Plug-In Hybrid Vehicle Analysis: Milestone Report

Total Page:16

File Type:pdf, Size:1020Kb

Plug-In Hybrid Vehicle Analysis: Milestone Report A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Plug-In Hybrid Vehicle Analysis Milestone Report NREL/MP-540-40609 November 2006 T. Markel, A. Brooker, J. Gonder, M. O’Keefe, A. Simpson, and M. Thornton National Renewable Energy Laboratory NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Plug-In Hybrid Vehicle Analysis Milestone Report NREL/MP-540-40609 November 2006 T. Markel, A. Brooker, J. Gonder, M. O’Keefe, A. Simpson, and M. Thornton National Renewable Energy Laboratory Prepared under: Task No. FC06.2000 B&R Code VT0103000 Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy In fulfillment of: FreedomCAR and Vehicle Technologies Program September 2006 Milestone/Deliverable 6.3 Grid-Connected Hybrid Vehicle Efficiency Improvement Analysis National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste Preface The Vehicle Systems Team in the Center for Transportation Technologies and Systems at the National Renewable Energy Laboratory (NREL) performed this work. This report documents completion of the September 2006 milestone as part of NREL’s 2006 FreedomCAR and Vehicle Technologies (FCVT) Annual Operating Plan with the U.S. Department of Energy (DOE). The objective of the work was to provide objective systems simulations and analysis of plug-in hybrid electric vehicle technologies. This report supports the goals of the DOE/FCVT Program to quantify the potential benefits of plug-in hybrid electric vehicle technology through analysis and modeling. Specifically, this effort supports Task 1: Modeling and Simulation, discussed in the FCVT Multi-Year Program Plan. This work was funded by the Advanced Vehicle Technology Analysis and Evaluation activity in support of the FCVT Program of the Office of Energy Efficiency and Renewable Energy within the U.S. DOE. We wish to thank our sponsor, Lee Slezak, for his guidance and support. Terry Penney, as NREL’s FCVT technology manager, and Matt Thornton, as task leader for NREL’s Vehicle Systems Analysis Task, supported this project. We would also like to express our appreciation to the members of the FreedomCAR Vehicle Systems Analysis Technical Team: Larry Laws (GM), Mark Biernacki (DaimlerChrysler), and Asi Perach (Ford) for providing technical insight and industry review. Tony Markel, project leader iii Table of Contents Executive Summary Section 1: Plug-In Hybrid Electric Vehicle Fuel Economy Reporting Methods Section 1.1: “Measuring and Reporting Fuel Economy of Plug-In Hybrid Vehicles,” presented to the Vehicle Systems Analysis Technical Team, Feb. 1, 2006 Section 1.2: “Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles,” published at the 22nd International Battery, Hybrid, and Fuel Cell Electric Vehicle Symposium and Exposition, October 2006 Section 2: Plug-In Hybrid Electric Vehicle Cost and Consumption Benefit Analysis Section 2.1: “Cost/Benefit Analysis of Hybrid-Electric and Plug-In Hybrid-Electric Vehicle Technology,” presented to the Vehicle Systems Analysis Technical Team, March 1, 2006 (updated May 2006) Section 2.2: “Cost-Benefit Analysis of Plug-In Electric Vehicle Technology,” published at the 22nd International Battery, Hybrid, and Fuel Cell Electric Vehicle Symposium and Exposition, Oct. 26, 2006 Section 2.3: “Plug-In Hybrid Electric Vehicles: Current Status, Long-Term Prospects, and Key Challenges,” presented at the Federal Network for Sustainability Meeting, July 20, 2006 Section 2.4: “Plug-In Hybrid Electric Vehicle Energy Storage Analysis,” presented to the FreedomCAR Electrochemical Energy Storage Technical Team Plug-In Hybrid Electric Vehicle Battery Working Group Meeting, July 25, 2006 Section 2.5: “Plug-In Hybrid Modeling and Application: Cost/Benefit Analysis,” presented at the Third AVL Summer Conference on Automotive Simulation Technology, Aug. 24, 2006 Section 3: Plug-In Hybrid Electric Vehicle Real-World Performance Expectations Section 3.1: “Plug-In Hybrid Electric Vehicles: Current Status, Long-Term Prospects, and Key Challenges,” presented at the Clean Cities Congress and Expo, May 8, 2006 Section 3.2: “Plug-In Hybrid Vehicle Real-World Performance Expectations,” presented to the Vehicle Systems Analysis Technical Team, June 14, 2006 Section 3.3: “Using GPS Travel Data to Assess the Real-World Driving Energy Use of Plug-In Hybrid Electric Vehicles,” to be published at the Transportation Research Board 86th Annual Meeting, February 2007 iv Section 4: Plug-In Hybrid Electric Vehicle Energy Management Strategies Section 4.1: “Plug-In Hybrid Electric Vehicle Energy Storage System Design,” presented at the Advanced Automotive Battery Conference, May 19, 2006 Section 4.2: “Plug-In Hybrid Electric Vehicle Energy Storage System Design,” published at the Advanced Automotive Battery Conference, May 19, 2006 Section 4.3: “Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-In Hybrid Electric Vehicle,” to be published at the 22nd International Battery, Hybrid, and Fuel Cell Electric Vehicle Symposium and Exposition, October 2006 Summary v Plug-In Hybrid Vehicle Analysis Milestone Report September 2006 Tony Markel Aaron Brooker, Jeffrey Gonder, Michael O’Keefe, Andrew Simpson, Matthew Thornton In fulfillment of FreedomCAR and Vehicle Technologies Program September 2006 Milestone/Deliverable 6.3 Grid-Connected Hybrid Vehicle Efficiency Improvement Analysis Executive Summary NREL’s plug-in hybrid electric vehicle (PHEV) analysis activities have made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort and complementary activities at other national laboratories, and share technical knowledge with the vehicle research community and vehicle manufacturers through the FreedomCAR Vehicle Systems Technical Team and the Electrochemical Energy Storage Technical Team. The key contributions of this activity include: 1. Proposed improvements to the existing test procedure for reporting PHEV fuel economy 2. A thorough exploration of the PHEV design space, including an evaluation of the trade-offs between cost and fuel consumption 3. The application of real-world driving data to quantify the impacts of travel behavior on the potential benefits of PHEVs 4. The optimization of energy management strategies focusing on petroleum displacement. The NREL research team has participated in many key industry meetings, and its research has been documented in eight formal presentations and five technical papers that have been published or have been submitted for publication within the next 6 months. This milestone report is a compilation of these papers and presentations for future reference. The following is a summary of important insights that emerged from the four areas of emphasis. Plug-In Hybrid Electric Vehicle Fuel Economy Reporting Methods PHEVs differ significantly from existing vehicles. They consume two fuels (petroleum and electricity) at rates that depend on the distance driven and the aggressiveness of the cycle. The Society of Automotive Engineers J1711 Recommended Practice, created in 1999, provides the fundamentals for measuring fuel economy of off-vehicle charge-capable vehicles (i.e., plug-in hybrids and electric vehicles). Seven years later, with a much better understanding of how PHEVs will likely operate, some improvements to the original procedure are recommended. The team’s specific recommendations are: • Report gasoline and electricity consumption separately, which allows the reported results to be used for vehicle operating cost comparisons, fuel consumption, and
Recommended publications
  • Environmental Advisory Board Annual Report FY19 ______
    To: Mayor and City Council Members From: Environmental Advisory Board Date: 11/14/2019 Re: Environmental Advisory Board Annual Report FY19 ________________________________________________________________________ It is with great pleasure that we submit this summary of the work that the Environmental Advisory Board (EAB) has accomplished over the past year. Our FY2019 work plan included five overarching objectives that have guided our monthly discussions and actions. The following report provides a summary of our work in these areas. Highlights: 1. Hosted the 12th Annual Environmental Awards Celebration 2. Reviewed and evaluated programs, conducted additional research, participated in facility tours and prepared a report on recycling programs for Raleigh (see attached report) 3. Continued to support pollinator habitat through our Raleigh Bee City USA membership 4. Participated in activities and learned about Raleigh’s Greenhouse Gas emissions and plans for the upcoming Community-wide Climate Action Plan (CCAP) 5. Participated in the GardenCorps project in support of ongoing urban agriculture and healthy living initiatives 1. Hosted the 12th Annual Environmental Awards Celebration In April 2019, the EAB hosted another successful Environmental Awards ceremony, at Market Hall. This was the 12th celebration of the environment with impressive winners that helped to showcase the innovative people and organizations that tirelessly work to improve the environment in Raleigh. We continue to attract new individuals and businesses each year who come to support their colleagues and friends who receive awards. The Board would like to express our gratitude to the City staff who organize the Awards Ceremony and ensure that it is always a successful event that reflects well on the City of Raleigh.
    [Show full text]
  • Alternative Fuels, Vehicles & Technologies Feasibility
    ALTERNATIVE FUELS, VEHICLES & TECHNOLOGIES FEASIBILITY REPORT Prepared by Eastern Pennsylvania Alliance for Clean Transportation (EP-ACT)With Technical Support provided by: Clean Fuels Ohio (CFO); & Pittsburgh Region Clean Cities (PRCC) Table of Contents Analysis Background: .................................................................................................................................... 3 1.0: Introduction – Fleet Feasibility Analysis: ............................................................................................... 3 2.0: Fleet Management Goals – Scope of Work & Criteria for Analysis: ...................................................... 4 Priority Review Criteria for Analysis: ........................................................................................................ 4 3.0: Key Performance Indicators – Existing Fleet Analysis ............................................................................ 5 4.0: Alternative Fuel Options – Summary Comparisons & Conclusions: ...................................................... 6 4.1: Detailed Propane Autogas Options Analysis: ......................................................................................... 7 Propane Station Estimate ......................................................................................................................... 8 (Station Capacity: 20,000 GGE/Year) ........................................................................................................ 8 5.0: Key Recommended Actions – Conclusion
    [Show full text]
  • Living Building Challengesm 3.0
    LIVING BUILDING CHALLENGE SM LIVING BUILDING CHALLENGESM 3.0 A Visionary Path to a Regenerative Future LIVING BUILDING CHALLENGESM 3.0 A Visionary Path to a Regenerative Future LIVING BUILDING CHALLENGE SM Printed in Canada NOTIFICATION Copyright © 2014 by International Living Future Institute The Institute grants substantial limited uses in order to encourage a wide distribution, including the following: © 2006, 2008, 2009, 2012 previous versions. • This particular document may be printed and distributed in its entirety by any organization for the purposes of education or adoption of the Challenge. This stipulation does not apply International Living Building Institute, International Living to other Living Building Challenge or Living Future Challenge Future Institute and Cascadia Green Building Council. documents or other related documents unless expressly All rights reserved. No part of this document may be modified, specified. However it should be noted that the Institute does nor elements of this document used out of existing context provide pre-printed, professionally bound copies on FSC without written permission. paper of the Standard for purchase at a reasonable price. For information, address: • This document may be transmitted in PDF form only— The International Living Future Institute without any modifications made—to any individual or 1501 East Madison Street, Suite 150 organization for the purposes of education or adoption Seattle, WA 98122 of the Challenge. Living Building Challenge is a trademark of the International • This document may be posted on websites in its Living Future Institute (the Institute). The terms “Living entirety and unmodified in PDF form for the purposes of Buildings” and “Living Building” and “Living Building Leader” education or to encourage the adoption of the Challenge.
    [Show full text]
  • Using Biodiesel Fuel in Your Engine
    RENEWABLE AND ALTERNATIVE ENERGY FACT SHEET Using Biodiesel Fuel in Your Engine Introduction Biodiesel is an engine fuel that is created by chemically reacting fatty acids and alcohol. Practically speaking, this usually means combining vegetable oil with methanol in the presence of a cata- lyst (usually sodium hydroxide). Biodiesel is much more suitable for use as an engine fuel than straight vegetable oil for a number of reasons, the most notable one being its lower viscosity. Many large and small producers have begun producing biodiesel, and the fuel can now be found in many parts of Pennsylvania and beyond either as “pure biodiesel” or a blended mixture with tradi- tional petroleum diesel (e.g., B5 is 5 percent biodiesel, 95 percent petroleum diesel). The process of making biodiesel is simple enough that farm- ers can consider producing biodiesel to meet their own needs by growing and harvesting an oil crop and converting it into biodiesel. In this way, farmers are able to “grow” their own fuel (see the Penn State Cooperative Extension publication Biodiesel Safety and Best Management Practices for Small-Scale Noncom- biodiesel fuel has less energy per unit volume than traditional mercial Production). There are many possible reasons to grow or diesel fuel. use biodiesel, including economics, support of local industry, and environmental considerations. • Fuel efficiency: fuel efficiency tends to be slightly lower when However, there is also a great deal of concern about the effect using biodiesel due to the lower energy content of the fuel. of biodiesel on engines. Many stories have been circulating about Typically, the drop-off is in the same range as the reduction in reduced performance, damage to key components, or even engine peak engine power (3–5 percent).
    [Show full text]
  • Study on the Effects of Battery Capacity on the Performance of Hybrid Electric Vehicles
    Missouri University of Science and Technology Scholars' Mine Electrical and Computer Engineering Faculty Research & Creative Works Electrical and Computer Engineering 01 Sep 2008 Study on the Effects of Battery Capacity on the Performance of Hybrid Electric Vehicles Deepak Somayajula Andrew Meintz Mehdi Ferdowsi Missouri University of Science and Technology, [email protected] Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork Part of the Electrical and Computer Engineering Commons Recommended Citation D. Somayajula et al., "Study on the Effects of Battery Capacity on the Performance of Hybrid Electric Vehicles," Proceedings of the IEEE Vehicle Power and Propulsion Conference (2008, Harbin, China), Institute of Electrical and Electronics Engineers (IEEE), Sep 2008. The definitive version is available at https://doi.org/10.1109/VPPC.2008.4677504 This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. IEEE Vehicle Power and Propulsion Conference (VPPC), September 3-5, 2008, Harbin, China Study on the Effects of Battery Capacity on the Performance of Hybrid Electric Vehicles Deepak Somayajula, Andrew Meintz, and Mehdi Ferdowsi, Member, IEEE Power Electronics and Motor Drives Laboratory Missouri University of Science and Technology Rolla, MO 65409, USA Email: [email protected], [email protected], and [email protected] Abstract—Hybrid electric vehicles are gaining a significant the drive cycle and the battery assists the engine.
    [Show full text]
  • Digital Twin Modeling of a Solar Car Based on the Hybrid Model Method with Data-Driven and Mechanistic
    applied sciences Article Digital Twin Modeling of a Solar Car Based on the Hybrid Model Method with Data-Driven and Mechanistic Luchang Bai, Youtong Zhang *, Hongqian Wei , Junbo Dong and Wei Tian Laboratory of Low Emission Vehicle, Beijing Institute of Technology, Beijing 100081, China; [email protected] (L.B.); [email protected] (H.W.); [email protected] (J.D.); [email protected] (W.T.) * Correspondence: [email protected] Featured Application: This technology is expected to be used in energy management of new energy vehicles. Abstract: Solar cars are energy-sensitive and affected by many factors. In order to achieve optimal energy management of solar cars, it is necessary to comprehensively characterize the energy flow of vehicular components. To model these components which are hard to formulate, this study stimulates a solar car with the digital twin (DT) technology to accurately characterize energy. Based on the hybrid modeling approach combining mechanistic and data-driven technologies, the DT model of a solar car is established with a designed cloud platform server based on Transmission Control Protocol (TCP) to realize data interaction between physical and virtual entities. The DT model is further modified by the offline optimization data of drive motors, and the energy consumption is evaluated with the DT system in the real-world experiment. Specifically, the energy consumption Citation: Bai, L.; Zhang, Y.; Wei, H.; error between the experiment and simulation is less than 5.17%, which suggests that the established Dong, J.; Tian, W. Digital Twin DT model can accurately stimulate energy consumption. Generally, this study lays the foundation Modeling of a Solar Car Based on the for subsequent performance optimization research.
    [Show full text]
  • Morgan Ellis Climate Policy Analyst and Clean Cities Coordinator DNREC [email protected] 302.739.9053
    CLEAN TRANSPORTATION IN DELAWARE WILMAPCO’S OUR TOWN CONFERENCE THE PRESENTATION 1) What are alterative fuels? 2) The Fuels 3) What’s Delaware Doing? WHAT ARE ALTERNATIVE FUELED VEHICLES? • “Vehicles that run on a fuel other than traditional petroleum fuels (i.e. gas and diesel)” • Propane • Natural Gas • Electricity • Biodiesel • Ethanol • Hydrogen THERE’S A FUEL FOR EVERY FLEET! DELAWARE’S ALTERNATIVE FUELS • “Vehicles that run on a fuel other than traditional petroleum fuels (i.e. gas and diesel)” • Propane • Natural Gas • Electricity • Biodiesel • Ethanol • Hydrogen THE FUELS PROPANE • By-Product of Natural Gas • Compressed at high pressure to liquefy • Domestic Fuel Source • Great for: • School Busses • Step Vans • Larger Vans • Mid-Sized Vehicles COMPRESSED NATURAL GAS (CNG) • Predominately Methane • Uses existing pipeline distribution system to deliver gas • Good for: • Heavy-Duty Trucks • Passenger cars • School Buses • Waste Management Trucks • DNREC trucks PROPANE AND CNG INFRASTRUCTURE • 8 Propane Autogas Stations • 1 CNG Station • Fleet and Public Access with accounts ELECTRIC VEHICLES • Electricity is considered an alternative fuel • Uses electricity from a power source and stores it in batteries • Two types: • Battery Electric • Plug-in Hybrid • Great for: • Passenger Vehicles EV INFRASTRUCTURE • 61 charging stations in Delaware • At 26 locations • 37,000 Charging Stations in the United States • Three types: • Level 1 • Level 2 • D.C. Fast Charging TYPES OF CHARGING STATIONS Charger Current Type Voltage (V) Charging Primary Use Time Level 1 Alternating 120 V 2 to 5 miles Current (AC) per hour of Residential charge Level 2 AC 240 V 10 to 20 miles Residential per hour of and charge Commercial DC Fast Direct Current 480 V 60 to 80 miles (DC) per 20 min.
    [Show full text]
  • Electric Drive Vehicles and Their Infrastructure Issues (March 2010)
    U.S. Department of Energy’s Vehicle Technologies Program - Clean Cities Webinar – Electric Drive Vehicles and Their Infrastructure Issues (March 2010) Jim Francfort and Don Karner Advanced Vehicle Testing Activity March 24, 2010 This presentation does not contain any proprietary or sensitive information Presentation Outline • AVTA Background and Testing • Regulations, Codes & Standards • OSHA, National Electric Code, UL, SAE • Permitting • Industry Status • BEV, EREV, PHEV, HEV technologies • Capital & Fuel Costs per Mile • BEV & PHEV Announcements • Smart Charging • Fleet Infrastructure • Acknowledgement & Questions 2 AVTA Background and Goals • Background – The Advanced Vehicle Testing Activity (AVTA) is part of DOE’s Vehicle Technologies Program – The Idaho National Laboratory (INL) and Electric Transportation Engineering Corporation (ETEC) conduct the AVTA per DOE guidance • The AVTA goals: – Provide benchmark data to technology modelers, research and development programs, vehicle manufacturers (via VSATT), and target and goal setters – Assist fleet managers in making informed early adaptor vehicle purchase, deployment and operating decisions 3 AVTA Testing Process • Testing includes: – Baseline performance via closed test tracks and dynamometers – Accelerated testing uses dedicated drivers to accumulate high mileage in compressed times – Fleet testing allows large numbers of vehicles to be tested in many environments / missions at low cost – Battery testing when appropriate at new and new of life • Different testing methods are used
    [Show full text]
  • Hybrid Electric Vehicles: a Review of Existing Configurations and Thermodynamic Cycles
    Review Hybrid Electric Vehicles: A Review of Existing Configurations and Thermodynamic Cycles Rogelio León , Christian Montaleza , José Luis Maldonado , Marcos Tostado-Véliz * and Francisco Jurado Department of Electrical Engineering, University of Jaén, EPS Linares, 23700 Jaén, Spain; [email protected] (R.L.); [email protected] (C.M.); [email protected] (J.L.M.); [email protected] (F.J.) * Correspondence: [email protected]; Tel.: +34-953-648580 Abstract: The mobility industry has experienced a fast evolution towards electric-based transport in recent years. Recently, hybrid electric vehicles, which combine electric and conventional combustion systems, have become the most popular alternative by far. This is due to longer autonomy and more extended refueling networks in comparison with the recharging points system, which is still quite limited in some countries. This paper aims to conduct a literature review on thermodynamic models of heat engines used in hybrid electric vehicles and their respective configurations for series, parallel and mixed powertrain. It will discuss the most important models of thermal energy in combustion engines such as the Otto, Atkinson and Miller cycles which are widely used in commercial hybrid electric vehicle models. In short, this work aims at serving as an illustrative but descriptive document, which may be valuable for multiple research and academic purposes. Keywords: hybrid electric vehicle; ignition engines; thermodynamic models; autonomy; hybrid configuration series-parallel-mixed; hybridization; micro-hybrid; mild-hybrid; full-hybrid Citation: León, R.; Montaleza, C.; Maldonado, J.L.; Tostado-Véliz, M.; Jurado, F. Hybrid Electric Vehicles: A Review of Existing Configurations 1. Introduction and Thermodynamic Cycles.
    [Show full text]
  • Extreme Hybrid™, XH™, XH150™, XH250™, Fast Energy™, Fast Energy Storage™, Powered by XH™, Just Plug It In™ Are Trademarks Pending of AFS Trinity Power Corporation
    1 Extreme Hybrid™, XH™, XH150™, XH250™, Fast Energy™, Fast Energy Storage™, Powered by XH™, Just Plug It In™ are trademarks pending of AFS Trinity Power Corporation. © 2007 AFS Trinity Power Corporation. The First Hybrid that Will Pay for Itself The Extreme Hybrid™ Drive Train by AFS Trinity. Above: Schematic of Power Electronics & Controls of XH™ Drive Train from AFS Trinity Patent Filings, September 14, 2006. The low-cost lithium batteries—protected from excessive resistive heating by the ultracapacitors— will make the XH-150™ much less expensive to purchase. In addition, its much greater fuel economy and extremely low maintenance will make it much less expensive to operate. Consequently, the XH™ drive train will, for the first time, make it possible for hybrid cars to pay for themselves. 2 2 Extreme Hybrid™, XH™, XH150™, XH250™, Fast Energy™, Fast Energy Storage™, Powered by XH™, Just Plug It In™ are trademarks pending of AFS Trinity Power Corporation. © 2007 AFS Trinity Power Corporation. XH-150™ Consumer Payback Analysis 4 + Major Dividends to Business and Labor Cumulative savings with gas $40,000 @ $5.00/gal & electricity @ $0.10/kWh ($37,628) $35,000 Payback est. in 3.5 years @ $2.85/gal $30,000 Cumulative savings with $25,000 Payback est. in gas @ $2.85/gal & 2.5 years @ $5.00/gal electricity @ $0.06/kWh $20,000 ($22,956) $15,000 $8,666 drive train $10,000 price premium Cumulative Operating Savings Cumulative $5,000 $4,666 price premium $- (reflects est. $4,000 of 1 2 3 4 5 6 7 8 9 10 hybrid tax incentives) 1.
    [Show full text]
  • ICOM North American LLC Comments
    DOCKETED Docket 16-ALT-02 Number: Project Title: 2017-2018 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program TN #: 214418 Document Title: ICOM North American LLC Comments: alt-fuel near zero engines and alt- fuel hybrids Description: N/A Filer: System Organization: ICOM North American LLC Submitter Role: Public Submission 11/7/2016 4:47:41 PM Date: Docketed Date: 11/7/2016 Comment Received From: jon vanbogart Submitted On: 11/7/2016 Docket Number: 16-ALT-02 alt-fuel near zero engines and alt-fuel hybrids Additional submitted attachment is included below. November 7, 2016 California Energy Commission 1516 Ninth Street Sacramento, CA 95814 Re: Comments on the 2017-2018 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program Dear California Energy Commissioners and Staff, ICOM North America LLC values the opportunity to provide comments on the 2017-2018 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP). While we support the Energy Commission goals and investment in advanced transportation technologies to advance petroleum reduction goals and reduce emission for the State’s climate change initiatives. Near Zero – Lower NOx Engines and Alternative Fuel Hybrid Technology ICOM has provided sustainable fleets solutions for Propane-Autogas since 2004 with over 150 EPA certification covering more than 1000 vehicle platforms. As part of our 2017 strategy and beyond, ICOM will be offering CARB Certified Near Zero - Lower NOx engine technology for both Propane-AutoGas and CNG at or near the 0.02 NOx level for vehicle platforms above 14001 GVWR for both the Ford 6.8L and GM 6.0L engines.
    [Show full text]
  • Fuel Economy of Plug-In Hybrid Electric and Hybrid Electric Vehicles: Effects of Vehicle Weight, Hybridization Ratio and Ambient Temperature
    UC Riverside 2020 Publications Title Fuel Economy of Plug-In Hybrid Electric and Hybrid Electric Vehicles: Effects of Vehicle Weight, Hybridization Ratio and Ambient Temperature Permalink https://escholarship.org/uc/item/4z12798n Journal World Electric Vehicle Journal, 11(2) ISSN 2032-6653 Author Jung, Heejung Publication Date 2020-03-31 DOI 10.3390/wevj11020031 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Article Fuel Economy of Plug-In Hybrid Electric and Hybrid Electric Vehicles: Effects of Vehicle Weight, Hybridization Ratio and Ambient Temperature Heejung Jung 1,2 1 Department of Mechanical Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA; [email protected] 2 College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507, USA Received: 10 December 2019; Accepted: 29 March 2020; Published: 31 March 2020 Abstract: Hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) are evolving rapidly since the introduction of Toyota Prius into the market in 1997. As the world needs more fuel-efficient vehicles to mitigate climate change, the role of HEVs and PHEVs are becoming ever more important. While fuel economies of HEVs and PHEVs are superior to those of internal combustion engine (ICE) powered vehicles, they are partially powered by batteries and therefore they resemble characteristics of battery electric vehicles (BEVs) such as dependence of fuel economy on ambient temperatures. It is also important to understand how different extent of hybridization (a.k.a., hybridization ratio) affects fuel economy under various driving conditions.
    [Show full text]