Petrology and Petrogenesis of the Bokan Granite Complex, Southeastern Alaska

Total Page:16

File Type:pdf, Size:1020Kb

Petrology and Petrogenesis of the Bokan Granite Complex, Southeastern Alaska Petrology and petrogenesis of the Bokan Granite Complex, southeastern Alaska TOMMY B. THOMPSON ) JOHN R. PIERSON > Department of Earth Resources, Colorado State University, Fort Collins, Colorado 80523 THOMAS LYTTLE ) ABSTRACT rite, and biotite quartz monzonite extending Granite Complex at the Universite des over a much larger area (MacKevett, 1963). Sciences et Techniques du Languedoc (Ber- The Bokan Granite Complex is a peralka- nard Collot, 1981, personal commun.). line ring-dike complex emplaced into marine PREVIOUS WORK shales, volcanic flows and tuffs, and plu- REGIONAL SETTING tonic rocks. Mineralogically and chemi- Published accounts of regional geology cally, the Complex is composed of I-type from shoreline reconnaissance by Budding- The stratigraphic section in the Bokan granites. Aegirine- and riebeckite-bearing ton and Chapin (1929) provide the earliest Mountain area consists of deep marine sed- granite aplites, porphyries, and pegmatites attempts to establish regional stratigraphy iments, volcanic flows and tuffs, and upper comprise twelve distinct intrusive episodes. and tectonic setting in southeastern Alaska. reefal limestone formations that developed The aegirine-bearing rocks occur in an outer MacKevett (1963) first mapped the Bokan in a eugeosynclinal setting with island-arc annular zone formed during early crystal- Mountain area after uranium was discov- volcanic sources. The formations exhibit lization. Subsequent rocks are riebeckite- ered there in 1955. Lanphere and others rapid facies changes and, when considered bearing, due to devolatilization of the (1964) published radiometric dates on min- in conjunction with the volcanic systems, magma chamber during a collapse-ring- eral separates from several intrusive phases. reflect a belt of continued tectonic ad- dike emplacement event. Early crystalliza- Churkin and Eberlein (1977) made detailed justment. tion of alkali feldspar occurred during mag- studies of stratigraphic sequences in south- Rhyolitic volcanism is thought by Chur- ma ascension from a lower crustal-upper eastern Alaska and interpreted the regional kin and Eberlein (1977) to have been gener- mantle source. At shallow depths, subsolvus setting in a plate-tectonic sense. Hudson ated along a westward-dipping subduction crystallization allowed microcline and albite (1979) defined five major plutonic belts zone. Older volcanic arcs to the west con- to dominate. Local bodies of aegirine syen- formed in southeastern Alaska during verged on the shallow ocean basins to the ite were formed during the early collapse- Mesozoic plate convergence. Staatz (1978) east. Alkaline volcanism developed during ring-dike emplacement, in response to the provided detailed mineralogical and geo- subduction in response to vertical uplift magma devolatilization. The riebeckite gran- chemical data on the I and L vein system on rather than to tension. Pitcher (1979) char- ites reflect lower PQ2 and possibly declining the east-central margin of the Bokan Gran- acterized such volcanic-plutonic systems as peralkalinity. ite Complex. The present authors com- including I-type granitoid and basic bath- The granitic rocks at Bokan all exhibit pleted detailed field and laboratory studies oliths feeding volcanic vents. The mixed NajO contents greater than K2O. Litho- of the Bokan Granite Complex as part of a basaltic, andesitic, and sodic rhyolites seen phile elements are concentrated in all the contract with Bendix Field Engineering on Prince of Wales and surrounding islands rocks, especially in zones where hydrother- Corporation (BFEC Subcontract No. 78- lend credence to such interpretation. 245-E) during 1978-1979. This paper sum- mal albite and chlorite formed. Rb/Sr Magmatic activity occurred throughout marizes the petrology-petrogenesis of the ratios increase in progressively younger much of southeastern Alaska during Meso- Bokan Granite Complex, part of a major rocks in the Complex. Agpaitic ratios vary zoic time (Hudson, 1979). MacKevett alkaline province in southeastern Alaska from 0.92 to 2.08 for the granitic rocks. (1963) and Lanphere and others (1964) only poorly defined to date. Two M.S. reported Triassic-Jurassic ages for the theses (Pierson, 1980; Lyttle, in progress) LOCATION Bokan Granite. have extended the data base beyond the contract report (Thompson and others, Country Rock The Bokan Granite Complex is located in 1980). One additional M.S. thesis is in pro- southeastern Alaska, approximately 60 km The Bokan Granite Complex intrudes gress on the I and L vein system at the Uni- south-southwest of Ketchikan (Fig. 1), near metasedimentary, metavolcanic, and plu- versity of Alaska (Dave Gaard, 1981, the southern end of Prince of Wales Island. tonic rocks. Along the western and southern personal commun.). A Ph.D. dissertation is The Complex extends over an area of 28.5 margins of the complex, graphitic slates are also currently in progress on the Bokan km2, with diorite, quartz diorite, granodio- the country rock, but elsewhere metavol- Geological Society of America Bulletin, v. 93, p. 898-908, 10 figs., 2 tables, September 1982. 898 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/93/9/898/3444739/i0016-7606-93-9-898.pdf by guest on 02 October 2021 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/93/9/898/3444739/i0016-7606-93-9-898.pdf by guest on 02 October 2021 900 THOMPSON AND OTHERS canic and plutonic rocks are in contact with ring-dike emplacement through time (Fig. feldspar (Fig. 4A). Quartz-rich feldspar the Complex. By far the most common of 2). The ring dikes extend through an arc of aplite with average grain size less than 1 mm the latter group is a biotite quartz monzo- as much as 100 degrees. Rock types are dis- surrounds the pegmatite. The aplite also nite mass. In the east-central complex con- cussed in order from oldest to youngest. contains riebeckite prisms up to 6 mm in tact zone, the quartz monzonite has been Discussions include descriptive and chemi- length. There is no preferred crystal orienta- intruded by biotite-bearing aplite with cal data and distribution and style of tion, suggesting crystallization in a motion- quartz veins and pegmatites. emplacement of each rock type. less magma. The following discussion will focus on the Bokan Granite Complex emplacement-petro- Border Zone Pegmatite-Aplite Aegirine Granite Porphyry genesis. The border zone pegmatite-aplite is a dis- Aegirine granite porphyry is present as a BOKAN GRANITE COMPLEX continuously exposed rock unit (Figs. 2 and nearly continuous annular zone around the 3) along the outer contact of the Bokan outer part of the Bokan Granite Complex Introduction Granite Complex. It attains a maximum (Figs. 2 and 3). Maximum thickness of thickness of 13 m and gives way abruptly on aegirine-bearing rock is 180 m, and the The Bokan Granite Complex is a ring-dike its inner contact to aegirine granite por- inner contact of the porphyry occurs where system (Fig. 2) composed of twelve distinct phyry. The border zone contains pegmatitic a transition zone up to 15 m thick from intrusive rock types. The Complex exhibits a clots of coarsely crystalline (5 cm) aegirine aegirine- to riebeckite-bearing granite is progressively smaller diameter of collapse- and riebeckite prisms with quartz and alkali present. The inner contact of the porphyry ROCK UNI TS Riebeckite-aegirine aplite --Tìofg Felty-aegirine granite Fine-grained riebeckite "Rfrg granite porphyry Lamprophyre « a. EE E <3 "Rrg Riebeckite granite porphyry "Ras Aegirine syenite M Riebeckite aplite porphyry Fine-grained aegirine granite Aegirine granite porphyry Quartz-rich aegirine granite Aegirine aplitic granite 2 miles Border zone pegmatite-aplite 0 I 2 km Country rock Figure 2. Generalized geologic map of the Bokan Granite Complex, southeastern Alaska. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/93/9/898/3444739/i0016-7606-93-9-898.pdf by guest on 02 October 2021 A. B. Southeast Northwest Southeast Northwest Riebeckite Aplite Border Figure 3. Diagrammatic cross sections illustrating emplacement history of the Bokan Granite Complex. See text for discussion of A, B, C, and D. c. a. Granite Northwest •Northwest Southeast Southeast aegirine Aplite Present surface Figure 4. A. Border-zone pegmatite-aplite with riebeckite (r)-aegirine (a) crystal clusters in an aplitic quartz, riebeckite, and feldspar matrix. B. Photograph of three varieties of aegirine granite: fine grained (b-1), aegirine granite porphyry (3-56), and quartz-rich aegirine granite (b-6). q = quartz, a = aegirine. C. Photograph of riebeckite aplite porphyry with flow-oriented riebeckite. D. Photograph of aegirine syenite (Ku.-1-41) and aegirine granite porphyry (3-56). Note the absence of quartz (q) phenocrysts in the syenite. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/93/9/898/3444739/i0016-7606-93-9-898.pdf by guest on 02 October 2021 902 THOMPSON AND OTHERS Figure 5. A. Photograph of riebeckite granite porphyry (3-68) and aegirine granite porphyry (bK-78-19). Paragenetically early riebeckite (r) and late aegirine (a) are shown in respective samples, q = quartz. B. Photograph of riebeckite granite porphyry (b-8) contrasted with fine-grained riebeckite granite porphyry (b-5). Note the quartz (q) and riebeckite (r) phenocrysts in the riebeckite granite porphyry and the "pepper-like" nature of the fine riebeckite and the microcline (m) phenocrysts in the fine-grained riebeckite granite porphyry. C. Photograph of the aegirine granite porphyry (bK-78-19) and felty aegirine granite (a-7). The fine needle-like habit in the felty aegirine granite is compared to the dark interstitial aggregates of aegirine in the aegirine granite porphyry. D. Photograph of riebeckite-aegirine aplite (b-3). Note the euhedral dark prisms of riebeckite. is shown in Figure 2, where riebeckite is the monazite, muscovite, and fluorite form the bearing rocks is exposed only in diamond only alkali ferromagnesian mineral present accessory minerals. The muscovite occurs drill core. No preferred crystal orientation toward the center of the complex. only as inclusions within microperthite. was seen in the aegirine granite porphyries.
Recommended publications
  • Riebeckite Na2[(Fe2+,Mg)3Fe 2 ]Si8o22(OH)
    2+ 3+ Riebeckite Na2[(Fe ; Mg)3Fe2 ]Si8O22(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: As prismatic crystals, to 20 cm. Commonly ¯brous, asbestiform; earthy, massive. Twinning: Simple or multiple twinning 100 . k f g Physical Properties: Cleavage: Perfect on 110 , intersecting at 56 and 124 ; partings f g ± ± on 100 , 010 . Fracture: [Conchoidal to uneven.] Tenacity: Brittle. Hardness = 6 f g f g D(meas.) = 3.28{3.44 D(calc.) = 3.380 Optical Properties: Semitransparent. Color: Black, dark blue; dark blue to yellow-green in thin section. Luster: Vitreous to silky. Optical Class: Biaxial (+) or ({). Pleochroism: X = blue, indigo; Y = yellowish green, yellow- brown; Z = dark blue. Orientation: Y = b; X c = 8 to 7 ; Z c = 6 {7 . Dispersion: ^ ¡ ± ¡ ± ^ ± ± Strong. ® = 1.656{1.697 ¯ = 1.670{1.708 ° = 1.665{1.740 2V(meas.) = 50±{90±. Cell Data: Space Group: C2=m: a = 9.822 b = 18.07 c = 5.334 ¯ = 103:52± Z = 2 X-ray Powder Pattern: Doubrutscha [Dobrudja], Romania. (ICDD 19-1061). 8.40 (100), 3.12 (55), 2.726 (40), 2.801 (18), 4.51 (16), 2.176 (16), 3.27 (14) Chemistry: (1) (2) (1) (2) SiO2 52.90 50.45 CaO 0.12 0.08 TiO2 0.57 0.14 Li2O 0.54 Al2O3 0.12 1.96 Na2O 6.85 6.80 Fe2O3 17.20 17.52 K2O 0.03 1.48 Cr2O3 0.04 F 2.58 + FeO 17.95 17.90 H2O 0.87 MnO 0.00 1.40 O = F 1.09 ¡ 2 MgO 2.96 0.05 Total 98.74 100.68 (1) Dales Gorge Iron Formation, Western Australia; by electron microprobe, corresponds to 2+ 3+ (Na2:00Ca0:02K0:01)§=2:03(Fe2:26Mg0:66Ti0:06)§=2:98Fe1:95(Si7:98Al0:02)§=8:00O22(OH)2: (2) Pikes 2+ Peak area, Colorado, USA; corresponds to (Na2:02K0:29Ca0:01)§=2:32(Fe2:30Li0:33Mn0:18Al0:10 3+ Ti0:02Mg0:01)§=2:94Fe2:02(Si7:75Al0:25)§=8:00O22[F1:25(OH)0:89]§=2:14: Polymorphism & Series: Forms a series with magnesioriebeckite.
    [Show full text]
  • Kimberlites H3 RICHTERITE-ARFVEDSONITE
    Kimberlites References SVISERO, D.P.; Meyer, H.O.A. and Tsai, H.M. (1977) : FRAGOMENI, P.R.Z. (1976) : Tectonic control of Parana- Kimberlite minerals from Vargem ( Minas Gerais) tinga Kimberlitic Province, Boletim Nucleo and Redondao (Piaui) diatremes, and garnet Centro-Oeste Soc. Bras. Geol., 5,3-10. Iherzolite xenolith from Redondao diatreme. Goiania (in Portuguese). Revista Brasileira de Geociencias, 7, 1-13. SVISERO, D.P.; Haralayi, N.L.E. and Girardi, V.A.V. Sao Paulo. (1980) : Geology of Limeira 1, Limeira 2 and SVISERO, D.P.; Meyer, H.O.A, and Tsai, H.M. (1979b) : Indaia Kimberlites. Anais 31. Congresso Bra- Kimberlites in Brazil : An Initial Report. sileiro de Geologia, 3, 1789-1801. Camboriu, Proc. Second Intern. Kimberlite Conference, (in Portuguese). 1, 92-100. Amer. Geoph. Union, Washington. SVISERO, D.P.; Hasui, Y. and Drumond, D. (1979a) : Geo¬ logy of Kimberlites from Alto Paranaiba, Minas Gerais. Mineragao e Metalurgia, 42, 34-38. Rio de Janeiro ( in Portuguese). “ Research supported by Fapesp, CNPq and FINEP. H3 RICHTERITE-ARFVEDSONITE-RIEBECKITE-ACTINOLITE ASSEMBLAGE FROM MARID DIKES ASSOCIATED WITH ULTRAPOTASSIC MAGMATIC ACTIVITY IN CENTRAL WEST GREENLAND Peter THY f ^ Nordic Volcanological Institute University of Iceland, 101 Reykjavik, Iceland. Present address: Programs in Geosciences, The University of Texas at Dallas, P.O. Box 688, Richardson, Texas 75080 U.S.A. Introduction Crystal chemistry of the alkali amphiboles Dawson & Smith (1977) proposed that a mica- The amphibole chemistry is calculated according to amphibole-rutile-ilmenite-diopside (MARID) suite of the general formula AQ_jB2C5^Tg'^022(OH)2* Estimation xenoliths in kimberlites were cumulates from a highly of Fe3+ shows the main part of the amphiboles to con¬ oxidized kimberlitic magma in the upper part of the tain excess cations for charge balance.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Identification Tables for Common Minerals in Thin Section
    Identification Tables for Common Minerals in Thin Section These tables provide a concise summary of the properties of a range of common minerals. Within the tables, minerals are arranged by colour so as to help with identification. If a mineral commonly has a range of colours, it will appear once for each colour. To identify an unknown mineral, start by answering the following questions: (1) What colour is the mineral? (2) What is the relief of the mineral? (3) Do you think you are looking at an igneous, metamorphic or sedimentary rock? Go to the chart, and scan the properties. Within each colour group, minerals are arranged in order of increasing refractive index (which more or less corresponds to relief). This should at once limit you to only a few minerals. By looking at the chart, see which properties might help you distinguish between the possibilities. Then, look at the mineral again, and check these further details. Notes: (i) Name: names listed here may be strict mineral names (e.g., andalusite), or group names (e.g., chlorite), or distinctive variety names (e.g., titanian augite). These tables contain a personal selection of some of the more common minerals. Remember that there are nearly 4000 minerals, although 95% of these are rare or very rare. The minerals in here probably make up 95% of medium and coarse-grained rocks in the crust. (ii) IMS: this gives a simple assessment of whether the mineral is common in igneous (I), metamorphic (M) or sedimentary (S) rocks. These are not infallible guides - in particular many igneous and metamorphic minerals can occur occasionally in sediments.
    [Show full text]
  • GLOSSARY Actinolite
    GLOSSARY Actinolite - One of six naturally-occurring asbestos minerals. It is not normally used commercially. Action Level - A level of airborne fibers specified by OSHA as a warning or alert level. It is 0.1 fibers per cubic centimeter of air, 8-hour time-weighted average, as measured by phase contrast microscopy. AHERA - Asbestos Hazard Emergency Response Act. Amended Water - Water to which surfactant has been added. Amosite - An asbestiform mineral of the amphibole group. It is the second most commonly used form of asbestos in the U.S. (brown asbestos). Amphibole - One of the two major groups of minerals from which the asbestiform minerals are derived; distinguished by their chain-like crystal structure and chemical composition. Amosite and crocidoIite are examples of amphibole minerals. Anthophyllite - One of six naturally-occurring asbestos minerals. It is of limited commercial value. Asbestos - A generic name given to a number of naturally-occurring hydrated mineral silicates that possess a unique crystalline structure, are incombustible in air, and are separable into fibers. Asbestos includes the asbestiform varieties of chrysatile (serpentine), crocidolite (riebeckite), amosite (cummingtonite-grunerite), anthophyllite, actinolite, and tremolite. Asbestos Bodies - Coated asbestos fibers often seen in the lungs of asbestos-exposure victims. Asbestos-Containing Building Material (ACBM) - Surfacing ACM, thermal system insulation ACM, or miscellaneous ACM that is found in or on interior structural members or other parts of a school building (AHERA definition). Asbestos-Containing Material (ACM1) - Any material or product which contains more than 1 percent asbestos (AHERA definition). Asbestosis - A scarring CD the lungs caused by exposure to asbestos. Continued exposure may lead to degeneration of lung function and death.
    [Show full text]
  • Bulletin 65, the Minerals of Franklin and Sterling Hill, New Jersey, 1962
    THEMINERALSOF FRANKLINAND STERLINGHILL NEWJERSEY BULLETIN 65 NEW JERSEYGEOLOGICALSURVEY DEPARTMENTOF CONSERVATIONAND ECONOMICDEVELOPMENT NEW JERSEY GEOLOGICAL SURVEY BULLETIN 65 THE MINERALS OF FRANKLIN AND STERLING HILL, NEW JERSEY bY ALBERT S. WILKERSON Professor of Geology Rutgers, The State University of New Jersey STATE OF NEw JERSEY Department of Conservation and Economic Development H. MAT ADAMS, Commissioner Division of Resource Development KE_rr_ H. CR_V_LINCDirector, Bureau of Geology and Topography KEMBLEWIDX_, State Geologist TRENTON, NEW JERSEY --1962-- NEW JERSEY GEOLOGICAL SURVEY NEW JERSEY GEOLOGICAL SURVEY CONTENTS PAGE Introduction ......................................... 5 History of Area ................................... 7 General Geology ................................... 9 Origin of the Ore Deposits .......................... 10 The Rowe Collection ................................ 11 List of 42 Mineral Species and Varieties First Found at Franklin or Sterling Hill .......................... 13 Other Mineral Species and Varieties at Franklin or Sterling Hill ............................................ 14 Tabular Summary of Mineral Discoveries ................. 17 The Luminescent Minerals ............................ 22 Corrections to Franklln-Sterling Hill Mineral List of Dis- credited Species, Incorrect Names, Usages, Spelling and Identification .................................... 23 Description of Minerals: Bementite ......................................... 25 Cahnite ..........................................
    [Show full text]
  • Mineralogy and Petrology of the Amazonite Pegmatite at Bakstevalåsen, Øvre Eiker
    Master Thesis, Department of Geosciences Mineralogy and petrology of the amazonite pegmatite at Bakstevalåsen, øvre Eiker Øyvind Sunde Mineralogy and petrology of the amazonite pegmatite at Bakstevalåsen, øvre Eiker Øyvind Sunde Master Thesis in Geosciences Discipline: Geology Department of Geosciences Faculty of Mathematics and Natural Sciences University of Oslo July 2013 © Øyvind Sunde, 2013 Supervised by associate prof. Rune S. Selbekk and prof. Tom Andersen Cover picture: Hand specimen of the amazonite pegmatite at Bakstevalåsen measuring a 15 cm cross-section with amazonite matrix and abundant danalite. This work is published digitally through DUO – Digitale Utgivelser ved UiO http://www.duo.uio.no It is also catalogued in BIBSYS (http://www.bibsys.no/english) All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Acknowledgements This thesis marks the end of a 5 –year period of time with relentless studies at the Department of Geosciences, University of Oslo. There are many people I have met during this 5-year ride who in various ways have contributed in shaping my interest for geology. I have never, ever, regretted my decision on setting sail onto this journey. You all know who you are and a huge thank you! My thesis would not have been possible without the help of several clever individuals, and I would like to aim a special appreciation to the following personnel: Rune Selbekk: first of all, thank you for letting me volunteer at the natural History Museum during my infant years of studying. It brought more geology into a curriculum diluted with meteorology and philosophy.
    [Show full text]
  • Exsolution of Cummingtonite from Glaucophane: a New Orientation For
    American Mineralogist, Volume 76, pages 971-984, 1991 Exsolution of cummingtonitefrom glaucophane:A new orientation for exsolution lamellae in clinoamphiboles EugeneA. Smelik,David R. Veblen Department of Earth and Planetary Sciences,The Johns Hopkins University, Baltimore, Maryland 21218, U.S.A. Arsrnlcr Samples of glaucophane from eclcgite assemblagesin northern Vermont have been studied using transmission and analytical electron microscopy (TEM, AEM). The results show that the glaucophaneis exsolved on a submicroscopicscale and contains abundant lamellae of cummingtonite. AEM analyses indicate that the present pair of coexisting sodic-ferromagnesianamphiboles differs significantly from all previously reported pairs and representsthe first report of coexistingglaucophane-cummingtonite from normal eclo- gitic assemblages. The lamellae are disc shapedand are coherently intergrown with the host. They occur in two symmetrically related orientations, nearly parallel to (281) and (28I) planes of the host. Optimal phaseboundary calculationsindicate that theseorientations representplanes of best dimensional fit between the glaucophaneand cummingtonite lattices. This orien- tation differs significantly from previously reported lamellar orientations for monoclinic amphiboles,which generallyoccur nearlyparallel to (I0l) and (100) planesfor the C2/m unit-cell seltins. INrnooucrroN tation for exsolution lamellae in monoclinic amphiboles, rationalized by optimal phase boundary During the last two decades,there has been a consid- which can be erable
    [Show full text]
  • SIGNIFICANCE of RIEBECKITE and FERROHASTINGSITE in MICROPERTHITE GRANITES Peur, C
    American Mineralooist Vol. 57, pp. 1404-1412 (1972\ SIGNIFICANCE OF RIEBECKITE AND FERROHASTINGSITE IN MICROPERTHITE GRANITES Peur, C. Lvous, Boston Uniuers'ity,College ol Basic Studies,Boston, Massachusetts02215 Arsrnecn Riebeckite and ferrohastingsite occur separately in closely related hypersolvus granites of eastern Massachusetts. Mineralogical, chemical, and phase equilibria data suggest that, the Quincy riebeckite granite and the Peabody ferrohastingsite granite crystallized at similar temperatures, most, likely 6b0-750"C. The chemical composition of the parent magma and oxygen fugacity played important rolbs in determining the composition of the amphibole. Parent composition favored a calcium-iron-aluminum amphibole, ferrohastingsite, NaCazFer+rFd+AlzSiOzs(OH):, in the Peabody, and a soda-iron amphibole, riebeckite, NazFeF+sFd+zSi8O22(OH)2, in the Quincy. Higher oxygen fugacities favored the ferric-rich amphibole, in the Quincy; lower oxygen fugacities favored the ferric-poor arrphibole, ferrohastingsite, in the Peabody. Mineral relations in the Quincy suggest,an increase in oxygen fugacity with decrease in temperature. Two new chemical analyses, one of the Quincy granite riebeckite and one of the Peabody granite ferrohastingsite, are reported. INrnooucrrox Riebeckite (or arfvedsonite)and ferrohastingsiteare found in one- feldspar granites of Nigeria, New Hampshire, and eastern Massa- chusetts.The riebeckiteand ferrohastingsitegranites typically occur in separateplutons. In New Harnpshireand Massachusetts,a small amountof riebeckitegranite is assoeiatedwith ferrohastingsitegranite in the same pluton. The Quincy and Peabodygranites of easternMassachusetts will be usedto addressthe problem of the spatial independenceof riebeckite and ferrohastingsite.New chemicaldata are presentedfor the Quincy riebeckiteand the Peabodyferrohastingsite. This paper will attempt to explain the field relations of these amphibolesin light of their chemistry, mineralogiial and whole-rock chemical data, and phase equilibriastudies.
    [Show full text]
  • Amphibole and Pyroxene Development in Fenite From
    Conadian Mineralogist YoI.22, pp. 281-295(1984) AMPHIBOLEAND PYROXENEDEVELOPMENT IN FENITEFROM CANTLEY, OUEBEC* DONALD D. HOGARTH Ottawa-CarletonCentre for GeoscienceStudies, University of Ottowa,Ottawa, Ontorio KIN 6Ns PIERRE LAPOINTE Earth PhysicsBranch, Department of Energy,Mines and Resources,Ottawa, Ontario KIA 0Y3 ABSTRAcT l'h€denbergite,I'aegyrine tardive, le diopside.L'aegyrine tardivese d6veloppe lors dela croissancedes oxydes de fer Proterozoic fenites near Cantley, Quebec, formed from et de titane. Lespyriboles sodiques qui Cvoluentdans un biotite gneiss and hypersthene-augite gneiss by systbmeouvert tels ceux des f€nites de Cantley,definissent metasomatism possibly related to carbonatite, are descourbes dans les diaglammesde variation chimique; characterized by magnesio-arfvedsonite, magnesio- par contre,ceux d'un systdmeclos ont tendancei segrou- riebeckite and aegirine. The ratio Ca,/(Ca+Na+K) per, et ceuxqui proviennentde protolithes de composition decreasesfrom older to younger pyriboles. In maguesio- chimiquevariable montrent, ind6pendamment du systdme, arfvedsonite, the ratio Fe1/@e1+Mg) first increasesand une distributional6atoire. then decreases,but K remains constant with respectto Na and Ca. Magnesio-riebeckite,replacing cummingtonite or Mots-clds: f6nite, magndsio-arfvedsonite,magnCsio- hypersthene, shows a trend similar to that of magnesio- riebeickite,aegyrine, m€tasomatisme, variations chimi- arfvedsonite but is notably depleted in K and F. In ques,oxydation, graben Ottawa - Bonnechbre,Qu6bec. magnesio-arfvedsonite,and possibly magnesio-riebeckite, the-A sites are progressivelyfilled. Na-amphibole and Na- INTRoDUcToN pyroxene, in the same hand specimen, are approximately coeval. Early aegirine substitutesfor the hedenbergiteend- The chemical trends illustrated by Na-amphibole member, and later aegirine, for tle diopside end-member. and Na-pyroxene from fenite have not been clearly Iate aegirineis contenporaneouswith major growth of @e, defined.
    [Show full text]
  • Amphibole and Pyroxene Development in Fenite From
    Conadian Mineralogist YoI.22, pp. 281-295(1984) AMPHIBOLEAND PYROXENEDEVELOPMENT IN FENITEFROM CANTLEY, OUEBEC* DONALD D. HOGARTH Ottawa-CarletonCentre for GeoscienceStudies, University of Ottowa,Ottawa, Ontorio KIN 6Ns PIERRE LAPOINTE Earth PhysicsBranch, Department of Energy,Mines and Resources,Ottawa, Ontario KIA 0Y3 ABSTRAcT l'h€denbergite,I'aegyrine tardive, le diopside.L'aegyrine tardivese d6veloppe lors dela croissancedes oxydes de fer Proterozoic fenites near Cantley, Quebec, formed from et de titane. Lespyriboles sodiques qui Cvoluentdans un biotite gneiss and hypersthene-augite gneiss by systbmeouvert tels ceux des f€nites de Cantley,definissent metasomatism possibly related to carbonatite, are descourbes dans les diaglammesde variation chimique; characterized by magnesio-arfvedsonite, magnesio- par contre,ceux d'un systdmeclos ont tendancei segrou- riebeckite and aegirine. The ratio Ca,/(Ca+Na+K) per, et ceuxqui proviennentde protolithes de composition decreasesfrom older to younger pyriboles. In maguesio- chimiquevariable montrent, ind6pendamment du systdme, arfvedsonite, the ratio Fe1/@e1+Mg) first increasesand une distributional6atoire. then decreases,but K remains constant with respectto Na and Ca. Magnesio-riebeckite,replacing cummingtonite or Mots-clds: f6nite, magndsio-arfvedsonite,magnCsio- hypersthene, shows a trend similar to that of magnesio- riebeickite,aegyrine, m€tasomatisme, variations chimi- arfvedsonite but is notably depleted in K and F. In ques,oxydation, graben Ottawa - Bonnechbre,Qu6bec. magnesio-arfvedsonite,and possibly magnesio-riebeckite, the-A sites are progressivelyfilled. Na-amphibole and Na- INTRoDUcToN pyroxene, in the same hand specimen, are approximately coeval. Early aegirine substitutesfor the hedenbergiteend- The chemical trends illustrated by Na-amphibole member, and later aegirine, for tle diopside end-member. and Na-pyroxene from fenite have not been clearly Iate aegirineis contenporaneouswith major growth of @e, defined.
    [Show full text]
  • Riebeckite Syenite from Idamakallu-Racherla, Kurnool Dist
    RIEBECKITE SYENITE FROM IDAMAKALLU- RACHERLA, KURNOOL DIST., ANDHRA PRADESH BY B. SOMASEKAR,B. S. MACHIGAD AND C. NAGANNA (Department of Geology, Karnatak University, Dharwar) Received February 8, 1966 (Communicated by Dr. B. P. Radhakrishna, r.^.sc.) ABSTRACT The study of the riebeckite syenite from Idamakallu-Racherla area shows interesting textural and microstructural features. Based on the petrographical and petrochemical evidence, it is surmisedthat a rock, which was originally a hornblende syenite, has been transformed into riebeckite syenite through soda-metasomatism. The way in which the mineral transformations took place and the secondary minerals have developed is discussed. INTRODUCTION THE occurrence of porphyritic syenite has been reported from Idamakallu- Racherla area (1.at. 15 ° 15',~Long. 79 ° 5'), Kurnool District, by King (1872, p. 244). Petrological account of this rock however is not available. The presence of riebeckite as one of the predominating minerals, with characteristic textural and microstructural features, is of interest and hence, a detailed petrological account of this rock is presented here. GEOLOGICAL SETTING The country rocks with which this syenite is associated belong to the Cumbum stage of Nallamalai series, Cuddapah system. The terrain around Idamakallu and Racherla is a plain country, mostly made up of black cotton soil with a few rock exposures. Almost breaking through the monotony of the plain landscape, two rock masses project out, one near the village Idamakallu and another near Racherla. The rock mass adjacent to Idama- kallu is fresh looking with brownish-black eolour and stands up as a mound 50 metres high. The Racheda exposure, a mound is about 20 metres above ground level, is more altered and has a bluish-black colour.
    [Show full text]