Emergence of Weak Coupling at Large Distance in Quantum Gravity

Total Page:16

File Type:pdf, Size:1020Kb

Emergence of Weak Coupling at Large Distance in Quantum Gravity PHYSICAL REVIEW LETTERS 121, 051601 (2018) Emergence of Weak Coupling at Large Distance in Quantum Gravity Ben Heidenreich* Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5 † Matthew Reece Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ‡ Tom Rudelius School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA (Received 9 March 2018; published 3 August 2018) The Ooguri-Vafa swampland conjectures claim that in any consistent theory of quantum gravity, when venturing to large distances in scalar field space, a tower of particles will become light at a rate that is exponential in the field-space distance. We provide a novel viewpoint on this claim: If we assume that a tower of states becomes light near a particular point in field space, and we further demand that loop corrections drive both gravity and the scalar to strong coupling at a common energy scale, then the requirement that the particles become light exponentially fast in the field-space distance in Planck units follows automatically. Furthermore, the same assumption of a common strong-coupling scale for scalar fields and gravitons implies that, when a scalar field evolves over a super-Planckian distance, the average particle mass changes by an amount of the order of the cutoff energy. This supports earlier suggestions that significantly super-Planckian excursions in field space cannot be described within a single effective field theory. We comment on the relationship of our results to the weak gravity conjecture. DOI: 10.1103/PhysRevLett.121.051601 Introduction.—A question of fundamental interest in the the weak gravity conjecture (WGC) [7]. Other recent works study of quantum gravity is the following: Which low- on the swampland conjectures include Refs. [8–13]. energy gravitational effective field theories (EFTs) admit an Controlled string compactifications typically have many ultraviolet (UV) completion? Said differently, what are the “moduli”: light scalars with gravitational-strength cou- low-energy predictions of quantum gravity? plings. This is related to the fact that the string theory The string theory provides a very large class of quantum has no continuous parameters, so any freely adjustable gravities, with a wide variety of possible low-energy EFTs coupling must be controlled by the vacuum expectation (see, e.g., [1,2]). But, despite this enormous “landscape” of value (VEV) of a scalar field. In the simplest supersym- vacua, there is growing evidence that they all share metric examples, the moduli are exactly massless and identifiable common features, distinguishing them from parametrize a continuous moduli space of vacua. More “swampland” [3], a large class of seemingly consistent realistic examples require a moduli potential with isolated gravitational EFTs with no quantum gravity UV comple- minima—the vacua of the theory—but the only reliable tion. Thus, our original question becomes this: How do we way to generate vacua in the weak-coupling regime is distinguish the swampland from the landscape? through nonperturbative effects. Since these are exponen- There are several candidate criteria for fencing off parts of tially small at weak coupling, the moduli masses are “ the swampland. In this Letter, we focus on the swampland likewise exponentially suppressed relative to, e.g., the ” conjectures of Refs. [3,4] concerning the moduli space of Kaluza-Klein (KK) scale or the string scale. quantum gravity. We will apply ideas about the effective “Conjecture 0” of Ref. [4] generalizes these observations field theory and the infrared emergence of weak coupling to any quantum gravity. recently developed in Ref. [5] (see also [6]), where they were Conjecture 0.—Every continuous parameter in a quan- used to understand another candidate swampland criterion, tum gravity is controlled by the VEV of a scalar field. Thus, we expect moduli to be ubiquitous in the land- scape, and it is natural to investigate the properties of the Published by the American Physical Society under the terms of moduli space of quantum gravity. In particular, we focus on the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to two related conjectures from Ref. [4]. the author(s) and the published article’s title, journal citation, Conjecture 1.—The moduli space has an infinite diam- and DOI. Funded by SCOAP3. eter (despite a finite volume [3,14]). 0031-9007=18=121(5)=051601(6) 051601-1 Published by the American Physical Society PHYSICAL REVIEW LETTERS 121, 051601 (2018) ≈ μ ϕ þ Oðϕ2ÞðÞ Conjecture 2.—At large distances in moduli space, an mn n 2 infinite tower of resonances becomes light exponentially quickly with an increasing distance. after an appropriate redefinition of ϕ. In making this ansatz, Here distances in moduli space are defined by geodesic we are no longer free to assume that ϕ has a canonical kinetic term. In fact, we will soon show that the kinetic term distances with respect to the moduli space metric gijðϕÞ: for ϕ blows up as ϕ → 0, and the geodesic distance to ð Þ 1 ϕ ¼ 0 L mod ¼ g ðϕÞ∂ϕi · ∂ϕj: ð1Þ diverges logarithmically in accordance with kin 2 ij Conjecture 2. The ansatz (2) is quite general. For instance, suppose Implicit in these conjectures is the notion that parametri- there are multiple towers with masses trending to zero at cally distant points in moduli space correspond to weak- different rates. Then, by moving far enough in the moduli coupling limits. space, we can focus on the tower that becomes light fastest In this Letter, we explore the connection between weak and parametrize the modulus ϕ so that this tower becomes coupling, a tower of light resonances, and large distances in light in a linear fashion. Thus, aside from being justified by moduli space. Central to our arguments is the assumption, specific examples, we believe that (2) captures the most developed in Ref. [5], that weak coupling in quantum general intended meaning of “tower” in Conjecture 2. gravities is a long-distance phenomenon, with all physics For concreteness, we take the particles in the tower to be becoming strongly coupled in the ultraviolet at a common Dirac fermions, though similar results apply for other spins. “quantum gravity scale.” This occurs in many concrete The Lagrangian is then quantum gravities, such as large volume compactifications of M theory. While there are possible counterexamples as 1 X L ¼ ðϕÞð∂ϕÞ2 − ðϕÞþ ½ψ¯ ð ∂ − μ ϕÞψ ð Þ well (see [5]), a suitable generalization of this notion may 2 K V n i= n n : 3 address these, and it is worthwhile to understand the n consequences regardless. ϕ This assumption clarifies the connection between light Fermion loops will correct the propagator as well as ϕ resonances and weak coupling. For example, light, charged S-matrix elements for scattering of particles. At some Λ resonances screen gauge forces, leading to weak gauge energy scale , these loop corrections become as large as couplings in the infrared: This is essentially the mechanism the tree-level contribution, and the EFT breaks down. We Λ of Ref. [5]. follow the approach of Ref. [5] to ascertain the scale , ΛðϕÞ We now explain the connection between light resonances with the new ingredient that depends on the value of and parametrically large distances in moduli space, apply- the modulus. (We work in the Einstein frame, holding the ’ ϕ ing the same assumption. We find that, if a tower of fields D-dimensional Newton s constant fixed as varies. Λ becomes light, the requirement of a common quantum Alternatively, one could hold the cutoff fixed and view gravity scale implies they do so exponentially quickly, so the strength of gravity as varying across the moduli space, ϕ → 0 the quantitative portion of Conjecture 2 can be derived from which may be more natural when corresponds to a our qualitative assumptions. Applying similar reasoning, decompactification limit.) ϕ we further consider the effect of moving a large but We now compute the loop correction to the propagator bounded distance in moduli space, with particular attention from the tower of fermions, perturbing around a fixed hϕi¼ϕ ðϕÞ to the case of an axion with a trans-Planckian decay expectation value 0. [For general V and general ϕ constant. In that case, our arguments imply that many 0, there is a tadpole, and the field will begin to roll. modes have masses that change by an amount large Implicit in the notion of a modulus is that the potential is compared to the quantum gravity cutoff energy. This casts relatively flat; hence, there is a finite timescale over hϕi¼ϕ some doubt on the utility of the effective field theory for the which our computation of scattering with fixed 0 treatment of trans-Planckian field ranges in quantum makes sense. We comment further on the flatness of the gravity. [While this paper was in preparation (following potentialpffiffiffiffiffiffiffiffiffiffiffiffiffi below.] The canonically normalized fluctuation ¯ a strategy sketched in the conclusions of Ref. [5]), we ϕ ≔ Kðϕ0Þðϕ − ϕ0Þ has the propagator became aware of independent work [15] with some over- 1 1 lapping results.] hϕ¯˜ ð Þϕ¯˜ ð− Þi ∼ ð Þ p p 2 2 2 : 4 Light resonances and large distances.—Motivated by p − mϕ þ iε 1 þ Πðp Þ Conjecture 2, we consider a trajectory in moduli space approaching a singular point where an infinite tower of By adding appropriate counterterms, we can choose the resonances becomes massless. This trajectory is parame- renormalization condition Πð0Þ¼0 (up to possible
Recommended publications
  • 3.4 V-A Coupling of Leptons and Quarks 3.5 CKM Matrix to Describe the Quark Mixing
    Advanced Particle Physics: VI. Probing the weak interaction 3.4 V-A coupling of leptons and quarks Reminder u γ µ (1− γ 5 )u = u γ µu L = (u L + u R )γ µu L = u Lγ µu L l ν l ν l l ν l ν In V-A theory the weak interaction couples left-handed lepton/quark currents (right-handed anti-lepton/quark currents) with an universal coupling strength: 2 GF gw = 2 2 8MW Weak transition appear only inside weak-isospin doublets: Not equal to the mass eigenstate Lepton currents: Quark currents: ⎛ν ⎞ ⎛ u ⎞ 1. ⎜ e ⎟ j µ = u γ µ (1− γ 5 )u 1. ⎜ ⎟ j µ = u γ µ (1− γ 5 )u ⎜ − ⎟ eν e ν ⎜ ⎟ du d u ⎝e ⎠ ⎝d′⎠ ⎛ν ⎞ ⎛ c ⎞ 5 2. ⎜ µ ⎟ j µ = u γ µ (1− γ 5 )u 2. ⎜ ⎟ j µ = u γ µ (1− γ )u ⎜ − ⎟ µν µ ν ⎜ ⎟ sc s c ⎝ µ ⎠ ⎝s′⎠ ⎛ν ⎞ ⎛ t ⎞ µ µ 5 3. ⎜ τ ⎟ j µ = u γ µ (1− γ 5 )u 3. ⎜ ⎟ j = u γ (1− γ )u ⎜ − ⎟ τν τ ν ⎜ ⎟ bt b t ⎝τ ⎠ ⎝b′⎠ 3.5 CKM matrix to describe the quark mixing One finds that the weak eigenstates of the down type quarks entering the weak isospin doublets are not equal to the their mass/flavor eigenstates: ⎛d′⎞ ⎛V V V ⎞ ⎛d ⎞ d V u ⎜ ⎟ ⎜ ud us ub ⎟ ⎜ ⎟ ud ⎜ s′⎟ = ⎜Vcd Vcs Vcb ⎟ ⋅ ⎜ s ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ W ⎝b′⎠ ⎝Vtd Vts Vtb ⎠ ⎝b⎠ Cabibbo-Kobayashi-Maskawa mixing matrix The quark mixing is the origin of the flavor number violation of the weak interaction.
    [Show full text]
  • String-Inspired Running Vacuum—The ``Vacuumon''—And the Swampland Criteria
    universe Article String-Inspired Running Vacuum—The “Vacuumon”—And the Swampland Criteria Nick E. Mavromatos 1 , Joan Solà Peracaula 2,* and Spyros Basilakos 3,4 1 Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London, Strand, London WC2R 2LS, UK; [email protected] 2 Departament de Física Quàntica i Astrofísica, and Institute of Cosmos Sciences (ICCUB), Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona, Catalonia, Spain 3 Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efessiou 4, 11527 Athens, Greece; [email protected] 4 National Observatory of Athens, Lofos Nymfon, 11852 Athens, Greece * Correspondence: [email protected] Received: 15 October 2020; Accepted: 17 November 2020; Published: 20 November 2020 Abstract: We elaborate further on the compatibility of the “vacuumon potential” that characterises the inflationary phase of the running vacuum model (RVM) with the swampland criteria. The work is motivated by the fact that, as demonstrated recently by the authors, the RVM framework can be derived as an effective gravitational field theory stemming from underlying microscopic (critical) string theory models with gravitational anomalies, involving condensation of primordial gravitational waves. Although believed to be a classical scalar field description, not representing a fully fledged quantum field, we show here that the vacuumon potential satisfies certain swampland criteria for the relevant regime of parameters and field range. We link the criteria to the Gibbons–Hawking entropy that has been argued to characterise the RVM during the de Sitter phase. These results imply that the vacuumon may, after all, admit under certain conditions, a rôle as a quantum field during the inflationary (almost de Sitter) phase of the running vacuum.
    [Show full text]
  • Strong Coupling and Quantum Molecular Plasmonics
    Strong coupling and molecular plasmonics Javier Aizpurua http://cfm.ehu.es/nanophotonics Center for Materials Physics, CSIC-UPV/EHU and Donostia International Physics Center - DIPC Donostia-San Sebastián, Basque Country AMOLF Nanophotonics School June 17-21, 2019, Science Park, Amsterdam, The Netherlands Organic molecules & light Excited molecule (=exciton on molecule) Photon Photon Adding mirrors to this interaction The photon can come back! Optical cavities to enhance light-matter interaction Optical mirrors Dielectric resonator Veff Q ∼ 1/κ Photonic crystals Plasmonic cavity Veff Q∼1/κ Coupling of plasmons and molecular excitations Plasmon-Exciton Coupling Plasmon-Vibration Coupling Absorption, Scattering, IR Absorption, Fluorescence Veff Raman Scattering Extreme plasmonic cavities Top-down Bottom-up STM ultra high-vacuum Wet Chemistry Low temperature Self-assembled monolayers (Hefei, China) (Cambridge, UK) “More interacting system” One cannot distinguish whether we have a photon or an excited molecule. The eigenstates are “hybrid” states, part molecule and part photon: “polaritons” Strong coupling! Experiments: organic molecules Organic molecules: Microcavity: D. G. Lidzey et al., Nature 395, 53 (1998) • Large dipole moments • High densities collective enhancement • Rabi splitting can be >1 eV (~30% of transition energy) • Room temperature! Surface plasmons: J. Bellessa et al., Single molecule with gap plasmon: Phys. Rev. Lett. 93, 036404 (2004) Chikkaraddy et al., Nature 535, 127 (2016) from lecture by V. Shalaev Plasmonic cavities
    [Show full text]
  • Swampland Conjectures
    Swampland Conjectures Pablo Soler - Heidelberg ITP Strings and Fields ’19 - YITP Kyoto String phenomenology & the swampland ` <latexit sha1_base64="EAxFprSVFYJYfuKS7d/uV4r6OYc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMxszPLzKwQQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66RmF4Xopb1yxa/6c5BVEuSkAjnqvfJXt69YlqC0TFBjOoGf2nBCteVM4LTUzQymlI3oADuOSpqgCSfza6fkzCl9EivtSloyV39PTGhizDiJXGdC7dAsezPxP6+T2fg6nHCZZhYlWyyKM0GsIrPXSZ9rZFaMHaFMc3crYUOqKbMuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMYPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBlJiPHg==</latexit> p String/M-theory <latexit sha1_base64="8DaxENaOM20fupORTAiGRfmtnI4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMeAF48RzAOSJcxOepMxszPLzKwQQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66RmF4XomV654lf9OcgqCXJSgRz1Xvmr21csS1BaJqgxncBPbTih2nImcFrqZgZTykZ0gB1HJU3QhJP5tVNy5pQ+iZV2JS2Zq78nJjQxZpxErjOhdmiWvZn4n9fJbHwTTrhMM4uSLRbFmSBWkdnrpM81MivGjlCmubuVsCHVlFkXUMmFECy/vEqaF9XArwb3V5XaZR5HEU7gFM4hgGuowR3UoQEMHuEZXuHNU96L9+59LFoLXj5zDH/gff4AlKGPEg==</latexit> `s L<latexit sha1_base64="uD+wtoefsR0DkLrUP2Tpiynljx8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GNBBA8eWrAf0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH45uZ335CpXksH8wkQT+iQ8lDzqixUuO+X664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3mcRThBE7hHDy4ghrcQR2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB6RwjNM=</latexit>
    [Show full text]
  • The Electron-Phonon Coupling Constant 
    The electron-phonon coupling constant Philip B. Allen Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 March 17, 2000 Tables of values of the electron-phonon coupling constants and are given for selected tr elements and comp ounds. A brief summary of the theory is also given. I. THEORETICAL INTRODUCTION Grimvall [1] has written a review of electron-phonon e ects in metals. Prominent among these e ects is sup ercon- ductivity. The BCS theory gives a relation T exp1=N 0V for the sup erconducting transition temp erature c D T in terms of the Debye temp erature .Values of T are tabulated in various places, the most complete prior to c D c the high T era b eing ref. [2]. The electron-electron interaction V consists of the attractive electron-phonon-induced c interaction minus the repulsive Coulombinteraction. The notation is used = N 0V 1 eph and the Coulomb repulsion N 0V is called , so that N 0V = , where is a \renormalized" Coulomb c repulsion, reduced in value from to =[1 + ln! =! ]. This suppression of the Coulomb repulsion is a result P D of the fact that the electron-phonon attraction is retarded in time by an amountt 1=! whereas the repulsive D screened Coulombinteraction is retarded byamuch smaller time, t 1=! where ! is the electronic plasma P P frequency. Therefore, is b ounded ab oveby1= ln! =! which for conventional metals should b e 0:2. P D Values of are known to range from 0:10 to 2:0.
    [Show full text]
  • How the Electron-Phonon Coupling Mechanism Work in Metal Superconductor
    How the electron-phonon coupling mechanism work in metal superconductor Qiankai Yao1,2 1College of Science, Henan University of Technology, Zhengzhou450001, China 2School of physics and Engineering, Zhengzhou University, Zhengzhou450001, China Abstract Superconductivity in some metals at low temperature is known to arise from an electron-phonon coupling mechanism. Such the mechanism enables an effective attraction to bind two mobile electrons together, and even form a kind of pairing system(called Cooper pair) to be physically responsible for superconductivity. But, is it possible by an analogy with the electrodynamics to describe the electron-phonon coupling as a resistivity-dependent attraction? Actually so, it will help us to explore a more operational quantum model for the formation of Cooper pair. In particularly, by the calculation of quantum state of Cooper pair, the explored model can provide a more explicit explanation for the fundamental properties of metal superconductor, and answer: 1) How the transition temperature of metal superconductor is determined? 2) Which metals can realize the superconducting transition at low temperature? PACS numbers: 74.20.Fg; 74.20.-z; 74.25.-q; 74.20.De ne is the mobile electron density, η the damping coefficient 1. Introduction that is determined by the collision time τ . In the BCS theory[1], superconductivity is attributed to a In metal environment, mobile electrons are usually phonon-mediated attraction between mobile electrons near modeled to be a kind of classical particles like gas molecules, Fermi surface(called Fermi electrons). The attraction is each of which performs a Brown-like motion and satisfies the sometimes referred to as a residual Coulomb interaction[2] that Langevin equation can glue Cooper pair together to cause superconductivity.
    [Show full text]
  • (No) Eternal Inflation and Precision Higgs Physics
    (No) Eternal Inflation and Precision Higgs Physics Nima Arkani-Hameda, Sergei Dubovskyb;c, Leonardo Senatoreb, Giovanni Villadorob aSchool of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA b Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA c Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312 Moscow, Russia Abstract Even if nothing but a light Higgs is observed at the LHC, suggesting that the Standard Model is unmodified up to scales far above the weak scale, Higgs physics can yield surprises of fundamental significance for cosmology. As has long been known, the Standard Model vacuum may be metastable for low enough Higgs mass, but a specific value of the decay rate holds special significance: for a very narrow window of parameters, our Universe has not yet decayed but the current inflationary period can not be future eternal. Determining whether we are in this window requires exquisite but achievable experimental precision, with a measurement of the Higgs mass to 0.1 GeV at the LHC, the top mass to 60 MeV at a linear collider, as well as an improved determination of αs by an order of magnitude on the lattice. If the parameters are observed to lie in this special range, particle physics will establish arXiv:0801.2399v2 [hep-ph] 2 Apr 2008 that the future of our Universe is a global big crunch, without harboring pockets of eternal inflation, strongly suggesting that eternal inflation is censored by the fundamental theory. This conclusion could be drawn even more sharply if metastability with the appropriate decay rate is found in the MSSM, where the physics governing the instability can be directly probed at the TeV scale.
    [Show full text]
  • UNIVERSITÀ DEGLI STUDI DI PADOVA Dipartimento Di Fisica E Astronomia “Galileo Galilei”
    UNIVERSITÀ DEGLI STUDI DI PADOVA Dipartimento di Fisica e Astronomia “Galileo Galilei” Corso di Laurea Magistrale in Fisica Tesi di Laurea Non perturbative instabilities of Anti-de Sitter solutions to M-theory Relatore Laureanda Dr. Davide Cassani Ginevra Buratti Anno Accademico 2017/2018 Contents 1 Introduction 1 2 Motivation 7 2.1 The landscape and the swampland . .8 2.2 The Weak Gravity Conjecture . .8 2.3 Sharpening the conjecture . 11 3 False vacuum decay 15 3.1 Instantons and bounces in quantum mechanics . 16 3.2 The field theory approach . 24 3.3 Including gravity . 29 3.4 Witten’s bubble of nothing . 33 4 M-theory bubbles of nothing 37 4.1 Eleven dimensional supergravity . 38 4.2 Anti-de Sitter geometry . 41 4.3 Young’s no-go argument . 47 4.4 Re-orienting the flux . 53 4.5 M2-brane instantons . 59 5 A tri-Sasakian bubble geometry? 65 6 Conclusions 77 A Brane solutions in supergravity 79 B Anti-de Sitter from near-horizon limits 83 iii iv CONTENTS Chapter 1 Introduction There are several reasons why studying the stability properties of non supersymmetric Anti- de Sitter (AdS) spaces deserves special interest. First, AdS geometries naturally emerge in the context of string theory compactifications, here including M-theory. General stability arguments can be drawn in the presence of supersymmetry, but the question is non trivial and still open for the non supersymmetric case. However, it has been recently conjectured by Ooguri and Vafa [1] that all non supersymmetric AdS vacua supported by fluxes are actually unstable.
    [Show full text]
  • Swampland, Trans-Planckian Censorship and Fine-Tuning
    Swampland, Trans-Planckian Censorship and Fine-Tuning Problem for Inflation: Tunnelling Wavefunction to the Rescue Suddhasattwa Brahma1∗, Robert Brandenberger1† and Dong-han Yeom2,3‡ 1 Department of Physics, McGill University, Montr´eal, QC H3A 2T8, Canada 2 Department of Physics Education, Pusan National University, Busan 46241, Republic of Korea 3 Research Center for Dielectric and Advanced Matter Physics, Pusan National University, Busan 46241, Republic of Korea Abstract The trans-Planckian censorship conjecture implies that single-field models of inflation require an extreme fine-tuning of the initial conditions due to the very low-scale of inflation. In this work, we show how a quantum cosmological proposal – namely the tunneling wavefunction – naturally provides the necessary initial conditions without requiring such fine-tunings. More generally, we show how the tunneling wavefunction can provide suitable initial conditions for hilltop inflation models, the latter being typically preferred by the swampland constraints. 1 TCC Bounds on Inflation The trans-Planckian censorship conjecture (TCC), proposed recently [1], aims to resolve an old problem for inflationary cosmology. The idea that observable classical inhomogeneities are sourced by vacuum quantum fluctuations [2, 3] lies at the heart of the remarkable arXiv:2002.02941v2 [hep-th] 20 Feb 2020 success of inflationary predictions. On the other hand, if inflation lasted for a long time, then one can sufficiently blue-shift such macroscopic perturbations such that they end up as quantum fluctuations on trans-Planckian scales [4]. This would necessarily require the validity of inflation, as an effective field theory (EFT) on curved spacetimes, beyond the Planck scale. This is what the TCC aims to prevent by banishing any trans-Planckian mode from ever crossing the Hubble horizon and, thereby, setting an upper limit on the duration of inflation.
    [Show full text]
  • Matthew Reece Harvard University
    Exploring the Weak Gravity Conjecture Matthew Reece Harvard University Based on 1506.03447, 1509.06374, 1605.05311, 1606.08437 with Ben Heidenreich and Tom Rudelius. & 161n.nnnnn with Grant Remmen, Thomas Roxlo, and Tom Rudelius Ooguri, Vafa 2005 Concretely: How good can approximate symmetries be? Can an approx. global symmetry be “too good to be true” and put a theory in the swampland? Approximate Symmetries For large-field, natural inflation we might like to have a good approximate shift symmetry φ φ + f, f > M ! Pl In effective field theory, nothing is wrong with this. In quantum gravity, it is dangerous. Quantum gravity theories have no continuous global symmetries. Basic reason: throw charged stuff into a black hole. No hair, so it continues to evaporate down to the smallest sizes we trust GR for. True of arbitrarily large charge ⇒ violate entropy bounds. (see Banks, Seiberg 1011.5120 and references therein) The Power of Shift Symmetries Scalar fields with good approximate shift symmetries can play a role in: • driving expansion of the universe (now or in the past) • solving the strong CP problem • making up the dark matter • breaking supersymmetry • solving cosmological gravitino problems These are serious, real-world phenomenological questions! Example: QCD Axion Weinberg/Wilczek/…. taught us to promote theta to field: a ↵s µ⌫ Gµ⌫ G˜ instantons: shift-symmetric potential fa 8⇡ di Cortona et al. 1511.02867 Important point: large field range, small spurion 2 2 2 2 2 1 m f (md/mu) 1 m f (md/mu)((md/mu) (md/mu) + 1) 2 ⇡ ⇡ λ = ⇡ ⇡ − ma = 2 2 4 4 f (1 + (md/mu)) −f (1 + md/mu) Example: QCD Axion 9 • Stellar cooling constraints: fa >~ 10 GeV • This means the quartic coupling <~ 10-41.
    [Show full text]
  • Swampland Constraints on 5D N = 1 Supergravity Arxiv:2004.14401V2
    Prepared for submission to JHEP Swampland Constraints on 5d N = 1 Supergravity Sheldon Katz, a Hee-Cheol Kim, b;c Houri-Christina Tarazi, d Cumrun Vafa d aDepartment of Mathematics, MC-382, University of Illinois at Urbana-Champaign, Ur- bana, IL 61801, USA bDepartment of Physics, POSTECH, Pohang 790-784, Korea cAsia Pacific Center for Theoretical Physics, Postech, Pohang 37673, Korea dDepartment of Physics, Harvard University, Cambridge, MA 02138, USA Abstract: We propose Swampland constraints on consistent 5-dimensional N = 1 supergravity theories. We focus on a special class of BPS magnetic monopole strings which arise in gravitational theories. The central charges and the levels of current algebras of 2d CFTs on these strings can be calculated by anomaly inflow mechanism and used to provide constraints on the low-energy particle spectrum and the effective action of the 5d supergravity based on unitarity of the worldsheet CFT. In M-theory, where these theories are realized by compactification on Calabi-Yau 3-folds, the spe- cial monopole strings arise from wrapped M5-branes on special (\semi-ample") 4- cycles in the threefold. We identify various necessary geometric conditions for such cycles to lead to requisite BPS strings and translate these into constraints on the low-energy theories of gravity. These and other geometric conditions, some of which can be related to unitarity constraints on the monopole worldsheet, are additional arXiv:2004.14401v2 [hep-th] 13 Jul 2020 candidates for Swampland constraints on 5-dimensional N = 1 supergravity
    [Show full text]
  • Lattice-QCD Determinations of Quark Masses and the Strong Coupling Αs
    Lattice-QCD Determinations of Quark Masses and the Strong Coupling αs Fermilab Lattice, MILC, and TUMQCD Collaborations September 1, 2020 EF Topical Groups: (check all that apply /) (EF01) EW Physics: Higgs Boson Properties and Couplings (EF02) EW Physics: Higgs Boson as a Portal to New Physics (EF03) EW Physics: Heavy Flavor and Top-quark Physics (EF04) EW Physics: Electroweak Precision Physics and Constraining New Physics (EF05) QCD and Strong Interactions: Precision QCD (EF06) QCD and Strong Interactions: Hadronic Structure and Forward QCD (EF07) QCD and Strong Interactions: Heavy Ions (EF08) BSM: Model-specific Explorations (EF09) BSM: More General Explorations (EF10) BSM: Dark Matter at Colliders Other Topical Groups: (RF01) Weak Decays of b and c Quarks (TF02) Effective Field Theory Techniques (TF05) Lattice Gauge Theory (CompF2) Theoretical Calculations and Simulation Contact Information: Andreas S. Kronfeld (Theoretical Physics Department, Fermilab) [email]: [email protected] on behalf of the Fermilab Lattice, MILC, and TUMQCD Collaborations Fermilab Lattice, MILC, and TUMQCD Collaborations: A. Bazavov, C. Bernard, N. Brambilla, C. DeTar, A.X. El-Khadra, E. Gamiz,´ Steven Gottlieb, U.M. Heller, W.I. Jay, J. Komijani, A.S. Kronfeld, J. Laiho, P.B. Mackenzie, E.T. Neil, P. Petreczky, J.N. Simone, R.L. Sugar, D. Toussaint, A. Vairo, A. Vaquero Aviles-Casco,´ J.H. Weber, R.S. Van de Water Lattice-QCD Determinations of Quark Masses and the Strong Coupling αs Quantum chromdynamics (QCD) as a stand-alone theory has 1 + nf + 1 free parameters that must be set from experimental measurements, complemented with theoretical calculations connecting the measurements to the QCD Lagrangian.
    [Show full text]