Master's Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Master's Thesis MASTER'S THESIS An Assessment of Colour Schlieren Photography for Supersonic Flows Jens Kanje Nordberg 2015 Master of Science in Engineering Technology Space Engineering Luleå University of Technology Department of Computer Science, Electrical and Space Engineering An Assessment of Colour Schlieren Photography for Supersonic Flow Visualization Jens Kanje Nordberg [email protected] 2015-10-12 1 October 12, 2015 Jens Kanje Nordberg Abstract Research in aerodynamics and flow physics often require visual experiments in order to understand the phenomenon at work. These experiments can be very sensitive, and in order to capture and image these events a non-intrusive imaging technique is very useful. Schlieren photography is such a technique, able to capture changes in density in a fluid, by recording light waves refracted along the light ray path through the medium. This is all done without injecting anything into the flow field, such as dye or small objects, which is common in other techniques. For supersonic research purposes schlieren has been used for a long time, however colour schlieren may be able to capture additional information about the flow in the experiment. Colour schlieren can be achieved in many different ways, however this thesis focuses on the use of two main techniques. For supersonic flow imaging, a density gradient directiona detection schlieren system and a density gradient magnitude detection system. The magnitude indicating system has been designed, however not tested (due to practical complications). The gradient direction system was tested and analysed in order to assess the use of this technique in supersonic flow research. This thesis concludes that this is indeed a very good method, capable of distinguishing different directions in the density gradient (coded by colour) as well as providing a clear image of the flow in the medium. These results may also be used quantitatively in order to calculate more precise gradient directions. 2 October 12, 2015 Jens Kanje Nordberg Preface The aim of this thesis is to investigate and assess the use of colour schlieren photography for supersonic flows, using techniques in this area to produce colour schlieren images. Schlieren photography is an old, non-intrusive technique used to look at changes in density in a fluid, mainly for scientific experiments in aerodynamics and flow physics. The use of colour as an additional way to convey information in schlieren images has been around since the middle of the 20th century, and many different techniques has been tried before. This can be an important technique in flow studies, since it is inherently non-intrusive, and doesn’t disturb the flow in any way, which other methods can not always guarantee. Implementation of this can be done in several ways, which is also investigated in this thesis report. 3 October 12, 2015 Jens Kanje Nordberg Contents 1 Introduction 7 2 Schlieren Photography 8 2.1 History ............................................ 8 2.2 DifferenttypesofSchlierensystems. .............. 9 2.2.1 LensSchlierenSystems ............................. 9 2.2.2 MirrorSchlierenSystems . 9 2.3 Schlierenproblems ................................. 11 2.3.1 Coma ............................................. 11 2.3.2 Astigmatism . 11 2.3.3 Chromatic aberration . 13 3 Schlieren Theory 14 3.1 SchlierenObject .................................. 16 3.2 LightSource ......................................... 17 3.3 Introducingcolourintoaschlierensystem . 18 3.3.1 Directionindicatingsystem . 18 3.3.2 Magnitude indicating system . 18 3.4 Design of colour masks . 19 3.4.1 Design of round source mask . 19 3.4.2 Design of Bulls Eye Mask . 20 4 Objectives 22 5 Experiment setup and equipment 23 5.1 Software programs . 23 5.2 MirrorsandLenses.................................... 23 5.2.1 Cylindricallens.................................. 23 5.2.2 Achromatic doublet . 23 5.3 Camera ............................................ 24 5.3.1 Camera software . 24 5.4 Irisdiaphragm ....................................... 24 5.5 LightSource ......................................... 24 5.6 JetRig........................................... 24 5.6.1 JetNozzles ........................................ 26 5.7 Colour Calibration . 27 6 Procedures 28 6.1 EquipmentSetupAlignment. 28 6.2 SourceMaskProduction............................... 29 6.2.1 Source Mask Layering . 29 6.3 Astigmatism Correction . 30 6.3.1 Measuring the Astigmatic Difference . 30 6.4 Taking a Colour Schlieren Image . 30 6.4.1 Camera Software Settings . 30 7 Results 32 7.1 Astigmatism Correction . 32 7.2 NozzleEffects....................................... 33 7.3 Monochromatic Schlieren Comparisons . 33 7.4 CameraEffects ...................................... 35 7.5 FinalImages ........................................ 36 4 October 12, 2015 Jens Kanje Nordberg 8 Conclusion 38 5 October 12, 2015 Jens Kanje Nordberg Nomenclature Symbol Units Description L m Length Ma − Mach number p Pa Pressure ρ kg/m3 Density n − Refraction index T K Temperature ε ◦ Refraction angle 6 October 12, 2015 Jens Kanje Nordberg 1 Introduction In many areas of fluid flow research, visualization of the flows that are studied are important, and can be achieved in a number of ways, most of which involves adding small particles into the fluid, which then can be observed. Many of these methods are quite intrusive, and the particles introduced into the flow have a direct effect on the flow phenomenon that are studied within the fluid flow field. Pure optical methods does not introduce any particles or tracers into the fluid, and is often the only means to study the inner processes of flow fields and phenomenon occurring in fluids. For shockwave and Mach-number flow studies, relies mostly on optical methods, since the addition of particles or tracers in the fluid might both disturb the fluid flow, and not follow the flow characteristics, thereby giving a false representation of the flow. Schlieren photography is a collective term used for many different (but similar) optical flow visualization techniques, where the common factor is the detection of changes in density in the fluid flow. These changes in the transparent media can be visualized in several ways, but relies on the principle that light rays are refracted at an angle when passing through a region of changing fluid density. Ever since the days of Robert Hooke[2] in 1665 and later August Toepler[3] in the 1860s, schlieren photography has been under investigation, development and practice, being used in many different fields, but primarily in fluid flow research and aerodynamics. One of the true pioneers in schlieren photography in the early 1900s was Hurbert Schardin, who further developed and improved the state of flow visualization with his illustratrative techniques, for example in his work with spherical shock wave research using various schlieren techniques [12] in 1954. Schlieren photography can with modern computer techniques and numerical methods give quantitative results, and not only qualitative, which has been the limitation with many optical techniques for a long time. With image processing and computer algorithms these techniques can give more complex and useful information about the flow fields and fluid phenomenon that are studied. Colour schlieren has been in use for some time, with one of the first uses often credited to Paul Chords in 1967[8]. The same method (dissection method) has then been improved and used for a variety of purposes, for example in 1991 by Harald Kleine [4] in shock wave research. Various other forms of colour schlieren has also been used earlier, such as rainbow schlieren, a quantitative method used to measure the magnitude of a density gradient in the flow, notably in 3D - schlieren tomography by Agrawal, Butuk, Gollahalli and Griffin [11] in 1998, and with jet research by Nakajima, Oka, Konishi, Ono and Miyazato Y [5] in 2014. The Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC) at Monash University has used monochromatic high-speed schlieren photography very successfully in visualizing various flows, for example impinging jets (Mitchell, Honnery and Soria [9]) and high-velocity jet for research in jet screech and noise (see Mitchell, Oberleithner, Honnery and Soria [10]). A colour schlieren setup has not been done, however, which is then a suitable task for this thesis project. The existing monochromatic schlieren system is to be configured into a setup capable of producing high-quality colour schlieren images, with the intention to use two-dimensional schlieren images to represent flow field density gradients. This system offers several advantages to a monochromatic system, such as the ability to detect gradients in all directions with a single image. 7 October 12, 2015 Jens Kanje Nordberg 2 Schlieren Photography The following sections gives a brief introduction to schlieren photography, its history, use and development, as well as its theoretical background and some of its problems. 2.1 History The schlieren method were first experimented with by Robert Hooke (1635-1703)[1], when he was working with microscopy, telescopy, glass and optical testing, which are all related to the schlieren method. His research in these areas, along with his fascination with refraction in the atmosphere, led to his establishment of the scientific field of optics in inhomogeneous mediums. Hooke’s primary schlieren system consisted of a candle, a lens, and his eye. With the candle as a light source, the lens projected the image of the candle onto the pupil of his eye, and he was able
Recommended publications
  • Lens Equation – Thin Lens
    h s’ s f h’ Refraction on Spherical Surface θa=α +φ ; φ = β +θb ⎫ an sinθ a= n bsinθ b n⎬aα + n bβ = ( n b− )φ n a anθ a≅ n b θ b ⎭ h h h tanα = ; tanβ = ; tanφ = s + δ s'−δ R − δ h h h n n n− n ≅α ; β ≅; φ ≅ ⇒a+ b = b a s s' R s s' R Refraction on Spherical Surface n n n− n a+ b = b a Magnification s s' R R positive if C on transmission side; negative otherwise y − y′ tanθ = tanθ = na y nb y′ a b = − s s′ s s′ nasinθ a= n bsin θ b y′ na ′ s esl angallFor sm m = = − y n s tanθ≅ sin θ b Refraction on Spherical Surface n n n− n a+ b = b a . A fish is 7.5Example: Fish bowl s s' R cm from the front of the bowl. y′ n′ s Find the location and magnification of the m = = − a fish as seen by the cat.bowl. Ignore effect of y nb s Radius of bowl = 15 cm. na = 1.33 R negative b O n n n− n n n− n n I s’ a+ b =b a b = b a− a s s' R s' R s s n 1 s′ = b = =6 .− 44cm n− n n 0− . 331 . 33 a b a− a − R s −cm15 7 . 5 cm n′ s 1 .( 33 6− . 44cm ) The fish appears closer and larger. m= − a= − ∗ 1= . 14 nb s 1 7 .cm 5 Lenses • A lens is a piece of transparent material shaped such that parallel light rays are refracted towards a point, a focus: – Convergent Lens Positive f » light moving from air into glass will move toward the normal » light moving from glass back into air will move away from the normal » real focus Negative f – Divergent Lens » light moving from air into glass will move toward the normal » light moving from glass back into air will move away from the normal » virtual focus Lens Equation – thin lens n n n− n n n n− n a b+ b = a b+ a = a b 1s s 1' R 1 2s s 2' R2 For air, na=1 and glass, nb=n, and s2=-s1’.
    [Show full text]
  • Schlieren Imaging
    Traldi et al. EPJ Techniques and Instrumentation (2018) 5:4 https://doi.org/10.1140/epjti/s40485-018-0045-1 RESEARCH ARTICLE Open Access Schlieren imaging: a powerful tool for atmospheric plasma diagnostic Enrico Traldi1, Marco Boselli1,2, Emanuele Simoncelli1, Augusto Stancampiano3, Matteo Gherardi1,2, Vittorio Colombo1,2* and Gary S. Settles4* * Correspondence: vittorio. [email protected]; [email protected] Abstract 1Department of Industrial Engineering, Alma Mater Studiorum Schlieren imaging has been widely used in science and technology to investigate – Università di Bologna, Viale del phenomena occurring in transparent media. In particular, it has proven to be a Risorgimento 2, 40136 Bologna, Italy powerful tool in fundamental studies and process optimization for atmospheric 4FloViz Inc., Port Matilda, PA 16870, USA pressure plasma diagnostics, providing qualitative and (in some cases) also Full list of author information is quantitative information on the fluid-dynamic characteristics of plasmas generated available at the end of the article by many different types of sources. However, obtaining significant and reliable results by schlieren imaging can be challenging, especially when considering the variety of geometries and applications of atmospheric pressure plasma sources. Therefore, it is necessary to adopt solutions that can address the specific issues of different plasma-assisted processes. In this paper, an overview on the use of the schlieren imaging technique for atmospheric pressure plasma characterization is presented. In the first part, the physical principles behind this technique and the different setups that can be adopted to perform it are presented. In the second part, examples of schlieren imaging applied to different kinds of atmospheric pressure plasmas (non-equilibrium plasma jets, plasma actuators for flow control and thermal plasma sources) are presented, showing how it was used to characterize the fluid-dynamic behavior of plasma-assisted processes and reporting best practices in performing this diagnostic technique.
    [Show full text]
  • Location of Cardinal Points from the ABCD Matrix for the General Optical System
    EE482 Fall 2000 Handout #2 Page 1 Location of Cardinal Points from the ABCD Matrix for the General Optical System I II n1 n2 F1 P1 N1 P2 N2 F2 f1 f2 Figure 1 Cardinal points of a system which is characterized by an ABCD matrix between an input plane I and an output plane II. Cardinal Point Measured Function Special Case From To (n1=n2) First Focal Point P1 F1 -n1/(n2C)-1/C First Principle Point I P1 (n1-n2D)/(n2C)(1-D)/C First Nodal Point I N1 (1-D)/C (1-D)/C Second Focal Point P2 F2 -1/C -1/C Second Principle Point II P2 (1-A)/C (1-A)/C Second Nodal Point II N2 (n1-n2A)/(n2C)(1-A)/C Table 1 When analyzing an optical system, we often are first interested in basic properties of the system such as the focal length (or optical power of the system) and the location of the focal planes, etc. In the limit of paraxial optics, any optical system, from a simple lens to a combination of lenses, mirrors and ducts, can be described in terms of six special surfaces, called the cardinal surfaces of the system. In paraxial optics, these surfaces are planes, normal to the optical axis. The point where the plane intersects the optical axis is the cardinal point corresponding to that cardinal plane. The six special planes are: First Focal Plane Second Focal Plane First Principle Plane Second Principle Plane First Nodal Plane Second Nodal Plane Once we know the location of these special planes, relative to the physical location of the lenses in the system, we can describe all of the paraxial imaging properties of the system.
    [Show full text]
  • Laboratory 7: Properties of Lenses and Mirrors
    Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes through the lens and converges to a real image at the focal point on the other side of the lens. A diverging lens is thinner at the center than at the periphery and light from an object at infinity appears to diverge from a virtual focus point on the same side of the lens as the object. The principal axis of a lens is a line drawn through the center of the lens perpendicular to the face of the lens. The principal focus is a point on the principal axis through which incident rays parallel to the principal axis pass, or appear to pass, after refraction by the lens. There are principle focus points on either side of the lens equidistant from the center (See Figure 1a). Figure 1a: Converging Lens, f>0 Figure 1b: Diverging Lens, f<0 In Fig. 1 the object and image are represented by arrows. Two rays are drawn from the top of the object. One ray is parallel to the principal axis which bends at the lens to pass through the principle focus. The second ray passes through the center of the lens and undeflected. The intersection of these two rays determines the image position. The focal length, f, of a lens is the distance from the optical center of the lens to the principal focus. It is positive for a converging lens, negative for a diverging lens.
    [Show full text]
  • Introduction to Shadowgraph and Schlieren Imaging Andrew Davidhazy
    Rochester Institute of Technology RIT Scholar Works Articles 2006 Introduction to shadowgraph and schlieren imaging Andrew Davidhazy Follow this and additional works at: http://scholarworks.rit.edu/article Recommended Citation Davidhazy, Andrew, "Introduction to shadowgraph and schlieren imaging" (2006). Accessed from http://scholarworks.rit.edu/article/478 This Technical Report is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. INTRODUCTION TO SHADOHGRAPH AND SCHLIEREN IMAGING Andrew Davidhazy Rochester In.titute of Technology Imaging and Photoqraphic Technology Schlieren photography is not new. It's a technique peripherally developed by early astronomers and glass maker•. It is a word that has it's origin in the german word "schliereN or streaks, caused by inhomogeneous areas in glass. A variety of methods were used to detect these .chliere, with some of them probably closely related to the technique. which we are about to examine. There are three basic types of - SI-tAbOIJ612APHS optical probing systems each with intrinsic merits and limitations. -SCHLIE'REN These are shadowqraphs, schlieren images, and interferograms. The5e are -UffiRffRD6I2AHS lis~ed in order of increasing complexi~y and pos5ible varia~ions. In ~he mid 1800's, Leon Foucault developed a test ~ha~ bears his name for examining the figure or curvature of as~ronomical mirrors. Worker5 testing mirror.~i~n the Foucault ~est were well aware of, and took great pains to minimize, the disturbing effects of density gradients present between the light FOUCAULT source, the mirror and the "knife edge".
    [Show full text]
  • 1.0 Measurement of Paraxial Properties of Optical Systems
    1.0 MEASUREMENT OF PARAXIAL PROPERTIES OF OPTICAL SYSTEMS James C. Wyant Optical Sciences Center University of Arizona Tucson, AZ 85721 [email protected] If we wish to completely characterize the paraxial properties of a lens, it is necessary to measure the exact location of its cardinal points, that is, its nodal points, focal points, and principal points. For a lens in air the nodal points and principal points coincide. For a thin lens, the two principal points coincide at the center of the lens, so the only required measurement is the focal length, while for a thick lens two of the three quantities--focal length, two focal points, or two principal points--must be determined. 1.1 Thin Lenses 1.1.1 Measurements Based on Image Equation The simplest measurements of the focal length of a thin lens are based on the image equation 1 1 1 + = (1.1) p q f where p is the object distance from the lens (positive if the object is before the lens), q is the image distance from the lens (positive if the image is after the lens), and f is the focal length of the lens. If the lens to be tested has a positive power, a real image can be formed of a pinhole source, and the distances p and q can be measured directly. When the lens to be tested has a negative power, it should be combined with a positive auxiliary lens having sufficient power so that the combination forms a real image. The focal length can then be determine for the auxiliary lens alone and the combination of lenses.
    [Show full text]
  • Optics Course (Phys 311)
    Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Phys Geometrical Optics: Refraction (Lenses) Lesson 2 of 2 311 Slide 1 Objectives covered in this lesson : 1. The refracting power of a thin lens. 2. Thin lens combinations. 3. Refraction through thick lenses. Phys Geometrical Optics: Refraction (Lenses) Lesson 2 of 2 311 Slide 2 The Refracting Power of a Thin Lens: The refracting power of a thin lens is given by: 1 푃 = 푓 Vergence: is the convergence or divergence of rays: 1 1 푉 = and 푉′ = 푝 푖 ∴ 푉 + 푉′ = 푃 A diopter (D): is a unit used to express the power of a spectacle lens, equal to the reciprocal of the focal length in meters. Phys Geometrical Optics: Refraction (Lenses) Lesson 2 of 2 311 Slide 3 The Refracting Power of a Thin Lens: Individual Activity Q: What is the refracting power of a lens in diopters if the lens has a focal length = 20 cm ? Phys Geometrical Optics: Refraction (Lenses) Lesson 2 of 2 311 Slide 4 Thin Lens Combinations: If the optical system is composed of more than one lens (or a combination of lenses and mirrors) which are located so that their optical axes coincide: the final image can be obtained by working in steps: 1. Consider the nearest lens only, find the image of the object through this lens. 2. The image in step 1 is the object for the second (adjacent) optical component: find the image of this object. This can be done both geometrically or numerically 3.
    [Show full text]
  • Chapter 23 the Refraction of Light: Lenses and Optical Instruments
    Chapter 23 The Refraction of Light: Lenses and Optical Instruments Lenses Converging and diverging lenses. Lenses refract light in such a way that an image of the light source is formed. With a converging lens, paraxial rays that are parallel to the principal axis converge to the focal point, F. The focal length, f, is the distance between F and the lens. Two prisms can bend light toward the principal axis acting like a crude converging lens but cannot create a sharp focus. Lenses With a diverging lens, paraxial rays that are parallel to the principal axis appear to originate from the focal point, F. The focal length, f, is the distance between F and the lens. Two prisms can bend light away from the principal axis acting like a crude diverging lens, but the apparent focus is not sharp. Lenses Converging and diverging lens come in a variety of shapes depending on their application. We will assume that the thickness of a lens is small compared with its focal length è Thin Lens Approximation The Formation of Images by Lenses RAY DIAGRAMS. Here are some useful rays in determining the nature of the images formed by converging and diverging lens. Since lenses pass light through them (unlike mirrors) it is useful to draw a focal point on each side of the lens for ray tracing. The Formation of Images by Lenses IMAGE FORMATION BY A CONVERGING LENS do > 2f When the object is placed further than twice the focal length from the lens, the real image is inverted and smaller than the object.
    [Show full text]
  • Aeronautical Laboratories Institute
    GRADUATEAERONAUTICAL LABORATORIES CALIFORNIAINSTITUTE of TECHNOLOGY Pasadena, California 91125 The Supersonic Hydrogen-Fluorine Combustion Facility Design Review Report Version 4.0 by Jeffery Hall and Pad Dimotakis GALCIT Internal Report 30 August 1989 Acknowledgements This development of the facility to be described below is the outgrowth of a design, theoretical and experimental effort at GALCIT that began over ten years ago to study high Reynolds number turbulent mixing under Air Force Office of Scientific Research sponsor- ship. A large number of people have contributed to the development of this facility, which has been realized as a result of their contributions and the long-term support by AFOSR, with Dr. Julian Tishkoff the current program manager, which we gratefully acknowledge*. The first phase of that effort, which involved the study and behavior of subsonic shear layers, was realized in the subsonic shear layer facility which was designed and fabricated with the aid and contributions of several people. That design was modeled after the smaller subsonic facility built by Wallace (1981) under the supervision of Garry Brown, Professor in Aeronautics at the time and presently director of ARL in Australia. The GALCIT subsonic facility design was begun by r Brian Cantwell, Research Fellow in Aeronautics at the time, presently Professor at Stanford, in collaboration with and under the guidance of Garry Brown. It was completed and used as part of the P11.D. thesis research of M. Godfrey Mungal, Graduate Research Assistant and subsequently Research Fellow in Aeronautics, presently Assistant Professor at Stanford, under the guidance of H. W. L'iepmann, Director of GALCIT at the time and presently Professor Emer- itus in Aeronautics, and P.
    [Show full text]
  • Utvrđivanje Izvornika Analognih I Digitalnih Fotografija
    Filozofski fakultet Hrvoje Gržina UTVRĐIVANJE IZVORNIKA ANALOGNIH I DIGITALNIH FOTOGRAFIJA DOKTORSKI RAD Zagreb, 2017. Faculty of Humanities and Social Sciences Hrvoje Gržina IDENTIFYING ORIGINALS OF ANALOG AND DIGITAL PHOTOGRAPHS DOCTORAL THESIS Zagreb, 2017 Filozofski fakultet Hrvoje Gržina UTVRĐIVANJE IZVORNIKA ANALOGNIH I DIGITALNIH FOTOGRAFIJA DOKTORSKI RAD Mentor: dr. sc. Hrvoje Stančić, izv. prof. Zagreb, 2017. Faculty of Humanities and Social Sciences Hrvoje Gržina IDENTIFYING ORIGINALS OF ANALOG AND DIGITAL PHOTOGRAPHS DOCTORAL THESIS Supervisor: Ph. D. Hrvoje Stančić, Associate Professor Zagreb, 2017 O MENTORU Dr. sc. Hrvoje Stančić, izv. prof. rođen je 2. listopada 1970. u Zagrebu gdje je završio osnovnu i srednju školu. Diplomirao je 1996. godine studijske grupe Informatologija (smjer Opća informatologija) i Engleski jezik i književnost na Filozofskome fakultetu u Zagrebu. Godine 1996. prihvaćen je kao znanstveni novak na projektu koji se vodi na Odsjeku za informacijske znanosti Filozofskoga fakulteta u Zagrebu (broj znanstvenika 244003). Magistrirao je 2001. godine s temom Upravljanje znanjem i globalna informacijska infrastruktura. Doktorirao je 2006. s temom Teorijski model postojanog očuvanja autentičnosti elektroničkih informacijskih objekata. Od listopada 2011. u zvanju je izvanrednoga profesora, a od 2014. godine u zvanju znanstvenoga savjetnika. Predstojnik je Katedre za arhivistiku i dokumentalistiku od 2008. godine. Nastavu izvodi na preddiplomskom, diplomskom i doktorskom studiju informacijskih i komunikacijskih
    [Show full text]
  • Name, a Novel
    NAME, A NOVEL toadex hobogrammathon /ubu editions 2004 Name, A Novel Toadex Hobogrammathon Cover Ilustration: “Psycles”, Excerpts from The Bikeriders, Danny Lyon' book about the Chicago Outlaws motorcycle club. Printed in Aspen 4: The McLuhan Issue. Thefull text can be accessed in UbuWeb’s Aspen archive: ubu.com/aspen. /ubueditions ubu.com Series Editor: Brian Kim Stefans ©2004 /ubueditions NAME, A NOVEL toadex hobogrammathon /ubueditions 2004 name, a novel toadex hobogrammathon ade Foreskin stepped off the plank. The smell of turbid waters struck him, as though fro afar, and he thought of Spain, medallions, and cork. How long had it been, sussing reader, since J he had been in Spain with all those corkoid Spanish medallions, granted him by Generalissimo Hieronimo Susstro? Thirty, thirty-three years? Or maybe eighty-seven? Anyhow, as he slipped a whip clap down, he thought he might greet REVERSE BLOOD NUT 1, if only he could clear a wasp. And the plank was homely. After greeting a flock of fried antlers at the shevroad tuesday plied canticle massacre with a flash of blessed venom, he had been inter- viewed, but briefly, by the skinny wench of a woman. But now he was in Rio, fresh of a plank and trying to catch some asscheeks before heading on to Remorse. I first came in the twilight of the Soviet. Swigging some muck, and lampreys, like a bad dram in a Soviet plezhvadya dish, licking an anagram off my hands so the ——— woundn’t foust a stiff trinket up me. So that the Soviets would find out.
    [Show full text]
  • On the Export Control of High Speed Imaging for Nuclear Weapons Applications
    LA-UR-17-28408 Approved for public release; distribution is unlimited. Title: On The Export Control Of High Speed Imaging For Nuclear Weapons Applications Author(s): Watson, Scott Avery Altherr, Michael Robert Intended for: Report Issued: 2017-09-15 Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. On The Export Control of High-Speed Imaging for Nuclear Weapons Applications By Scott Watson, and Michael Altherr Los Alamos National Lab LA-UR-XYZQ 2017. Abstract Since the Manhattan Project, the use of high-speed photography, and its cousins flash radiography1 and schieleren photography have been a technological proliferation concern. Indeed, like the supercomputer, the development of high-speed photography as we now know it essentially grew out of the nuclear weapons program at Los Alamos2,3,4. Naturally, during the course of the last 75 years the technology associated with computers and cameras has been export controlled by the United States and others to prevent both proliferation among non-P5-nations and technological parity among potential adversaries among P5 nations.
    [Show full text]