Ginevra Testa Master Thesis a Comparative, Simulation Supported
Total Page:16
File Type:pdf, Size:1020Kb
Ginevra Testa Master Thesis A comparative, simulation supported study on the diffusion of battery electric vehicles in Norway and Sweden Thesis submitted in partial fulfilment of the requirements of Master of Philosophy in System Dynamics (Universitetet i Bergen, Universitade Nova de Lisboa) and Master of Science in Business Administration (Radboud Universiteit Nijmegen) Oslo, June 2017 Main thesis supervisor: Professor Pål I. Davidsen (University of Bergen) Second thesis supervisor: Professor Bent E. Bakken (DNV GL) Assigned reviewer: Ass. Professor Hubert P.L.M. Korzilius (Radboud University) Acknowledgments With this thesis, a wonderful journey comes to an end. This journey has included travelling from Italy to Norway, Portugal and the Netherlands. But more than the places, the wonders have been in the people I have met, and in the inspiration and life lessons that I have received from them all. I want to thank my supervisors Pål Davidsen and Bent Erik Bakken for guiding and supporting me, always with patience and dedication. Bent Erik has always demanded the best from me, and this work would not be the same without his presence. I also want to thank the coordinators and professors of the European Master in System Dynamics programme for creating this unique degree for the field of sustainability. I want to thank my family for the constant support and care throughout these years, from anywhere in the world. I also want to thank my beloved Rui for all his love, passion and patience. I want to thank my friends from home and from the EMSD family for all the good times. I want to thank my Portuguese family for their wisdom. Finally, I want to thank the team at DNV GL for all the help, the lunches with car talks, and for introducing me to the world of research. 2 Executive summary We are living at a point in history where global cost dynamics and specific political choices may lead to an integral transformation of the mobility system as we know it. After a century where the internal combustion engine vehicle dominated the scene, the battery electric vehicle (BEV) is making its way into the market- and in giant steps. The world’s transition to electricity and thereby a lower carbon future, depends heavily on electrifying road transportation. Norway and Sweden’s different policies represent a natural experiment: They share high ambitions towards a fossil free transport sector, but BEV policies differ. While Sweden has a technologically neutral transportation strategy and so support policies loom wide, in Norway policy efforts are concentrated on BEV support. BEV adoption rates have consequently been significantly different. The present study develops a system dynamics model to represent and quantitatively analyse the interrelatedness between policy, consumer behaviour, social dynamics, competition forces and cost and performance developments. The thesis develops a comparative study of the electric vehicle system in Norway and Sweden, looking in specific at light duty private vehicles in the time-frame 2000-2050. The study explores 6 policy options and 4 additional scenarios. It finds that neither country will achieve their 2050 zero emission goals, but rather that they will be stuck at 2/3 BEV fleet penetration rates irrespective of policies pursued. Sweden’s focus on parallel low emission horses, if continued, will lead to a growing gap with the Norwegian BEV penetration for the next decades, before the gap closes as Norway approaches the 2/3 penetration saturation. The transition to electrification of the vehicle fleet shows much stronger inertia than desired and expected in other studies; the transition seems, however, inevitable, given the current system conditions. 3 Table of Contents Acknowledgments .................................................................................................................... 2 Executive summary .................................................................................................................. 3 List of Abbreviations ............................................................................................................... 7 List of Figures ........................................................................................................................... 8 1 Introduction .................................................................................................................... 11 1.1 Problem description ............................................................................................... 11 1.2 Research context and practical relevance ............................................................ 14 1.3 Research objective ................................................................................................. 14 1.4 Theoretical relevance ............................................................................................. 15 1.5 Research questions ................................................................................................. 15 1.5.1 Central Question .............................................................................................. 15 1.5.2 Subquestions .................................................................................................... 15 1.6 Thesis outline .......................................................................................................... 16 2 Methodology ................................................................................................................... 17 2.1 Analysis of diffusion trends ................................................................................... 17 2.1.1 The System Dynamics approach ...................................................................... 17 2.1.2 Simulation modelling ....................................................................................... 18 2.1.3 Comment on the role of modelling in simulating the future ............................ 19 2.2 Research strategy ................................................................................................... 20 2.2.1 Choice of the simulation time .......................................................................... 21 2.2.2 Model validation .............................................................................................. 21 2.2.3 Data collection ................................................................................................. 22 2.3 Limitations .............................................................................................................. 23 3 Theoretical background ................................................................................................ 25 3.1 Technological transitions ...................................................................................... 25 3.2 BEV policies ............................................................................................................ 28 3.3 Theory on competition ........................................................................................... 31 3.4 BEV adopters ......................................................................................................... 33 3.5 Costs ........................................................................................................................ 37 3.5.1 Purchase price .................................................................................................. 37 4 3.5.2 Operational costs .............................................................................................. 38 3.6 Vehicle performance .............................................................................................. 40 3.6.1 Travel range ..................................................................................................... 40 3.6.2 Recharging density ........................................................................................... 41 3.6.3 Vehicle lifetime ................................................................................................ 42 3.6.4 Car type diversity ............................................................................................. 42 3.6.5 Emission factor ................................................................................................ 43 3.7 The Norwegian context .......................................................................................... 43 3.8 The Swedish context .............................................................................................. 47 3.9 Dynamic hypotheses .............................................................................................. 50 4 Model description ........................................................................................................... 52 4.1 Conceptual Model .................................................................................................. 53 4.1.1 Model boundary ............................................................................................... 54 4.1.2 Main feedback loops ........................................................................................ 54 4.2 Sector conceptualization ........................................................................................ 56 4.2.1 Modelling the vehicle market .......................................................................... 56 4.2.2 Modelling consumer choice ............................................................................. 60 4.2.3 The cost module ..............................................................................................