Recognition of Active and Inactive Catalytic Triads: a Template Based Approach

Total Page:16

File Type:pdf, Size:1020Kb

Recognition of Active and Inactive Catalytic Triads: a Template Based Approach International Journal of Biological Macromolecules 46 (2010) 317–323 Contents lists available at ScienceDirect International Journal of Biological Macromolecules journal homepage: www.elsevier.com/locate/ijbiomac Recognition of active and inactive catalytic triads: A template based approach Vikas Gupta a,1, N.A. Udaya Prakash a,1, V. Lakshmi b, R. Boopathy b, J. Jeyakanthan c, D. Velmurugan d, K. Sekar a,∗ a Bioinformatics Centre, (Centre of Excellence in Structural Biology and Bio-computing), Indian Institute of Science, Bangalore 560 012, India b School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India c National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan d Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India article info abstract Article history: It is well established that a sequence template along with the database is a powerful tool for identifying the Received 30 November 2009 biological function of proteins. Here, we describe a method for predicting the catalytic nature of certain Received in revised form 13 January 2010 proteins among the several protein structures deposited in the Protein Data Bank (PDB). For the present Accepted 14 January 2010 study, we considered a catalytic triad template (Ser-His-Asp) found in serine proteases. We found that a Available online 25 January 2010 geometrically optimized active site template can be used as a highly selective tool for differentiating an active protein among several inactive proteins, based on their Ser-His-Asp interactions. For any protein Keywords: to be proteolytic in nature, the bond angle between Ser O␥–Ser H␥···His N␧2 in the catalytic triad needs Catalytic triad ◦ ◦ ␥··· ␧2 Serine protease to be between 115 and 140 . The hydrogen bond distance between Ser H His N is more flexible in ␦1··· ␦1 Hydrogen bond network nature and it varies from 2.0 Å to 2.7 Å while in the case of His H Asp O , it is from 1.6 Å to 2.0 Å. 2 Three-dimensional structure In terms of solvent accessibility, most of the active proteins lie in the range of 10–16 Å , which enables Solvent accessibility easy accessibility to the substrate. These observations hold good for most catalytic triads and they can Intramolecular distances be employed to predict proteolytic nature of these catalytic triads. © 2010 Elsevier B.V. All rights reserved. 1. Introduction form catalytic cleavage of an appropriate bond of the substrate. Such a triad involvement was first identified in chymotrypsin and A protein’s sequence motifs and templates are important tools subtilisin [5,6], results in cleaving the peptide bond. Proteolytic for the identification or prediction of its biological function and enzymes are widely distributed in nature and mediate a wide range tertiary structure [1–3]. Normally, the templates are derived from of physiological responses from the onset of blood clotting [7] to the one-dimensional protein sequence signature by analyzing and the digestion [8] of proteins in the alimentary system. They also comparing the information from the known protein structures, play a major role in the tissue destruction associated with arthri- especially the data generated from sequence alignments and pat- tis, pancreatitis, and pulmonary emphysema. Such enzymes are tern matching techniques (for example [4]). Thus, the derived highly specific for its own substrates and the specificity is in terms three-dimensional template will provide a quantitative descrip- of identifying the residue of the substrate that fits into the bind- tion about the relative dispositions of the key residues in the active ing pocket of the enzyme, present immediately adjacent to scissile site of the enzyme based on their three-dimensional atomic coor- amide bond. A detailed explanation on the role of catalytic triad dinates. Such a template, when generated can be used to scan the has been published elsewhere, which is a comprehensive review databases of known protein structures to identify the catalytic cen- of the structural basis of substrate specificity in serine proteases ters. [9]. Another group has performed an extensive steric comparison The three residues of a catalytic triad (Ser-His-Asp of serine pro- of the catalytic site residues in serine proteases [10]. They analyzed tease), occur far apart in the primary structure of the enzyme, come the differences in the relative conformations of the Ser-His-Asp together in a specific conformation called the active site and per- residues by performing root mean square (rms) fits for all occur- rences. On the basis of the differences and similarities, they were able to classify the serine proteases into chymotrypsin and sub- stilisin families. They also found several examples of Ser-His-Asp ∗ Corresponding author at: Bioinformatics Centre, (Centre of Excellence in Struc- triads in non-proteolytic proteins in similar conformations to that tural Biology and Bio-computing), 101, Raman Building, Indian Institute of Science, of serine proteases [11]. Bangalore 560 012, Karnataka, India. Tel.: +91 80 22933059/22932469/23601409; Artymiuk et al. [12] have used graph-theory approach for fax: +91 80 23600683/23600551. E-mail address: [email protected] (K. Sekar). the identification of catalytic triad residues based on the three- 1 These authors equally contributed to this work. dimensional patterns of amino acid side chains in protein 0141-8130/$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.ijbiomac.2010.01.011 318 V. Gupta et al. / International Journal of Biological Macromolecules 46 (2010) 317–323 structures. A different structural comparison of the serine proteases using a less specific technique has been performed by Fischer et al. [13]. Their method derived from geometric hashing is widely used in the field of computer vision research. In this method, all C␣ atoms in the backbone are considered as points in space and protein struc- tures are compared purely on the geometric relationships of these points. They were able to identify structural similarities between the active site of the trypsin-like and the subtilisin-like serine pro- teases based solely on the similarities of C␣ geometries of their constituent catalytic residues. Further, Cai et al. have employed support vector machines to identify catalytic triads present in ser- ine hydrolase family [14]. A method called Comparative Molecular Field Analysis (CoMFA) which provides statistical and graphical models that relate the properties of molecules (including biological activity) to their structures. These models are then used to predict the properties or activity of the novel compounds [15]. Apart from the serine proteases, the Ser-His-Asp catalytic triad also occurs in several lipases, which are responsible for hydrolyzing triglycerides into diglycerides and subsequently monoglycerides and free fatty acids. The catalytic mechanism in such lipases is also mediated by the catalytic serine of the triad [8,16]. The catalytic triad is buried beneath a short stretch of helix, known as the “lid”. A number of crystallographic studies have confirmed the hypothe- sis that the lid is displaced during activation of lipases [16,17], being rolled back as a rigid body into the hydrophilic trench filled previ- ously by water molecules, thereby exposing the active site. Thus, the present study is carried out to better understand the relative conformational orientation of the catalytic triad residues. Our anal- ysis differs substantially from the earlier studies [10,12–15].We aim to throw light on the geometric and physiochemical features of the catalytic triad of serine proteases and employ the results to differentiate between active and inactive catalytic triads. Thus, we derived templates of catalytic triads that are present in proteases. Further, we analyzed all protein structures in which the Ser O␥ atom and the Asp O␦1 and O␦2 atoms are present at a distance of 3.6 Å or less with the N␦1 and N␧2 atoms of the histidine residue. The hydro- gen bond networks and the orientation of serine, aspartate and histidine residues of the catalytic triad were also analyzed. Further, we have demonstrated that once a three-dimensional template is derived from the PDB file, it can be employed to provide valuable information for predicting the catalytic nature of a protein. 2. Materials and methods A total of 58,083 three-dimensional structures (as of June, 2009) were deposited in the PDB [18]. About 4655 structures in the PDB contain interactions between the three (Ser-His-Asp) amino acid residues. Among the residues present in the catalytic triad, a cut-off distance of 3.6 Å was considered between the Ser O␥ atom and Asp Fig. 1. (a) The ball and stick representation of the active catalytic triad identified O␦1 or O␦2 atom with His N␦1 or N␧2 atom. In about 2878 structures, in plasminogen activator protein (PDB-id: 1C5S). Interactions between Ser O –Ser H ···His Nε2 and His Nı1–His Hı1Asp···Oı2 atoms are shown. (b) The ball and stick the Ser O␥ atom was found to be hydrogen bonded with N␧2 of the representation of the active catalytic triad identified in Phospholipase A2 (PDB-id: histidine residue (Fig. 1a) and 1777 structures were found to have 1SQZ). The interactions between Ser O␥–Ser H␥–His N␦1 and HisN␧2–His H␧2···Asp ␥ ␦ interaction between Ser O and N 1 of the histidine residue (Fig. 1b). O␦2 atoms are shown. The histidine residue has an imidazole ring in which the hydrogen atom can shuttle from N␦1 to N␧2 and can be present in any of the two nitrogen atoms. Out of the total number of structures (4655) in further divided into two groups (group 1 proteins contain a cat- the dataset, 1131 were considered as false positives since they con- alytic triad and participate in proteolysis and group 2 proteins tain the Ser-His-Asp motif and have no associated catalytic activity.
Recommended publications
  • Part One Amino Acids As Building Blocks
    Part One Amino Acids as Building Blocks Amino Acids, Peptides and Proteins in Organic Chemistry. Vol.3 – Building Blocks, Catalysis and Coupling Chemistry. Edited by Andrew B. Hughes Copyright Ó 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32102-5 j3 1 Amino Acid Biosynthesis Emily J. Parker and Andrew J. Pratt 1.1 Introduction The ribosomal synthesis of proteins utilizes a family of 20 a-amino acids that are universally coded by the translation machinery; in addition, two further a-amino acids, selenocysteine and pyrrolysine, are now believed to be incorporated into proteins via ribosomal synthesis in some organisms. More than 300 other amino acid residues have been identified in proteins, but most are of restricted distribution and produced via post-translational modification of the ubiquitous protein amino acids [1]. The ribosomally encoded a-amino acids described here ultimately derive from a-keto acids by a process corresponding to reductive amination. The most important biosynthetic distinction relates to whether appropriate carbon skeletons are pre-existing in basic metabolism or whether they have to be synthesized de novo and this division underpins the structure of this chapter. There are a small number of a-keto acids ubiquitously found in core metabolism, notably pyruvate (and a related 3-phosphoglycerate derivative from glycolysis), together with two components of the tricarboxylic acid cycle (TCA), oxaloacetate and a-ketoglutarate (a-KG). These building blocks ultimately provide the carbon skeletons for unbranched a-amino acids of three, four, and five carbons, respectively. a-Amino acids with shorter (glycine) or longer (lysine and pyrrolysine) straight chains are made by alternative pathways depending on the available raw materials.
    [Show full text]
  • CUMMINGS-DISSERTATION.Pdf (4.094Mb)
    D-AMINOACYLASES AND DIPEPTIDASES WITHIN THE AMIDOHYDROLASE SUPERFAMILY: RELATIONSHIP BETWEEN ENZYME STRUCTURE AND SUBSTRATE SPECIFICITY A Dissertation by JENNIFER ANN CUMMINGS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2010 Major Subject: Chemistry D-AMINOACYLASES AND DIPEPTIDASES WITHIN THE AMIDOHYDROLASE SUPERFAMILY: RELATIONSHIP BETWEEN ENZYME STRUCTURE AND SUBSTRATE SPECIFICITY A Dissertation by JENNIFER ANN CUMMINGS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Frank Raushel Committee Members, Paul Lindahl David Barondeau Gregory Reinhart Head of Department, David Russell December 2010 Major Subject: Chemistry iii ABSTRACT D-Aminoacylases and Dipeptidases within the Amidohydrolase Superfamily: Relationship Between Enzyme Structure and Substrate Specificity. (December 2010) Jennifer Ann Cummings, B.S., Southern Oregon University; M.S., Texas A&M University Chair of Advisory Committee: Dr. Frank Raushel Approximately one third of the genes for the completely sequenced bacterial genomes have an unknown, uncertain, or incorrect functional annotation. Approximately 11,000 putative proteins identified from the fully-sequenced microbial genomes are members of the catalytically diverse Amidohydrolase Superfamily. Members of the Amidohydrolase Superfamily separate into 24 Clusters of Orthologous Groups (cogs). Cog3653 includes proteins annotated as N-acyl-D-amino acid deacetylases (DAAs), and proteins within cog2355 are homologues to the human renal dipeptidase. The substrate profiles of three DAAs (Bb3285, Gox1177 and Sco4986) and six microbial dipeptidase (Sco3058, Gox2272, Cc2746, LmoDP, Rsp0802 and Bh2271) were examined with N-acyl-L-, N-acyl-D-, L-Xaa-L-Xaa, L-Xaa-D-Xaa and D-Xaa-L-Xaa substrate libraries.
    [Show full text]
  • Structural Enzymology of Sulfide Oxidation by Persulfide Dioxygenase and Rhodanese
    Structural Enzymology of Sulfide Oxidation by Persulfide Dioxygenase and Rhodanese by Nicole A. Motl A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2017 Doctoral Committee Professor Ruma Banerjee, Chair Assistant Professor Uhn-Soo Cho Professor Nicolai Lehnert Professor Stephen W. Ragsdale Professor Janet L. Smith Nicole A. Motl [email protected] ORCID iD: 0000-0001-6009-2988 © Nicole A. Motl 2017 ACKNOWLEDGEMENTS I would like to take this opportunity to acknowledge the many people who have provided me with guidance and support during my doctoral studies. First I would like to express my appreciation and gratitude to my advisor Dr. Ruma Banerjee for the mentorship, guidance, support and encouragement she has provided. I would like to thank my committee members Dr. Uhn-Soo Cho, Dr. Nicolai Lehnert, Dr. Stephen Ragsdale and Dr. Janet Smith for their advice, assistance and support. I would like to thank Dr. Janet Smith and members of Dr. Smith’s lab, especially Meredith Skiba, for sharing their expertise in crystallography. I would like to thank Dr. Omer Kabil for his help, suggestions and discussions in various aspects of my study. I would also like to thank members of Dr. Banerjee’s lab for their suggestions and discussions. Additionally, I would like to thank my friends and family for their support. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ii LIST OF TABLES viii LIST OF FIGURES ix ABBREVIATIONS xi ABSTRACT xii CHAPTER I. Introduction:
    [Show full text]
  • Proteolytic Cleavage—Mechanisms, Function
    Review Cite This: Chem. Rev. 2018, 118, 1137−1168 pubs.acs.org/CR Proteolytic CleavageMechanisms, Function, and “Omic” Approaches for a Near-Ubiquitous Posttranslational Modification Theo Klein,†,⊥ Ulrich Eckhard,†,§ Antoine Dufour,†,¶ Nestor Solis,† and Christopher M. Overall*,†,‡ † ‡ Life Sciences Institute, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein’s structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissuefrom 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C- termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms
    [Show full text]
  • Intrinsic Evolutionary Constraints on Protease Structure, Enzyme
    Intrinsic evolutionary constraints on protease PNAS PLUS structure, enzyme acylation, and the identity of the catalytic triad Andrew R. Buller and Craig A. Townsend1 Departments of Biophysics and Chemistry, The Johns Hopkins University, Baltimore MD 21218 Edited by David Baker, University of Washington, Seattle, WA, and approved January 11, 2013 (received for review December 6, 2012) The study of proteolysis lies at the heart of our understanding of enzyme evolution remain unanswered. Because evolution oper- biocatalysis, enzyme evolution, and drug development. To un- ates through random forces, rationalizing why a particular out- derstand the degree of natural variation in protease active sites, come occurs is a difficult challenge. For example, the hydroxyl we systematically evaluated simple active site features from all nucleophile of a Ser protease was swapped for the thiol of Cys at serine, cysteine and threonine proteases of independent lineage. least twice in evolutionary history (9). However, there is not This convergent evolutionary analysis revealed several interre- a single example of Thr naturally substituting for Ser in the lated and previously unrecognized relationships. The reactive protease catalytic triad, despite its greater chemical similarity rotamer of the nucleophile determines which neighboring amide (9). Instead, the Thr proteases generate their N-terminal nu- can be used in the local oxyanion hole. Each rotamer–oxyanion cleophile through a posttranslational modification: cis-autopro- hole combination limits the location of the moiety facilitating pro- teolysis (10, 11). These facts constitute clear evidence that there ton transfer and, combined together, fixes the stereochemistry of is a strong selective pressure against Thr in the catalytic triad that catalysis.
    [Show full text]
  • Thesis Marx JC
    TABLE OF CONTENTS TABLE OF CONTENTS.................................................................................................1 ABBREVIATIONS USED ..............................................................................................3 CHAPTER I: INTRODUCTION 1.1 STARCH ....................................................................................................................4 1.1.1 Source .............................................................................................................4 1.1.2 Structure..........................................................................................................4 1.1.3 Hydrolysis.......................................................................................................6 1.2 α-AMYLASES...........................................................................................................8 1.2.1 General structure.............................................................................................8 1.2.2 Phylogeny .....................................................................................................10 1.2.3 Phylogeny of Cl --dependent α-amylases ......................................................11 1.2.4 Catalytic mechanism.....................................................................................13 1.2.5 α-amylase from Pseudoalteromonas haloplanktis .......................................14 1.2.6 α-amylase from Drosophila melanogaster ...................................................15 1.2.7 The non-catalytic
    [Show full text]
  • Solutions to Problem Set 9 (PDF)
    Chemistry 5.07/ BE 20.507 Answers to Problem Set 9 2013 Problem 1 The triacylglycerol drawn below acts as an energy source when administered to an organism from its diet. You may assume that it is delivered by chylomicrons to the target cell intact and that lipoprotein lipase fully hydrolyses the compound to its constituents, which are absorbed into the cell efficiently. a. Showing your reasoning, calculate the maximum amount of ATP that could be generated by the full oxidation of the compound. b. One of the arms has the same number of carbons as glucose. Compare the maximum yield of ATP achievable from full oxidation of that fatty acid, as compared to the ATP yield from glucose. Answer: a. For the triacylglycerol (TAG) to be fully oxidized, it must be broken down into its components, i.e: glycerol and fatty acids. This step is accomplished using a lipase that hydrolyzes the ester bond using the catalytic triad that was also used by serine proteases. Before the fatty acids are oxidized, they are first activated through formation of an acyl-CoA species. Formation of the thioester bond primes the fatty acid for complete oxidation through β oxidation. The acylation reaction is catalyzed by acyl-CoA synthetases using ATP (converted to AMP and pyrophosphate (PPi)). ����� ���� + ��� + ��� ⇄ ����˗��� + ��� + ��� The breakdown of the pyrophosphate into inorganic phosphate (Pi), catalyzed by the inorganic pyrophosphatase enzyme helps drive the equilibrium of this process to the right. To recycle the AMP, a second equivalent of ATP is needed to make ADP, which is the substrate used by the complex V of mitochondria to regenerate ATP.
    [Show full text]
  • Crystal Structure of Bacterial Cystathionine -Lyase in The
    crystals Article Crystal Structure of Bacterial Cystathionine G-Lyase in The Cysteine Biosynthesis Pathway of Staphylococcus aureus Dukwon Lee 1 , Soyeon Jeong 1, Jinsook Ahn 1, Nam-Chul Ha 1,* and Ae-Ran Kwon 2,* 1 Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; [email protected] (D.L.); [email protected] (S.J.); [email protected] (J.A.) 2 Department of Beauty Care Industry, College of Medical Science, Deagu Haany University, Gyeongsan, Gyeongbuk 38610, Korea * Correspondence: [email protected] (N.-C.H.); [email protected] (A.-R.K.); Tel.: +82-2-880-4853 (N.-C.H.); +82-53-819-1585 (A.-R.K.) Received: 17 October 2019; Accepted: 5 December 2019; Published: 9 December 2019 Abstract: Many enzymes require pyridoxal 5’-phosphate (PLP) as an essential cofactor and share active site residues in mediating diverse enzymatic reactions. Methionine can be converted into cysteine by cystathionine γ-lyases (CGLs) through a transsulfuration reaction dependent on PLP. In bacteria, MccB, also known as YhrB, exhibits CGL activity that cleaves the C–S bond of cystathionine at the γ position. In this study, we determined the crystal structure of MccB from Staphylococcus aureus in its apo- and PLP-bound forms. The structures of MccB exhibited similar molecular arrangements to those of MetC-mediating β-elimination with the same substrate and further illustrated PLP-induced structural changes in MccB. A structural comparison to MetC revealed a longer distance between the N-1 atom of the pyridine ring of PLP and the Oδ atom of the Asp residue, as well as a wider and more flexible active site environment in MccB.
    [Show full text]
  • Families and Clans of Cysteine Peptidases
    Families and clans of eysteine peptidases Alan J. Barrett* and Neil D. Rawlings Peptidase Laboratory. Department of Immunology, The Babraham Institute, Cambridge CB2 4AT,, UK. Summary The known cysteine peptidases have been classified into 35 sequence families. We argue that these have arisen from at least five separate evolutionary origins, each of which is represented by a set of one or more modern-day families, termed a clan. Clan CA is the largest, containing the papain family, C1, and others with the Cys/His catalytic dyad. Clan CB (His/Cys dyad) contains enzymes from RNA viruses that are distantly related to chymotrypsin. The peptidases of clan CC are also from RNA viruses, but have papain-like Cys/His catalytic sites. Clans CD and CE contain only one family each, those of interleukin-ll3-converting enz3wne and adenovirus L3 proteinase, respectively. A few families cannot yet be assigned to clans. In view of the number of separate origins of enzymes of this type, one should be cautious in generalising about the catalytic mechanisms and other properties of cysteine peptidases as a whole. In contrast, it may be safer to gener- alise for enzymes within a single family or clan. Introduction Peptidases in which the thiol group of a cysteine residue serves as the nucleophile in catalysis are defined as cysteine peptidases. In all the cysteine peptidases discovered so far, the activity depends upon a catalytic dyad, the second member of which is a histidine residue acting as a general base. The majority of cysteine peptidases are endopeptidases, but some act additionally or exclusively as exopeptidases.
    [Show full text]
  • The Efficiency of Enzymatic L-Cysteine Oxidation in Mammalian Systems Derives from the Optimal Organization of the Active Site of Cysteine Dioxygenase
    The Efficiency of Enzymatic L-Cysteine Oxidation in Mammalian Systems Derives from the Optimal Organization of the Active Site of Cysteine Dioxygenase by Catherine Wangui Njeri A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 4, 2014 Copyright 2014 by Catherine Wangui Njeri Approved by Holly R. Ellis, Chair, Associate Professor of Chemistry and Biochemistry Douglas C. Goodwin, Associate professor of Chemistry and Biochemistry Evert E. Duin, Associate Professor of Chemistry and Biochemistry Paul A. Cobine, Assistant Professor of Biological Sciences Benson T. Akingbemi, Associate Professor of Anatomy Abstract Intracellular concentrations of free cysteine in mammalian organisms are maintained within a healthy equilibrium by the mononuclear iron-dependent enzyme, cysteine dioxygenase (CDO). CDO catalyzes the oxidation of L-cysteine to L-cysteine sulfinic acid (L-CSA), by incorporating both atoms of molecular oxygen into the thiol group of L-cysteine. The product of this reaction, L-cysteine sulfinic acid, lies at a metabolic branch-point that leads to the formation of pyruvate and sulfate or taurine. The available three-dimensional structures of CDO have revealed the presence of two very interesting features within the active site (1-3). First, in close proximity to the active site iron, is a covalent crosslink between Cys93 and Tyr157. The functions of this structure and the factors that lead to its biogenesis in CDO have been a subject of vigorous investigation. Purified recombinant CDO exists as a mixture of the crosslinked and non crosslinked isoforms, and previous studies of CDO have involved a heterogenous mixture of the two.
    [Show full text]
  • The Role of Active-Site Aromatic and Polar Residues in Catalysis And
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 8459-8463, September 1993 Biochemistry The role of active-site aromatic and polar residues in catalysis and substrate discrimination by xylose isomerase (glucose isomerase/site-directed mutagenesis/enzyme-active site/protein engineering/catalytic effciency) MENGHSIAO MENG*t, MICHAEL BAGDASARIAN*, AND J. GREGORY ZEIKUS*t§¶ Departments of *Microbiology and *Biochemistry, Michigan State University, East Lansing, MI 48824; and Michigan Biotechnology Institute, Lansing, MI 48909 Communicated by T. Kent Kirk, June 11, 1993 (receivedfor review March 18, 1993) ABSTRACT The functions of individual amino acid resi- hydride shift between Cl and C2, assisted by a divalent metal dues in the active site of Thernoanaerobacterium thermosulfu- at position [II], (v) conformational rearrangement, ring- rigenes D-xylose ketol-isomerase (EC 5.3.1.5) were studied by closure, and release of product. Our previous work on the site-directed substitution. The role of aromatic residues in the isotope effect ofD-[2-2H]glucose on the reaction velocity (3), active-site pocket was not limited to the creation of a hydro- as well as the work of other groups (10), indicated that the phobic environment. For example, Trp-188 provided for sub- transfer of hydrogen between Cl and C2 is the rate-limiting strate binding and Trp-139 aflowed for the discrimination step of the isomerization pathway. Indications were also between D-xylose and D-glucose. Substrate discrimination was found that Trp-139 residue (corresponding to Met-87 in accomplished by steric hindrance caused by the side chain of Arthrobacter) may be a steric hindrance for accommodation Trp-139 toward the larger glucose molecule.
    [Show full text]
  • Repurposing the Mcoti-II Rigid Molecular Scaffold in to Inhibitor of ‘Papain Superfamily’ Cysteine Proteases
    pharmaceuticals Article Repurposing the McoTI-II Rigid Molecular Scaffold in to Inhibitor of ‘Papain Superfamily’ Cysteine Proteases Manasi Mishra 1,* , Vigyasa Singh 1,2 , Meenakshi B. Tellis 3, Rakesh S. Joshi 3,4 and Shailja Singh 1,2,* 1 Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar 201314, India; [email protected] 2 Special Centre for Molecular Medicine, Jawahar Lal Nehru University, New Delhi 110067, India 3 Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; [email protected] (M.B.T.); [email protected] (R.S.J.) 4 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India * Correspondence: [email protected] (M.M.); [email protected] (S.S.) Abstract: Clan C1A or ‘papain superfamily’ cysteine proteases are key players in many important physiological processes and diseases in most living systems. Novel approaches towards the de- velopment of their inhibitors can open new avenues in translational medicine. Here, we report a novel design of a re-engineered chimera inhibitor Mco-cysteine protease inhibitor (CPI) to inhibit the activity of C1A cysteine proteases. This was accomplished by grafting the cystatin first hairpin loop conserved motif (QVVAG) onto loop 1 of the ultrastable cyclic peptide scaffold McoTI-II. The recombinantly expressed Mco-CPI protein was able to bind with micromolar affinity to papain and showed remarkable thermostability owing to the formation of multi-disulphide bonds. Using an in silico approach based on homology modelling, protein–protein docking, the calculation of the free-energy of binding, the mechanism of inhibition of Mco-CPI against representative C1A cysteine proteases (papain and cathepsin L) was validated.
    [Show full text]