Subliminal Channels in High-Speed Signatures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Etsi Gr Qsc 001 V1.1.1 (2016-07)
ETSI GR QSC 001 V1.1.1 (2016-07) GROUP REPORT Quantum-Safe Cryptography (QSC); Quantum-safe algorithmic framework 2 ETSI GR QSC 001 V1.1.1 (2016-07) Reference DGR/QSC-001 Keywords algorithm, authentication, confidentiality, security ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. -
Algebraic Cryptanalysis of Hidden Field Equations Family
MASARYK UNIVERSITY FACULTY OF INFORMATICS Algebraic cryptanalysis of Hidden Field Equations family BACHELOR'S THESIS Adam Janovsky Brno, Spring 2016 Declaration I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Adam Janovský Advisor: prof. RNDr. Jan Slovák, DrSc. i Abstract The goal of this thesis is to present a Grobner basis as a tool for algebraic cryptanalysis. Firtst, the thesis shortly introduces asymmetric cryptography. Next, a Grobner basis is presented and it is explained how a Grobner basis can be used to algorithmic equation solving. Further, fast algorithm for the Grobner basis computation, the F4, is presented. The thesis then introduces basic variant of Hidden field equations cryptosystem and discusses its vulnerability to algebraic attacks from Grobner basis perspective. Finally, the thesis gives an overview of recent results in algebraic cryptanalysis of Hidden Field Equations and suggests parameters that could make the algebraical attacks intractable. ii Keywords Grobner basis, cryptanalysis, Hidden Field Equations, F4 iii Contents 1 Introduction 1 1.1 Notation 2 2 Preliminaries 3 2.1 Asymmetric cryptography 3 2.1.1 Overview 3 2.1.2 RSA 5 2.2 Grobner basis 7 2.3 Equation solving 14 3 F4 algorithm for computing a Grobner basis 19 4 Hidden Field Equations 27 4.1 Overview of HFE 27 4.1.1 Parameters of HFE 27 4.2 Encryption and Decryption 29 4.2.1 Encryption 29 4.2.2 Decryption 31 4.3 Public key derivation 32 5 Algebraic attacks on HFE 35 5.1 Algebraic attack for q = 2 35 5.2 Algebraic attack for odd q 37 6 Conclusions 41 Appendices 42 A SAGE code 43 B Grobner basis for q=ll 47 A" 1 Introduction The thesis studies algebraic attacks against basic variant of Hidden Field Equations (HFE) cipher. -
Building Secure Public Key Encryption Scheme from Hidden Field Equations
Hindawi Security and Communication Networks Volume 2017, Article ID 9289410, 6 pages https://doi.org/10.1155/2017/9289410 Research Article Building Secure Public Key Encryption Scheme from Hidden Field Equations Yuan Ping,1,2 Baocang Wang,1,3 Yuehua Yang,1 and Shengli Tian1 1 School of Information Engineering, Xuchang University, Xuchang 461000, China 2Guizhou Provincial Key Laboratory of Public Big Data, Guiyang 550025, China 3State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China Correspondence should be addressed to Baocang Wang; [email protected] Received 4 April 2017; Accepted 5 June 2017; Published 10 July 2017 Academic Editor: Dengpan Ye Copyright © 2017 Yuan Ping et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Multivariate public key cryptography is a set of cryptographic schemes built from the NP-hardness of solving quadratic equations over finite fields, amongst which the hidden field equations (HFE) family of schemes remain the most famous. However, the original HFE scheme was insecure, and the follow-up modifications were shown to be still vulnerable to attacks. In this paper, we propose 2 a new variant of the HFE scheme by considering the special equation =defined over the finite field F3 when =0,1. We observe that the equation can be used to further destroy the special structure of the underlying central map of the HFE scheme. It is shown that the proposed public key encryption scheme is secure against known attacks including the MinRank attack, the algebraic attacks, and the linearization equations attacks. -
THE END of CRYPTOGRAPHY AS WE KNOW IT ABOUT ISARA About ISARA
THE END OF CRYPTOGRAPHY AS WE KNOW IT ABOUT ISARA About ISARA Founded in 2015, Consumers, ISARA is affiliated with governments and the rich academic and organizations should research ecosystem of benefit from the power Quantum Valley, a high- of quantum computing tech hub in Waterloo, without compromising Ontario, Canada data security. Founded Vision About ISARA We have a highly We’re building quantum experienced safe solutions, starting management team with with the launch of our backgrounds in wireless, ISARA Quantum encryption, security Resistant Toolkit. solutions, sales and standards/certification. Team Solutions 01 Threat 02 Solutions Standards 03 Quantum Computing Threat Cryptographic Challenges For A Post Quantum World Today’s security solutions rely on the complexity of the underlying mathematical problems that form the foundation for modern cryptographic systems. The massive processing capabilities found in quantum computers will challenge our current beliefs around complexity. When Does The Clock Run Out? Understanding the risks means balancing multiple factors. The answer depends on who you are, what secrets you need to keep and what the impact is if your secrets are no longer secrets. In some cases, it’s already too late. When Do You Need To Worry? Critical technologies Life of your secrets Key infrastructure Threat horizon Risk Value of your assets Assessment Ability to integrate tools Cost to defend $ Years To Quantum Y2Q: The scope of the change required is akin to Y2K. To do a risk management assessment, all protocols, clients and servers need an in-depth review. This requires coordination between vendors, OEMs and customers to catch all of the interactions. -
Post-Quantum Cryptography
Post-quantum cryptography Daniel J. Bernstein & Tanja Lange University of Illinois at Chicago; Ruhr University Bochum & Technische Universiteit Eindhoven 12 September 2020 I Motivation #1: Communication channels are spying on our data. I Motivation #2: Communication channels are modifying our data. I Literal meaning of cryptography: \secret writing". I Achieves various security goals by secretly transforming messages. I Confidentiality: Eve cannot infer information about the content I Integrity: Eve cannot modify the message without this being noticed I Authenticity: Bob is convinced that the message originated from Alice Cryptography with symmetric keys AES-128. AES-192. AES-256. AES-GCM. ChaCha20. HMAC-SHA-256. Poly1305. SHA-2. SHA-3. Salsa20. Cryptography with public keys BN-254. Curve25519. DH. DSA. ECDH. ECDSA. EdDSA. NIST P-256. NIST P-384. NIST P-521. RSA encrypt. RSA sign. secp256k1. Cryptography / Sender Receiver \Alice" \Bob" Tsai Ing-Wen picture credit: By =q府, Attribution, Wikimedia. Donald Trump picture credit: By Shealah Craighead - White House, Public Domain, Wikimedia. Daniel J. Bernstein & Tanja Lange Post-quantum cryptography2 Cryptography with symmetric keys AES-128. AES-192. AES-256. AES-GCM. ChaCha20. HMAC-SHA-256. Poly1305. SHA-2. SHA-3. Salsa20. I Literal meaning of cryptography: \secret writing". Cryptography with public keys Achieves various security goals by secretly transforming messages. BN-254I . Curve25519. DH. DSA. ECDH. ECDSA. EdDSA. NIST P-256. NIST P-384. Confidentiality: Eve cannot infer information about the content NISTI P-521. RSA encrypt. RSA sign. secp256k1. I Integrity: Eve cannot modify the message without this being noticed I Authenticity: Bob is convinced that the message originated from Alice Cryptography / Sender Untrustworthy network Receiver \Alice" \Eve" \Bob" I Motivation #1: Communication channels are spying on our data. -
Secure Authentication Protocol for Internet of Things Achraf Fayad
Secure authentication protocol for Internet of Things Achraf Fayad To cite this version: Achraf Fayad. Secure authentication protocol for Internet of Things. Networking and Internet Archi- tecture [cs.NI]. Institut Polytechnique de Paris, 2020. English. NNT : 2020IPPAT051. tel-03135607 HAL Id: tel-03135607 https://tel.archives-ouvertes.fr/tel-03135607 Submitted on 9 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Protocole d’authentification securis´ e´ pour les objets connectes´ These` de doctorat de l’Institut Polytechnique de Paris prepar´ ee´ a` Tel´ ecom´ Paris Ecole´ doctorale n◦626 Ecole´ doctorale de l’Institut Polytechnique de Paris (EDIPP) Specialit´ e´ de doctorat : Reseaux,´ informations et communications NNT : 2020IPPAT051 These` present´ ee´ et soutenue a` Palaiseau, le 14 decembre´ 2020, par ACHRAF FAYAD Composition du Jury : Ken CHEN Professeur, Universite´ Paris 13 Nord President´ Pascal LORENZ Professeur, Universite´ de Haute-Alsace (UHA) Rapporteur Ahmed MEHAOUA Professeur, Universite´ Paris Descartes Rapporteur Lyes KHOUKHI Professeur, Ecole´ Nationale Superieure´ d’Ingenieurs´ de Examinateur Caen-ENSICAEN Ahmad FADLALLAH Associate Professor, University of Sciences and Arts in Lebanon Examinateur (USAL) Rida KHATOUN Maˆıtre de conferences,´ Tel´ ecom´ Paris Directeur de these` Ahmed SERHROUCHNI Professeur, Tel´ ecom´ Paris Co-directeur de these` Badis HAMMI Associate Professor, Ecole´ pour l’informatique et les techniques Invite´ avancees´ (EPITA) 626 Acknowledgments First, I would like to thank my thesis supervisor Dr. -
On Multivariate Signature-Only Public Key Cryptosystems
On multivariate signature-only public key cryptosystems Nicolas T. Courtois1,2 [email protected] http://www.minrank.org 1 Syst`emes Information Signal (SIS), Universit´ede Toulon et du Var BP 132, F-83957 La Garde Cedex, France 2 INRIA Rocquencourt, Projet Codes, Domaine de Voluceau BP 105, 78153 Le Chesnay, France Abstract. In a paper published at Asiacrypt 2000 a signature scheme that (apparently) cannot be abused for encryption is published. The problem is highly non-trivial and every solution should be looked upon with caution. What is especially hard to achieve is to avoid that the pub- lic key should leak some information, to be used as a possible ”shadow” secondary public key. In the present paper we argument that the problem has many natural solutions within the framework of the multivariate cryptography. First of all it seems that virtually any non-injective multivariate public key is inherently unusable for encryption. Unfortunately having a lot of leakage is inherent to multivariate cryp- tosystems. Though it may appear hopeless at the first sight, we use this very property to remove leakage. In our new scenario the Certification Authority (CA) makes extensive modifications of the public key such that the user can still use the internal trapdoor, but has no control on any publicly verifiable property of the actual public key equations published by CA. Thus we propose a very large class of multivariate non-encryption PKI schemes with many parameters q, d, h, v, r, u, f, D. The paper is also of independent interest, as it contains all variants of the HFE trapdoor public key cryptosystem. -
Alternative Elliptic Curve Representations
Alternative Elliptic Curve Representations draft-struik-lwig-curve-representations-00 René Struik Struik Security Consultancy E-mail: [email protected] IETF 101draft-struik – London,-lwig-curve- representationsUK, March-002018 1 Outline 1. The ECC Algorithm Zoo – NIST curve P-256, ECDSA – Curve25519 – Ed25519 2. Implementation Detail 3. How to Reuse Code 4. How to Reuse Existing Standards 5. Conclusions draft-struik-lwig-curve-representations-00 2 ECC Algorithm Zoo (1) NIST curves: Curve model: Weierstrass curve Curve equation: y2 = x3 + ax + b (mod p) Base point: G=(Gx, Gy) Scalar multiplication: addition formulae using, e.g., mixed Jacobian coordinates Point representation: both coordinates of point P=(X, Y) (affine coordinates) 0x04 || X || Y in most-significant-bit/octet first order Examples: NIST P-256 (ANSI X9.62, NIST SP 800-56a, SECG, etc.); Brainpool256r1 (RFC 5639) ECDSA: Signature: R || s in most-significant-bit/octet first order Signing equation: e = s k + d r (mod n), where e=Hash(m) Example: ECDSA, w/ P-256 and SHA-256 (FIPS 186-4, ANSI X9.62, etc.) Note: message m pre-hashed draft-struik-lwig-curve-representations-00 3 ECC Algorithm Zoo (2) CFRG curves: Curve model: Montgomery curve Curve equation: By2 = x3 + Ax2 + x (mod p) Base point: G=(Gx, Gy) Scalar multiplication: Montgomery ladder, using projective coordinates [X: :Z] Point representation: x-coordinate of point P=(X, Y) (x-coordinate-only) X in least-significant-octet, most-significant-bit first order Examples: Curve25519, Curve448 (RFC 7748) DH Key agreement: -
Security Analysis of the Signal Protocol Student: Bc
ASSIGNMENT OF MASTER’S THESIS Title: Security Analysis of the Signal Protocol Student: Bc. Jan Rubín Supervisor: Ing. Josef Kokeš Study Programme: Informatics Study Branch: Computer Security Department: Department of Computer Systems Validity: Until the end of summer semester 2018/19 Instructions 1) Research the current instant messaging protocols, describe their properties, with a particular focus on security. 2) Describe the Signal protocol in detail, its usage, structure, and functionality. 3) Select parts of the protocol with a potential for security vulnerabilities. 4) Analyze these parts, particularly the adherence of their code to their documentation. 5) Discuss your findings. Formulate recommendations for the users. References Will be provided by the supervisor. prof. Ing. Róbert Lórencz, CSc. doc. RNDr. Ing. Marcel Jiřina, Ph.D. Head of Department Dean Prague January 27, 2018 Czech Technical University in Prague Faculty of Information Technology Department of Computer Systems Master’s thesis Security Analysis of the Signal Protocol Bc. Jan Rub´ın Supervisor: Ing. Josef Kokeˇs 1st May 2018 Acknowledgements First and foremost, I would like to express my sincere gratitude to my thesis supervisor, Ing. Josef Kokeˇs,for his guidance, engagement, extensive know- ledge, and willingness to meet at our countless consultations. I would also like to thank my brother, Tom´aˇsRub´ın,for proofreading my thesis. I cannot express enough gratitude towards my parents, Lenka and Jaroslav Rub´ınovi, who supported me both morally and financially through my whole studies. Last but not least, this thesis would not be possible without Anna who re- lentlessly supported me when I needed it most. Declaration I hereby declare that the presented thesis is my own work and that I have cited all sources of information in accordance with the Guideline for adhering to ethical principles when elaborating an academic final thesis. -
Multi-Party Encrypted Messaging Protocol Design Document, Release 0.3-2-Ge104946
Multi-Party Encrypted Messaging Protocol design document Release 0.3-2-ge104946 Mega Limited, Auckland, New Zealand Guy Kloss <[email protected]> arXiv:1606.04593v1 [cs.CR] 14 Jun 2016 11 January 2016 CONTENTS 1 Strongvelope Multi-Party Encrypted Messaging Protocol 2 1.1 Intent.......................................... ....... 2 1.2 SecurityProperties.............................. ............ 2 1.3 ScopeandLimitations ............................. ........... 3 1.4 Assumptions ..................................... ........ 3 1.5 Messages........................................ ....... 3 1.6 Terminology ..................................... ........ 4 2 Cryptographic Primitives 5 2.1 KeyPairforAuthentication . ............. 5 2.2 KeyAgreement.................................... ........ 5 2.3 (Sender)KeyEncryption. ............ 5 2.4 MessageAuthentication . ............ 6 2.5 MessageEncryption ............................... .......... 6 3 Message Encryption 7 3.1 SenderKeyExchange ............................... ......... 7 3.2 ContentEncryption............................... ........... 8 4 Protocol Encoding 9 4.1 TLVTypes ........................................ ...... 9 4.2 MessageSignatures ............................... .......... 10 4.3 MessageTypes.................................... ........ 10 4.4 KeyedMessages ................................... ........ 10 4.5 FollowupMessages ................................ ......... 10 4.6 AlterParticipantMessages. .............. 11 4.7 LegacySenderKeyEncryption . ............ 11 4.8 SenderKeystoInclude... -
Practical Fault Attack Against the Ed25519 and Eddsa Signature Schemes
Practical fault attack against the Ed25519 and EdDSA signature schemes Yolan Romailler, Sylvain Pelissier Kudelski Security Cheseaux-sur-Lausanne, Switzerland fyolan.romailler,[email protected] main advantages is that its scalar multiplication can be Abstract—The Edwards-curve Digital Signature Algorithm implemented without secret dependent branch and lookup, (EdDSA) was proposed to perform fast public-key digital avoiding the risk of side-channel leakage. More recently, a signatures as a replacement for the Elliptic Curve Digital Signature Algorithm (ECDSA). Its key advantages for em- new digital signature algorithm, namely Ed25519 [6], was bedded devices are higher performance and straightforward, proposed based on the curve edwards25519, i.e., the Edward secure implementations. Indeed, neither branch nor lookup twist of Curve25519. This algorithm was then generalized operations depending on the secret values are performed to other curves and called EdDSA [7]. Due to its various during a signature. These properties thwart many side-channel advantages [7], EdDSA was quickly implemented in many attacks. Nevertheless, we demonstrate here that a single-fault attack against EdDSA can recover enough private key material products and libraries, such as OpenSSH [8]. It was also to forge valid signatures for any message. We demonstrate a recently formally defined in RFC 8032 [9]. practical application of this attack against an implementation The authors of EdDSA did not make any claims about its on Arduino Nano. To the authors’ best knowledge this is the security against fault attacks. However, its resistance to fault first practical fault attack against EdDSA or Ed25519. attacks is discussed in [10]–[12] and taken into account by Keywords-EdDSA; Ed25519; fault attack; digital signature Perrin in [13]. -
(Not) to Design and Implement Post-Quantum Cryptography
SoK: How (not) to Design and Implement Post-Quantum Cryptography James Howe1 , Thomas Prest1 , and Daniel Apon2 1 PQShield, Oxford, UK. {james.howe,thomas.prest}@pqshield.com 2 National Institute of Standards and Technology, USA. [email protected] Abstract Post-quantum cryptography has known a Cambrian explo- sion in the last decade. What started as a very theoretical and mathe- matical area has now evolved into a sprawling research ˝eld, complete with side-channel resistant embedded implementations, large scale de- ployment tests and standardization e˙orts. This study systematizes the current state of knowledge on post-quantum cryptography. Compared to existing studies, we adopt a transversal point of view and center our study around three areas: (i) paradigms, (ii) implementation, (iii) deployment. Our point of view allows to cast almost all classical and post-quantum schemes into just a few paradigms. We highlight trends, common methodologies, and pitfalls to look for and recurrent challenges. 1 Introduction Since Shor's discovery of polynomial-time quantum algorithms for the factoring and discrete logarithm problems, researchers have looked at ways to manage the potential advent of large-scale quantum computers, a prospect which has become much more tangible of late. The proposed solutions are cryptographic schemes based on problems assumed to be resistant to quantum computers, such as those related to lattices or hash functions. Post-quantum cryptography (PQC) is an umbrella term that encompasses the design, implementation, and integration of these schemes. This document is a Systematization of Knowledge (SoK) on this diverse and progressive topic. We have made two editorial choices.