Harmonic Conjugates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Models of 2-Dimensional Hyperbolic Space and Relations Among Them; Hyperbolic Length, Lines, and Distances
Models of 2-dimensional hyperbolic space and relations among them; Hyperbolic length, lines, and distances Cheng Ka Long, Hui Kam Tong 1155109623, 1155109049 Course Teacher: Prof. Yi-Jen LEE Department of Mathematics, The Chinese University of Hong Kong MATH4900E Presentation 2, 5th October 2020 Outline Upper half-plane Model (Cheng) A Model for the Hyperbolic Plane The Riemann Sphere C Poincar´eDisc Model D (Hui) Basic properties of Poincar´eDisc Model Relation between D and other models Length and distance in the upper half-plane model (Cheng) Path integrals Distance in hyperbolic geometry Measurements in the Poincar´eDisc Model (Hui) M¨obiustransformations of D Hyperbolic length and distance in D Conclusion Boundary, Length, Orientation-preserving isometries, Geodesics and Angles Reference Upper half-plane model H Introduction to Upper half-plane model - continued Hyperbolic geometry Five Postulates of Hyperbolic geometry: 1. A straight line segment can be drawn joining any two points. 2. Any straight line segment can be extended indefinitely in a straight line. 3. A circle may be described with any given point as its center and any distance as its radius. 4. All right angles are congruent. 5. For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R. Some interesting facts about hyperbolic geometry 1. Rectangles don't exist in hyperbolic geometry. 2. In hyperbolic geometry, all triangles have angle sum < π 3. In hyperbolic geometry if two triangles are similar, they are congruent. -
Investigating Centers of Triangles: the Fermat Point
Investigating Centers of Triangles: The Fermat Point A thesis submitted to the Miami University Honors Program in partial fulfillment of the requirements for University Honors with Distinction by Katherine Elizabeth Strauss May 2011 Oxford, Ohio ABSTRACT INVESTIGATING CENTERS OF TRIANGLES: THE FERMAT POINT By Katherine Elizabeth Strauss Somewhere along their journey through their math classes, many students develop a fear of mathematics. They begin to view their math courses as the study of tricks and often seemingly unsolvable puzzles. There is a demand for teachers to make mathematics more useful and believable by providing their students with problems applicable to life outside of the classroom with the intention of building upon the mathematics content taught in the classroom. This paper discusses how to integrate one specific problem, involving the Fermat Point, into a high school geometry curriculum. It also calls educators to integrate interesting and challenging problems into the mathematics classes they teach. In doing so, a teacher may show their students how to apply the mathematics skills taught in the classroom to solve problems that, at first, may not seem directly applicable to mathematics. The purpose of this paper is to inspire other educators to pursue similar problems and investigations in the classroom in order to help students view mathematics through a more useful lens. After a discussion of the Fermat Point, this paper takes the reader on a brief tour of other useful centers of a triangle to provide future researchers and educators a starting point in order to create relevant problems for their students. iii iv Acknowledgements First of all, thank you to my advisor, Dr. -
More on Parallel and Perpendicular Lines
More on Parallel and Perpendicular Lines By Ma. Louise De Las Peñas et’s look at more problems on parallel and perpendicular lines. The following results, presented Lin the article, “About Slope” will be used to solve the problems. Theorem 1. Let L1 and L2 be two distinct nonvertical lines with slopes m1 and m2, respectively. Then L1 is parallel to L2 if and only if m1 = m2. Theorem 2. Let L1 and L2 be two distinct nonvertical lines with slopes m1 and m2, respectively. Then L1 is perpendicular to L2 if and only if m1m2 = -1. Example 1. The perpendicular bisector of a segment is the line which is perpendicular to the segment at its midpoint. Find equations of the three perpendicular bisectors of the sides of a triangle with vertices at A(-4,1), B(4,5) and C(4,-3). Solution: Consider the triangle with vertices A(-4,1), B(4,5) and C(4,-3), and the midpoints E, F, G of sides AB, BC, and AC, respectively. TATSULOK FirstSecond Year Year Vol. Vol. 12 No.12 No. 1a 2a e-Pages 1 In this problem, our aim is to fi nd the equations of the lines which pass through the midpoints of the sides of the triangle and at the same time are perpendicular to the sides of the triangle. Figure 1 The fi rst step is to fi nd the midpoint of every side. The next step is to fi nd the slope of the lines containing every side. The last step is to obtain the equations of the perpendicular bisectors. -
Cevians, Symmedians, and Excircles Cevian Cevian Triangle & Circle
10/5/2011 Cevians, Symmedians, and Excircles MA 341 – Topics in Geometry Lecture 16 Cevian A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). B cevian C A D 05-Oct-2011 MA 341 001 2 Cevian Triangle & Circle • Pick P in the interior of ∆ABC • Draw cevians from each vertex through P to the opposite side • Gives set of three intersecting cevians AA’, BB’, and CC’ with respect to that point. • The triangle ∆A’B’C’ is known as the cevian triangle of ∆ABC with respect to P • Circumcircle of ∆A’B’C’ is known as the evian circle with respect to P. 05-Oct-2011 MA 341 001 3 1 10/5/2011 Cevian circle Cevian triangle 05-Oct-2011 MA 341 001 4 Cevians In ∆ABC examples of cevians are: medians – cevian point = G perpendicular bisectors – cevian point = O angle bisectors – cevian point = I (incenter) altitudes – cevian point = H Ceva’s Theorem deals with concurrence of any set of cevians. 05-Oct-2011 MA 341 001 5 Gergonne Point In ∆ABC find the incircle and points of tangency of incircle with sides of ∆ABC. Known as contact triangle 05-Oct-2011 MA 341 001 6 2 10/5/2011 Gergonne Point These cevians are concurrent! Why? Recall that AE=AF, BD=BF, and CD=CE Ge 05-Oct-2011 MA 341 001 7 Gergonne Point The point is called the Gergonne point, Ge. Ge 05-Oct-2011 MA 341 001 8 Gergonne Point Draw lines parallel to sides of contact triangle through Ge. -
A Survey on the Square Peg Problem
A survey on the Square Peg Problem Benjamin Matschke∗ March 14, 2014 Abstract This is a short survey article on the 102 years old Square Peg Problem of Toeplitz, which is also called the Inscribed Square Problem. It asks whether every continuous simple closed curve in the plane contains the four vertices of a square. This article first appeared in a more compact form in Notices Amer. Math. Soc. 61(4), 2014. 1 Introduction In 1911 Otto Toeplitz [66] furmulated the following conjecture. Conjecture 1 (Square Peg Problem, Toeplitz 1911). Every continuous simple closed curve in the plane γ : S1 ! R2 contains four points that are the vertices of a square. Figure 1: Example for Conjecture1. A continuous simple closed curve in the plane is also called a Jordan curve, and it is the same as an injective map from the unit circle into the plane, or equivalently, a topological embedding S1 ,! R2. Figure 2: We do not require the square to lie fully inside γ, otherwise there are counter- examples. ∗Supported by Deutsche Telekom Stiftung, NSF Grant DMS-0635607, an EPDI-fellowship, and MPIM Bonn. This article is licensed under a Creative Commons BY-NC-SA 3.0 License. 1 In its full generality Toeplitz' problem is still open. So far it has been solved affirmatively for curves that are \smooth enough", by various authors for varying smoothness conditions, see the next section. All of these proofs are based on the fact that smooth curves inscribe generically an odd number of squares, which can be measured in several topological ways. -
Essential Concepts of Projective Geomtry
Essential Concepts of Projective Geomtry Course Notes, MA 561 Purdue University August, 1973 Corrected and supplemented, August, 1978 Reprinted and revised, 2007 Department of Mathematics University of California, Riverside 2007 Table of Contents Preface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : i Prerequisites: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :iv Suggestions for using these notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :v I. Synthetic and analytic geometry: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :1 1. Axioms for Euclidean geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 2. Cartesian coordinate interpretations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 3 3. Lines and planes in R and R : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 II. Affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 1. Synthetic affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 2. Affine subspaces of vector spaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13 3. Affine bases: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :19 4. Properties of coordinate -
Cyclic Quadrilaterals — the Big Picture Yufei Zhao [email protected]
Winter Camp 2009 Cyclic Quadrilaterals Yufei Zhao Cyclic Quadrilaterals | The Big Picture Yufei Zhao [email protected] An important skill of an olympiad geometer is being able to recognize known configurations. Indeed, many geometry problems are built on a few common themes. In this lecture, we will explore one such configuration. 1 What Do These Problems Have in Common? 1. (IMO 1985) A circle with center O passes through the vertices A and C of triangle ABC and intersects segments AB and BC again at distinct points K and N, respectively. The circumcircles of triangles ABC and KBN intersects at exactly two distinct points B and M. ◦ Prove that \OMB = 90 . B M N K O A C 2. (Russia 1995; Romanian TST 1996; Iran 1997) Consider a circle with diameter AB and center O, and let C and D be two points on this circle. The line CD meets the line AB at a point M satisfying MB < MA and MD < MC. Let K be the point of intersection (different from ◦ O) of the circumcircles of triangles AOC and DOB. Show that \MKO = 90 . C D K M A O B 3. (USA TST 2007) Triangle ABC is inscribed in circle !. The tangent lines to ! at B and C meet at T . Point S lies on ray BC such that AS ? AT . Points B1 and C1 lies on ray ST (with C1 in between B1 and S) such that B1T = BT = C1T . Prove that triangles ABC and AB1C1 are similar to each other. 1 Winter Camp 2009 Cyclic Quadrilaterals Yufei Zhao A B S C C1 B1 T Although these geometric configurations may seem very different at first sight, they are actually very related. -
Arxiv:2101.02592V1 [Math.HO] 6 Jan 2021 in His Seminal Paper [10]
International Journal of Computer Discovered Mathematics (IJCDM) ISSN 2367-7775 ©IJCDM Volume 5, 2020, pp. 13{41 Received 6 August 2020. Published on-line 30 September 2020 web: http://www.journal-1.eu/ ©The Author(s) This article is published with open access1. Arrangement of Central Points on the Faces of a Tetrahedron Stanley Rabinowitz 545 Elm St Unit 1, Milford, New Hampshire 03055, USA e-mail: [email protected] web: http://www.StanleyRabinowitz.com/ Abstract. We systematically investigate properties of various triangle centers (such as orthocenter or incenter) located on the four faces of a tetrahedron. For each of six types of tetrahedra, we examine over 100 centers located on the four faces of the tetrahedron. Using a computer, we determine when any of 16 con- ditions occur (such as the four centers being coplanar). A typical result is: The lines from each vertex of a circumscriptible tetrahedron to the Gergonne points of the opposite face are concurrent. Keywords. triangle centers, tetrahedra, computer-discovered mathematics, Eu- clidean geometry. Mathematics Subject Classification (2020). 51M04, 51-08. 1. Introduction Over the centuries, many notable points have been found that are associated with an arbitrary triangle. Familiar examples include: the centroid, the circumcenter, the incenter, and the orthocenter. Of particular interest are those points that Clark Kimberling classifies as \triangle centers". He notes over 100 such points arXiv:2101.02592v1 [math.HO] 6 Jan 2021 in his seminal paper [10]. Given an arbitrary tetrahedron and a choice of triangle center (for example, the circumcenter), we may locate this triangle center in each face of the tetrahedron. -
Introduction to the Geometry of the Triangle
Introduction to the Geometry of the Triangle Paul Yiu Fall 2005 Department of Mathematics Florida Atlantic University Version 5.0924 September 2005 Contents 1 The Circumcircle and the Incircle 1 1.1 Preliminaries ................................. 1 1.1.1 Coordinatization of points on a line . ............ 1 1.1.2 Centers of similitude of two circles . ............ 2 1.1.3 Tangent circles . .......................... 3 1.1.4 Harmonic division .......................... 4 1.1.5 Homothety . .......................... 5 1.1.6 The power of a point with respect to a circle . ............ 6 1.2 Menelaus and Ceva theorems . ................... 7 1.2.1 Menelaus and Ceva Theorems . ................... 7 1.2.2 Desargues Theorem . ................... 8 1.3 The circumcircle and the incircle of a triangle . ............ 9 1.3.1 The circumcircle and the law of sines . ............ 9 1.3.2 The incircle and the Gergonne point . ............ 10 1.3.3 The Heron formula .......................... 14 1.3.4 The excircles and the Nagel point . ............ 16 1.4 The medial and antimedial triangles . ................... 20 1.4.1 The medial triangle, the nine-point center, and the Spieker point . 20 1.4.2 The antimedial triangle and the orthocenter . ............ 21 1.4.3 The Euler line . .......................... 22 1.5 The nine-point circle . .......................... 25 1.5.1 The Euler triangle as a midway triangle . ............ 25 1.5.2 The orthic triangle as a pedal triangle . ............ 26 1.5.3 The nine-point circle . ................... 27 1.6 The OI-line ................................. 31 1.6.1 The homothetic center of the intouch and excentral triangles . 31 1.6.2 The centers of similitude of the circumcircle and the incircle . -
The Triangle Midsegment Theorem
6.4 The Triangle Midsegment Theorem EEssentialssential QQuestionuestion How are the midsegments of a triangle related to the sides of the triangle? Midsegments of a Triangle △ Work with a partner.— Use dynamic geometry— software.— Draw any ABC. a. Plot midpoint D of AB and midpoint E of BC . Draw DE , which is a midsegment of △ABC. Sample 6 Points B A − 5 D ( 2, 4) A B(5, 5) 4 C(5, 1) D(1.5, 4.5) 3 E E(5, 3) 2 Segments BC = 4 1 C AC = 7.62 0 AB = 7.07 −2 −1 0 123456 DE = ? — — b. Compare the slope and length of DE with the slope and length of AC . CONSTRUCTING c. Write a conjecture about the relationships between the midsegments and sides VIABLE ARGUMENTS of a triangle. Test your conjecture by drawing the other midsegments of △ABC, △ To be profi cient in math, dragging vertices to change ABC, and noting whether the relationships hold. you need to make conjectures and build a Midsegments of a Triangle logical progression of △ statements to explore the Work with a partner. Use dynamic geometry software. Draw any ABC. truth of your conjectures. a. Draw all three midsegments of △ABC. b. Use the drawing to write a conjecture about the triangle formed by the midsegments of the original triangle. 6 B 5 D Sample A Points Segments 4 A(−2, 4) BC = 4 B AC = 3 E (5, 5) 7.62 C(5, 1) AB = 7.07 F 2 D(1.5, 4.5) DE = ? E(5, 3) DF = ? 1 C EF = ? 0 −2 −1 0 123456 CCommunicateommunicate YourYour AnswerAnswer 3. -
Coincidence of Centers for Scalene Triangles
Forum Geometricorum b Volume 7 (2007) 137–146. bbb FORUM GEOM ISSN 1534-1178 Coincidence of Centers for Scalene Triangles Sadi Abu-Saymeh and Mowaffaq Hajja Abstract.Acenter function is a function Z that assigns to every triangle T in a Euclidean plane E a point Z(T ) in E in a manner that is symmetric and that respects isometries and dilations. A family F of center functions is said to be complete if for every scalene triangle ABC and every point P in its plane, there is Z∈F such that Z(ABC)=P . It is said to be separating if no two center functions in F coincide for any scalene triangle. In this note, we give simple examples of complete separating families of continuous triangle center functions. Regarding the impression that no two different center functions can coincide on a scalene triangle, we show that for every center function Z and every scalene triangle T , there is another center function Z, of a simple type, such that Z(T )=Z(T ). 1. Introduction Exercise 1 of [33, p. 37] states that if any two of the four classical centers coin- cide for a triangle, then it is equilateral. This can be seen by proving each of the 6 substatements involved, as is done for example in [26, pp. 78–79], and it also follows from more interesting considerations as described in Remark 5 below. The statement is still true if one adds the Gergonne, the Nagel, and the Fermat-Torricelli centers to the list. Here again, one proves each of the relevant 21 substatements; see [15], where variants of these 21 substatements are proved. -
Degree of Triangle Centers and a Generalization of the Euler Line
Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 51 (2010), No. 1, 63-89. Degree of Triangle Centers and a Generalization of the Euler Line Yoshio Agaoka Department of Mathematics, Graduate School of Science Hiroshima University, Higashi-Hiroshima 739–8521, Japan e-mail: [email protected] Abstract. We introduce a concept “degree of triangle centers”, and give a formula expressing the degree of triangle centers on generalized Euler lines. This generalizes the well known 2 : 1 point configuration on the Euler line. We also introduce a natural family of triangle centers based on the Ceva conjugate and the isotomic conjugate. This family contains many famous triangle centers, and we conjecture that the de- gree of triangle centers in this family always takes the form (−2)k for some k ∈ Z. MSC 2000: 51M05 (primary), 51A20 (secondary) Keywords: triangle center, degree of triangle center, Euler line, Nagel line, Ceva conjugate, isotomic conjugate Introduction In this paper we present a new method to study triangle centers in a systematic way. Concerning triangle centers, there already exist tremendous amount of stud- ies and data, among others Kimberling’s excellent book and homepage [32], [36], and also various related problems from elementary geometry are discussed in the surveys and books [4], [7], [9], [12], [23], [26], [41], [50], [51], [52]. In this paper we introduce a concept “degree of triangle centers”, and by using it, we clarify the mutual relation of centers on generalized Euler lines (Proposition 1, Theorem 2). Here the term “generalized Euler line” means a line connecting the centroid G and a given triangle center P , and on this line an infinite number of centers lie in a fixed order, which are successively constructed from the initial center P 0138-4821/93 $ 2.50 c 2010 Heldermann Verlag 64 Y.