surfaces ou des 3-variétés.
    [Show full text]
  • A Short Course in Differential Geometry and Topology A.T
    A Short Course in Differential Geometry and Topology A.T. Fomenko and A.S. Mishchenko с s P A Short Course in Differential Geometry and Topology A.T. Fomenko and A.S. Mishchenko Faculty of Mechanics and Mathematics, Moscow State University С S P Cambridge Scientific Publishers 2009 Cambridge Scientific Publishers Cover design: Clare Turner All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without prior permission in writing from the publisher. British Library Cataloguing in Publication Data A catalogue record for this book has been requested Library of Congress Cataloguing in Publication Data A catalogue record has been requested ISBN 978-1-904868-32-3 Cambridge Scientific Publishers Ltd P.O. Box 806 Cottenham, Cambridge CB24 8RT UK www.cambridgescientificpublishers.com Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne Contents Preface ix Introduction to Differential Geometry 1 1.1 Curvilinear Coordinate Systems. Simplest Examples 1 1.1.1 Motivation 1 1.1.2 Cartesian and curvilinear coordinates 3 1.1.3 Simplest examples of curvilinear coordinate systems . 7 1.2 The Length of a Curve in Curvilinear Coordinates 10 1.2.1 The length of a curve in Euclidean coordinates 10 1.2.2 The length of a curve in curvilinear coordinates 12 1.2.3 Concept of a Riemannian metric in a domain of Euclidean space 15 1.2.4 Indefinite metrics 18 1.3 Geometry on the Sphere and Plane 20 1.4 Pseudo-Sphere and Lobachevskii Geometry 25 General Topology 39 2.1 Definitions and Simplest Properties of Metric and Topological Spaces 39 2.1.1 Metric spaces 39 2.1.2 Topological spaces 40 2.1.3 Continuous mappings 42 2.1.4 Quotient topology 44 2.2 Connectedness.
    [Show full text]
  • Calculus of the Embedding Functor and Spaces of Knots
    CALCULUS OF THE EMBEDDING FUNCTOR AND SPACES OF KNOTS ISMAR VOLIC´ Abstract. We give an overview of how calculus of the embedding functor can be used for the study of long knots and summarize various results connecting the calculus approach to the rational homotopy type of spaces of long knots, collapse of the Vassiliev spectral sequence, Hochschild homology of the Poisson operad, finite type knot invariants, etc. Some open questions and conjectures of interest are given throughout. Contents 1. Introduction 1 1.1. Taylor towers for spaces of long knots arising from embedding calculus 2 1.2. Mapping space model for the Taylor tower 3 1.3. Cosimplicial model for the Taylor tower 4 1.4. McClure-Smith framework and the Kontsevich operad 5 2. Vassiliev spectral sequence and the Poisson operad 5 3. Rational homotopy type of Kn,n> 3 6 3.1. Collapse of the cohomology spectral sequence 6 3.2. Collapse of the homotopy spectral sequence 9 4. Case K3 and finite type invariants 9 5. Orthogonal calculus 11 5.1. Acknowledgements 12 References 12 1. Introduction Fix a linear inclusion f of R into Rn, n ≥ 3, and let Emb(R, Rn) and Imm(R, Rn) be the spaces of smooth embeddings and immersions, respectively, of R in Rn which agree with f outside a compact set. It is not hard to see that Emb(R, Rn) is equivalent to the space of based knots in the sphere Sn, and is known as the space of long knots. Let Kn be the homotopy fiber of the (inclusion Emb(R, Rn) ֒→ Imm(R, Rn) over f.
    [Show full text]
  • Geometry and Topology SHP Spring ’17
    Geometry and Topology SHP Spring '17 Henry Liu Last updated: April 29, 2017 Contents 0 About Mathematics 3 1 Surfaces 4 1.1 Examples of surfaces . 4 1.2 Equivalence of surfaces . 5 1.3 Distinguishing between surfaces . 7 1.4 Planar Models . 9 1.5 Cutting and Pasting . 11 1.6 Orientability . 14 1.7 Word representations . 16 1.8 Classification of surfaces . 19 2 Manifolds 20 2.1 Examples of manifolds . 21 2.2 Constructing new manifolds . 23 2.3 Distinguishing between manifolds . 25 2.4 Homotopy and homotopy groups . 27 2.5 Classification of manifolds . 30 3 Differential Topology 31 3.1 Topological degree . 33 3.2 Brouwer's fixed point theorem . 34 3.3 Application: Nash's equilibrium theorem . 36 3.4 Borsuk{Ulam theorem . 39 3.5 Poincar´e{Hopftheorem . 41 4 Geometry 44 4.1 Geodesics . 45 4.2 Gaussian curvature . 47 4.3 Gauss{Bonnet theorem . 51 1 5 Knot theory 54 5.1 Invariants and Reidemeister moves . 55 5.2 The Jones polynomial . 57 5.3 Chiral knots and crossing number . 60 A Appendix: Group theory 61 2 0 About Mathematics The majority of this course aims to introduce all of you to the many wonderfully interesting ideas underlying the study of geometry and topology in modern mathematics. But along the way, I want to also give you a sense of what \being a mathematician" and \doing mathematics" is really about. There are three main qualities that distinguish professional mathematicians: 1. the ability to correctly understand, make, and prove precise, unambiguous logical statements (often using a lot of jargon); 2.
    [Show full text]
  • Arxiv:2004.00097V2 [Math.MG] 3 May 2021 the Aigcnetdcmoet,Alioere of Isometries All Components, Connected Taking G Htpeevstedsac Ucin H E Isom( Set the Function
    LIFTING ISOMETRIES OF ORBIT SPACES RICARDO A. E. MENDES Abstract. Given an orthogonal representation of a compact group, we show that any element of the connected component of the isom- etry group of the orbit space lifts to an equivariant isometry of the original Euclidean space. Corollaries include a simple formula for this connected component, which applies to “most” representa- tions. 1. Introduction Given a metric space X, an isometry of X is defined as a bijection that preserves the distance function. The set Isom(X) of all isometries of X forms a group under composition, which is called the isometry group of X. An early result [DW28] (see also [KN96, pages 46–50]) states that if X is connected and locally compact, then Isom(X), endowed with the compact-open topology, is also locally compact, and the isotropy group Isom(X)x is compact for each x ∈ X. Moreover, if X is itself compact, then so is Isom(X). Shortly thereafter, Myers and Steenrod proved that Isom(X) is a Lie transformation group when X is a Riemannian manifold, see [MS39], [Kob95, page 41]. Generalizing this, Fukaya and Yamaguchi have shown [FY94] that Isom(X) is a Lie group whenever X is an Alexandrov space. Since then isometries of Alexandrov spaces have been actively studied, see for example [GGG13, HS17]. arXiv:2004.00097v2 [math.MG] 3 May 2021 In the present article, we consider a special class of Alexandrov spaces. Namely, given a compact group G acting linearly by isome- tries on a Euclidean vector space V , the orbit space X = V/G is an Alexandrov space with curvature bounded from below by 0.
    [Show full text]
  • DUALITY for SCHEMES 0DWE Contents 1. Introduction 2 2
    DUALITY FOR SCHEMES 0DWE Contents 1. Introduction 2 2. Dualizing complexes on schemes 2 3. Right adjoint of pushforward 5 4. Right adjoint of pushforward and restriction to opens 8 5. Right adjoint of pushforward and base change, I 11 6. Right adjoint of pushforward and base change, II 16 7. Right adjoint of pushforward and trace maps 19 8. Right adjoint of pushforward and pullback 21 9. Right adjoint of pushforward for closed immersions 23 10. Right adjoint of pushforward for closed immersions and base change 26 11. Right adjoint of pushforward for finite morphisms 27 12. Right adjoint of pushforward for proper flat morphisms 29 13. Right adjoint of pushforward for perfect proper morphisms 33 14. Right adjoint of pushforward for effective Cartier divisors 34 15. Right adjoint of pushforward in examples 35 16. Upper shriek functors 39 17. Properties of upper shriek functors 46 18. Base change for upper shriek 50 19. A duality theory 52 20. Glueing dualizing complexes 52 21. Dimension functions 58 22. Dualizing modules 60 23. Cohen-Macaulay schemes 62 24. Gorenstein schemes 63 25. Gorenstein morphisms 64 26. More on dualizing complexes 69 27. Duality for proper schemes over fields 69 28. Relative dualizing complexes 72 29. The fundamental class of an lci morphism 77 30. Extension by zero for coherent modules 78 31. Preliminaries to compactly supported cohomology 84 32. Compactly supported cohomology for coherent modules 87 33. Duality for compactly supported cohomology 91 34. Lichtenbaum’s theorem 94 35. Other chapters 95 References 96 This is a chapter of the Stacks Project, version fac02ecd, compiled on Sep 14, 2021.
    [Show full text]