Fluid Mechanics of Liquid Metal Douglas H. Kelley Batteries Department of Mechanical Engineering, University of Rochester, The design and performance of liquid metal batteries (LMBs), a new technology for grid- Rochester, NY 14627 scale energy storage, depend on fluid mechanics because the battery electrodes and elec- e-mail:
[email protected] trolytes are entirely liquid. Here, we review prior and current research on the fluid mechanics of LMBs, pointing out opportunities for future studies. Because the technology Tom Weier in its present form is just a few years old, only a small number of publications have so far Institute of Fluid Dynamics, considered LMBs specifically. We hope to encourage collaboration and conversation by Helmholtz-Zentrum Dresden-Rossendorf, referencing as many of those publications as possible here. Much can also be learned by Bautzner Landstr. 400, linking to extensive prior literature considering phenomena observed or expected in Dresden 01328, Germany LMBs, including thermal convection, magnetoconvection, Marangoni flow, interface e-mail:
[email protected] instabilities, the Tayler instability, and electro-vortex flow. We focus on phenomena, materials, length scales, and current densities relevant to the LMB designs currently being commercialized. We try to point out breakthroughs that could lead to design improvements or make new mechanisms important. [DOI: 10.1115/1.4038699] 1 Introduction of their design speed, in order for the grid to function properly. Changes to any one part of the grid affect all parts of the grid. The The story of fluid mechanics research in LMBs begins with implications of this interconnectedness are made more profound one very important application: grid-scale storage.